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Abstract

Universal phoneme recognition typically re-
quires analyzing long speech segments and
language-specific patterns. Many speech
processing tasks require pure phoneme rep-
resentations free from contextual influence,
which motivated our development of CUPE
- a lightweight model that captures key
phoneme features in just 120 milliseconds,
about one phoneme’s length. CUPE pro-
cesses short, fixed-width windows indepen-
dently and, despite fewer parameters than cur-
rent approaches, achieves competitive cross-
lingual performance by learning fundamental
acoustic patterns common to all languages. Our
extensive evaluation through supervised and
self-supervised training on diverse languages,
including zero-shot tests on the UCLA Pho-
netic Corpus, demonstrates strong cross-lingual
generalization and reveals that effective univer-
sal speech processing is possible through mod-
eling basic acoustic patterns within phoneme-
length windows.

1 Introduction

Current speech processing systems depend heav-
ily on contextual information, creating a double-
edged sword for certain tasks. While extensive
context provides crucial bias toward appropriate
attention mechanisms, it simultaneously makes
it nearly impossible to isolate individual speech
units—particularly allophones—from their contex-
tual embeddings. Modern systems such as deriva-
tives of wav2vec 2.0 (Baevski et al., 2020) typi-
cally analyze 300-2500ms of speech, incorporating
extensive language-specific patterns and contex-
tual dependencies. While effective for automatic
speech recognition, this approach entangles pho-
netic content with contextual information, making
it extremely difficult to disentangle the acoustic
properties that define individual speech sounds.

The necessity for contextless processing emerges
from two critical considerations: alignment preci-

sion and representation purity. Extended tempo-
ral windows (e.g., 500ms) reduce inter-frame dis-
criminability as individual frame representations
become increasingly influenced by surrounding
context. Optimal alignment performance requires
maximally discriminative frame-level representa-
tions, where each frame maintains distinct charac-
teristics. As context window length increases, the
transformer’s attention mechanism progressively
attenuates frame-specific features through contex-
tual averaging, resulting in diminished temporal
resolution.

For paralinguistic tasks, contextless models func-
tion as quantization preprocessing stages. When
frame-level embeddings encode predominantly
contextual rather than local information, this ho-
mogenization undermines the model’s capacity to
capture subtle local acoustic variations essential for
allophone analysis and speaker-specific phonetic
characterization.

Our empirical results directly challenge the
assumption that more context is always bet-
ter—models using 120ms of speech windows actu-
ally perform on-par if not better than those using
full word context across multiple evaluation sce-
narios, while simultaneously providing access to
pure phonemic representations less contaminated
by contextual dependencies.

Our work makes three key contributions. First,
we demonstrate that universal phoneme recognition
can be achieved effectively with just 120ms of con-
text, a fraction of the 300-2500ms typically used in
current approaches. Second, we introduce CUPE,
a lightweight architecture (30M parameters) that
achieves competitive performance through focused
local feature extraction. Third, we provide a fea-
ture extraction method that captures pure phonemic
representations by eliminating contextual depen-
dencies, leading to cleaner and more interpretable
phoneme embeddings across languages. By operat-
ing on brief windows—approximately the duration



of a typical phoneme (Crystal and House, 1988),
CUPE learns language-agnostic acoustic features
that characterize phonemes universally. This fo-
cus on fundamental acoustic patterns, independent
of language-specific context, enables robust cross-
lingual generalization and, crucially, provides ac-
cess to clean allophonic representations that are
essential for understanding speaker-specific pho-
netic variations.

The contextless nature of our approach enables
several practical applications:

• Timestamps Alignment: Generating time-
aligned transcripts from raw text and audio.
This task is critical for training downstream
text-to-speech models. Since this is the main
application for phoneme recognition, it helps
to have as little context information in each
frame so that there is a sharper contrast be-
tween frames for precise boundary detection.

• Speech style learning: It serves as a founda-
tional allophone encoder. Embeddings of each
frame can be used to generate acoustically
pure allophone variants of base phonemes.
This is also useful for training downstream
text-to-speech tasks which currently rely on
IPA dictionaries or sub-word tokens.

• Robust phoneme verification: Complement-
ing traditional ASR systems by detecting and
correcting errors that arise from over-reliance
on language context.

• Cross-linguistic research: Generating
language-agnostic phoneme representations
that facilitate multilingual studies and enable
more accurate speech disorder diagnostics.

Through extensive evaluation, we validate CUPE
(Contextless Universal Phoneme Encoder), an ar-
chitecture that deliberately restricts analysis to
short windows. Our results demonstrate that this
constrained approach matches or exceeds the per-
formance of context-heavy models (XLS-R (Babu
et al., 2022)) across diverse languages while using
an order of magnitude fewer parameters and pro-
viding clean, context-independent phonemic repre-
sentations suitable for allophone analysis.

2 Contextless Universal Phoneme Model

Analysis of our evaluation datasets (Table 2) shows
phoneme durations averaging 80ms (range: 62-
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Figure 1: The windowing approach restricts the model’s
context for better localized learning, therefore, gener-
alizing better across languages without learning longer
patterns.

107ms), consistent with Crystal and House’s find-
ings of 70-120ms for English phonemes (Crys-
tal and House, 1988). Our architecture processes
acoustic features through Conv1D layers at 13.1ms
per frame, with a 120ms window and 80ms stride
to capture 1-2 phonemes per window. This ap-
proach provides precise frame-level analysis while
maintaining phoneme-level context, departing from
traditional methods that rely on broader windows.
To preserve acoustic continuity across overlapping
windows, we implement a cosine-based weighting
mechanism for feature fusion. The complete model
architecture is illustrated in Figure 1, with detailed
specifications provided in Table 1.

2.1 Window Slicer
The Window Slicer module addresses the funda-
mental challenge of processing continuous speech
signals by segmenting raw waveforms (16 kHz)
into overlapping windows. This design enables
localized feature extraction while preserving tem-
poral continuity at boundaries. Using a 120 ms
window size with an 80 ms stride provides suffi-
cient context for phonetic events while reducing
computational complexity from O(T 2) to O(W 2),
where T is the total sequence length and W is the
window size.

Given an input audio signal x ∈ RB×T , where
B is the batch size and T is the total number of
samples in the input sequence (T = sample_rate×
duration):

wb,i(t) = xb(t+ is), t ∈ [0,W − 1] (1)

where b ∈ [0, B − 1] is the batch index, i ∈
[0, N − 1] is the window index, t is the time in-
dex within each window, W = 1920 is the window



size (120 ms × 16 kHz), s = 1280 is the stride
length (80 ms × 16 kHz), and N =

⌊
T−W

s

⌋
+ 1 is

the number of windows.

2.2 Feature Extractor

Drawing from raw waveform processing tech-
niques (Dai et al., 2017; Schneider et al., 2019),
our feature extraction stage implements a hierarchi-
cal CNN architecture that processes raw waveforms
directly. This design, detailed in Table 1, captures
increasingly abstract representations while main-
taining computational efficiency. Following the
success of Squeeze-and-Excitation Networks (Hu
et al., 2018) in speech recognition (Han et al.,
2020), we incorporate adaptive channel-wise re-
calibration through frequency attention. The archi-
tecture separates temporal and spectral processing
streams, inspired by multi-stream approaches (Han
et al., 2021), to capture both evolving acoustic pat-
terns and frequency relationships.

2.3 Windowwise Transformer

Our transformer encoder layers process indepen-
dent fixed windows instead of the whole clip, mod-
ifying the contextual processing of standard trans-
formers (Vaswani et al., 2017). This approach rep-
resents a departure from traditional speech trans-
formers by restricting context to local windows,
ensuring that phoneme recognition decisions rely
on relevant local context. Our preliminary exper-
iments showed a tendency to overfit with larger
transformer layers, leading us to maintain a light
architecture (13M parameters for transformer) with
a high dropout of 0.25. For comparison, the XLSR
model (Conneau et al., 2021) has over 300M pa-
rameters.

2.4 Classification and Window Stitching

The final stage of our pipeline consists of classifica-
tion and temporal integration. The transformer out-
puts first undergo classification through a two-layer
neural network, which maps the high-dimensional
representations to phoneme logits. This classifier
is designed to untangle complex phonetic repre-
sentations while maintaining computational effi-
ciency. To ensure temporal coherence across win-
dow boundaries, we implement a cosine-based

weighting scheme:

ỹ(b, t, c) =

∑
k cos(πt/Fw − π/2) · yk(b, t, c)∑

k cos(πt/Fw − π/2) + ϵ
,

t ∈ [0, Fw]

(2)

where yk(b, t, c) represents the logit from window
k for batch b, time t, and class c. This weighted
stitching approach enables effective recognition of
phonemes shorter than the window length while
preserving temporal coherence.

3 Experimentation

We experiment with both supervised and self-
supervised learning for the proposed model. First,
we evaluated our model architecture using labeled
speech and phoneme sequences. Then, we adapted
the same architecture for self-supervised pretrain-
ing using vector quantization projections as targets,
following a wav2vec-inspired approach. For base-
line comparison, we use the XLS-R (Babu et al.,
2022) 300M architecture with an additional linear
classification layer. In non-pretrained evaluations,
we reset XLS-R’s parameters, while for pretrained
evaluations, we fine-tune the off-the-shelf model
with optional feature extraction layer freezing. The
experimental pipeline remains consistent across
all tests, varying only in context length (120ms,
160ms, 360ms, or complete words), model selec-
tion (XLS-R or CUPE), XLS-R parameter reset
status, and feature extraction layer freezing status.

3.1 Datasets

We evaluate our model on three diverse speech
corpora:
(1) FLEUR (Few-shot Learning Evaluation of Uni-
versal Representations of Speech) (Conneau et al.,
2023): Used exclusively for self-supervised pre-
training, comprising 5 hours of audio data from
each of 102 languages. Table 2 reports trimmed
durations excluding leading and trailing silences.
(2) Multilingual Spoken Words Corpus (MSW)
(Mazumder et al., 2021): Contains isolated words
from Mozilla Common Voice. We use 32 high-
resource languages for training (10-hour limit per
language) and 6 low-resource languages (lt, mt,
ia, sk, ka, as) for evaluation. Twelve languages
were excluded due to incompatibility with espeak-
NG (esp, 2022), the tool we used to generate IPA
phoneme sequences from text.



Table 1: Detailed architecture specifications of the CUPE model with 30M trainable parameters.

Layer Output Shape Parameters TR RF Other Details
→Window (B, 1, 1920) - 80ms 120-360ms Speech waveforms at 16kHz
Conv1D-1 (B, n, 275) k=15, s=7, p=7 13.1ms 150ms + BatchNorm + GELU + D(0.1)
Conv1D-2 (B, 2n, 55) k=11, s=5, p=5 1.9ms 21.3ms + BatchNorm + GELU + D(0.1)
Conv1D-3 (B, 4n, 19) k=7, s=3, p=3 0.4ms 4.2ms + BatchNorm + GELU + D(0.1)
Conv1D-4 (B, 8n, 10) k=5, s=2, p=2 0.1ms 1.3ms + BatchNorm + GELU + D(0.1)
Freq. Attention (B, 8n, 10) k=1, s=1, p=0 0.1ms 0.6ms ⊙ AvgPool+Conv1D+Sigmoid
Temporal (B, 8n, 10) k=7, s=1, p=3

13.1ms ±11 frames 2×Conv1d, g=8, BN, GELU
Stream (TS) (B, 8n, 10) k=3, s=1, p=1
Spectral (B, 12n, 10) k=1, s=1, p=0

13.1ms 1 frame 2×Conv1d, g=8, BN, GELU
Stream (SS) (B, 8n, 10) k=1, s=1, p=0
Fusion (B, 8n, 10) k=1, s=1, p=0 13.1ms Concat (TS, SS) + 1x1 Conv + BN + GELU
Transformer (B, 10, 512) Fw=10@120ms 13.1ms Full window 4 layers, 8 heads, Pre-norm, D(0.25)
↪→FT-Classifier (B, 10, C) D=0.25 13.1ms Full window Supervised only (512→2048→C)
↪→PT-Projection (B, 10, 256) D=0.25 13.1ms Full window Unsuperv. only (512→2048→256)
TR: Temporal Resolution, RF: Receptive Field, B: batch size, k: kernel, s: stride, p: padding, n: base channels (256)

(3) UCLA Phonetic Corpus (UPC) (Li et al.,
2021b): Features phonetically transcribed speech
from 95 languages. We partition this dataset based
on language overlap with XLS-R pretraining and
FLEUR: UPC-eval contains 64 previously unseen
languages, while UPC-seen includes 25 languages
present in both pretrained XLS-R and FLEUR. The
remaining six languages (fa, ig, kea, ab, eu, haw),
exclusive to either XLS-R or FLEUR, serve as val-
idation data during supervised training.

Table 2 summarizes the dataset statistics. The
corpora differ significantly in language family dis-
tribution and recording conditions. MSWC and
FLEUR predominantly feature Indo-European lan-
guages by duration, while UPC comprises 48.5%
African languages. MSWC offers diverse speakers
and recording environments per language, whereas
UPC contains just 60 utterances per language, typi-
cally from a single speaker in consistent recording
conditions.

3.2 Pre-Processing

One of the fundamental challenges in creating
a universal phoneme recognition system is ac-
commodating unique phoneme inventories across
languages. Prior work has explored two main
approaches: probabilistic matching (Liu et al.,
2023; Li et al., 2021a), which maps phonemes
from new languages to acoustically similar train-
ing phonemes, and attribute-based decomposition
(Glocker et al., 2023), which reconstructs language-
specific phonemes from 35 articulatory attributes
using the target language’s IPA inventory. While
both enable automated adaptation to new lan-
guages, they face tradeoffs in precision and fea-
ture completeness. Our approach instead employs

systematic manual mapping of rare phonemes to
standardized phoneme classes, prioritizing percep-
tual similarity over articulatory phonological rela-
tionships. Our mapping preserves high-frequency
palatalized consonants (tj, nj, rj) while merging
less frequent ones, maintains perceptually distinct
vowel contrasts (e.g., 2 vs @, I vs i), keeps length
distinctions for frequent vowels (a:, e:, i:, o:, u:),
and maps rare phonemes to frequent counterparts
based on confusion patterns (e.g., 6 → a, C → k).
For affricates, we maintain distinct representations
for common ones (ts, tS, dZ) while simplifying rare
variants (pf → f), guided by both frequency and
confusion patterns. The mapping dictionary is pub-
licly available along with the source code to facili-
tate adoption and improvement.

Table 2: Datasets’ details. Ln: total languages or lang
code.

Set Ln Hrs WD(std) PPW(std) U/C

MSWCtrain 32 181 0.80(0.12) 6.30(1.45) 803/65
MSWCeval 6 15.6 0.82(0.12) 6.39(1.34) 117/56
Lithuanian lt 5.2 0.87(0.12) 6.58(1.34) 66/42
Maltese mt 4.9 0.77(0.11) 6.25(1.30) 56/38
Interlingua ia 3.17 0.84(0.12) 5.98(1.26) 29/29
Slovak sk 1.37 0.88(0.11) 6.77(1.3) 43/38
Georgian ka 0.87 0.82(0.11) 6.97(1.33) 34/28
Assamese as 0.05 0.77(0.12) 5.80(1.21) 31/26
UPC-eval 67 0.82 0.93(0.20) 5.01(1.53) 237/59
UPC-seen 28 0.56 0.89(0.22) 4.89(1.32) 221/60
FLEURS 102 455 - - -
WD: avg. Word Duration (s), PPW: avg. Phonemes-Per-Word
U : Unmapped unique phonemes, C: Mapped phoneme classes.

3.3 Supervised Training
For each window, the model generates frame-
level logits (10 frames per 120ms window, 28
frames for 360ms), which are stitched into con-
tinuous phoneme sequences. Training uses CTC



loss (Graves, 2012) with an additional silence-
awareness term:

L1 = Lctc + αsLsil (3)

Lsil =
1

B

∑
t,b

(0.5ỹtbM
t
s + 0.1ỹtb(1−M t

s)) (4)

where ỹtb is the blank token probability, M t
s is the

silence mask, B is batch size, and αs (default 0.01)
balances silence detection with phoneme recogni-
tion.

Our training pipeline optimizes for efficient
learning through several mechanisms: AdamW
optimizer with OneCycleLR scheduling, gradient
norm clipping at threshold τ = 1.0, and mixed-
precision BF16 training for balanced efficiency
and numerical stability. We trained all models on
MSWC-train using a batch size (B) of 300 words
until validation PER showed no further improve-
ment, requiring 20 epochs and approximately 7
hours on two A6000 GPUs. The trained models
and source code are available online0, with results
presented in Table 3.

3.4 Self-supervised Pre-Training

For self-supervised pre-training, we modify CUPE
by replacing the FT-Classifier with a prediction
head (two projection layers with residual con-
nections, layer normalization, GELU activation,
and dropout 0.1) while being projected to a 256-
dimensional feature space. The core architecture
remains unchanged.

The pre-training uses masked prediction on
120ms windows (80ms stride), masking 40% of fea-
tures based on energy profiles and acoustic bound-
aries, with per-batch constraints of 10-80%. A
vector quantizer with 256-entry codebook serves
as training target, using EMA updates (decay 0.99)
and Laplace smoothing. The training objective
combines reconstruction loss (smooth L1), con-
trastive loss with curriculum learning, codebook
diversity loss, and similarity regularization.

Optimization uses AdamW (weight decay 0.05)
with hierarchical learning rates (encoder: 5e-4,
quantizer: 1e-3, prediction head: 1.5e-3) and one-
cycle scheduling (15% warmup, momentum 0.8-
0.9). For evaluation, we freeze the feature extrac-
tor, replace the prediction head with classification

layers, and fine-tune only the transformer and FT-
Classifier components. We similarly evaluate XLS-
R with both full and frozen-backbone fine-tuning.

3.5 Results

3.5.1 Evaluation Metrics
We decoded model outputs using Greedy Best-
First Search and evaluated using Phoneme Error
Rate (PER), Ground-truth Probability (GP), and
F1-score. GP and F1 are computed after optimal
alignment of true and predicted sequences, exclud-
ing insertions and deletions. While PER assigns a
full penalty (+1) for any substitution, insertion, or
deletion, it doesn’t measure the near-misses. We
introduce GP (GPm for macro, GPw for class-
weighted) to better evaluate fine-grained phonemic
distinctions like duration variants (i/i:) and vowel
contrasts (æ/a) that are preserved in our approach
rather than merged. GP measures the model’s
probability assignment to ground-truth classes at
aligned time steps. It can be intuitively understood
as the proximity to truth, or conversely, the inverse
of the distance from truth. This proximity measure
instead of PER is more important for judging the
quality of embeddings for latent tasks.

Detailed analysis of model behavior is provided
in Appendix A. The confusion matrix in Figure
2 shows that contextless recognition errors follow
phonetically meaningful patterns, with confusions
primarily occurring between acoustically similar
sounds (e.g., front vowels, voiced/voiceless conso-
nant pairs) rather than random misclassifications.
The phoneme probability distributions over time
(Figure 3) illustrate CUPE’s temporal resolution
capabilities, showing distinct probability peaks cor-
responding to ground truth phonemes and smooth
transitions between adjacent sounds.

3.6 Key Insights and Limitations

Looking at Table 3, CUPE demonstrates remark-
able cross-lingual generalization despite having a
fraction of XLSR’s parameters. While the 360ms
model shows slightly better PER, this can be mis-
leading due to class imbalances - it performs better
on long and common vowels like /a:/ but struggles
with short but rare phonemes, highlighting why
GPm is a more balanced metric. Note that both
360ms and 120ms models have the same frame
length of 16ms, the only difference is the context
length. The significant performance difference in

0https://github.com/tabahi/contexless-phonemes-CUPE



Table 3: Evaluation metrics (%) for two architectures, XLSR (300M) & CUPE (30M), trained on MSWC-train
without pretraining.

Evaluation on MSWC-eval Zero-shot PER on individual langs Zero-shot evaluation on UPC-eval
Model:Context PER↓ GPm GPw F1 lt mt ia sk ka as PER↓ GPm GPw F1
XLSR:word 49.9 35 51.7 60.6 59.5 48.7 37 45.3 48.4 65.8 66.5 31.2 51.7 52.9
XLSR:120ms 52.6 34 52.1 59.9 61.1 49.9 42.9 52.3 50.4 63.7 66.3 31.6 51.1 54.9
CUPE:word 46.4 39 55.1 63 54.5 47.1 33.1 42.5 44 60.5 58.8 32.9 52.5 58.3
CUPE:360ms 44.8 38.3 56.5 62.6 53.8 45.2 30.8 39.7 42.5 60.9 52.2 34.7 53.1 61
CUPE:160ms 47.8 36 55 64.8 57.2 46.2 36.2 45.2 44 60.7 57.5 32.9 54.1 58.8
CUPE:120ms 45.9 40 57.5 64.5 54.6 45 33.9 43.6 42.2 60.2 56.9 35.1 56.4 67.7

Table 4: Evaluation metrics (%) for pre-trained models CUPE-PT (30M, pretrained on FLEURS), fine-tuned on
MSWC-train, compared with XLSR (300M, off-the-shelf pretrained on 128 languages) with or without frozen
backbone (FB) feature extractor. The top 4 rows show the results for contextless (120ms) models, the bottom 4
rows show results for word-context models for reference. Only the UPC-eval languages are unseen languages for
zero-shot evaluation.

Model:Context Eval. on MSWC-eval PER↓ on individual langs (seen) UPC-eval UPC-seen
PER↓ GPm GPw F1 lt mt ia sk ka as PER↓ GPm PER↓ GPm

120ms Context Models
FB-XLSR 65.8 36.2 60.2 51.4 69.6 70.7 55.6 55.0 63.6 84.5 66.3 43.5 67.8 43.5
FB-CUPE-PT 49.8 34.9 53.0 60.5 59.3 47.5 38.5 48.5 44.6 61.4 66.5 35.4 69.7 38.2
XLSR 52.2 38.2 56.7 62.3 60.9 48.5 43.0 51.8 50.8 67.1 63.6 37.8 60.9 45.8
CUPE-PT 45.6 41.2 58.1 64.0 54.5 45.2 33.5 47.9 43.6 62.1 56.2 36.4 57.6 44.2

Word Context Models
FB-XLSR 43.5 40.0 58.4 68.1 53.9 42.8 30.1 38.2 37.3 55.3 66.9 48.5 70.3 43.4
FB-CUPEPT 70.4 1.9 29.6 54.3 73.6 65.1 71.2 77.1 70.5 62.5 69.0 3.2 73.2 2.7
XLSR 46.6 36.3 53.6 66.7 56.7 44.6 35.5 39.7 44.2 63.8 46.9 39.8 46.0 46.4
CUPE-PT 46.1 38.1 56.1 61.4 54.2 45.6 35.5 41.7 42.6 60.4 56.8 37.9 54.0 46.2

UPC evaluations, even when XLSR:120ms uses the
same windowing pipeline, suggests that model’s
heavy size could be an overfitting liability.

Table 4 reveals that while XLSR with a frozen
feature extractor achieves better overall metrics,
CUPE maintains competitive performance under
significant constraints. Notable observations in-
clude XLSR’s degraded performance on UPC with
frozen features and CUPE’s sharp performance
drop with word-context windows, perhaps due to
having to learn more phonemes per window while
most parameters are frozen. The completely un-
frozen CUPE model’s results mirror those in Table
3 even though the learning rate was set 10 times less
for fine-tuning. The best contextless model, CUPE-
PT:120ms, does not perform as well as pre-trained
XLSR with full word context, indicating that ad-
ditional context and parameters benefit large-scale
pretraining. Nevertheless, CUPE’s effectiveness
with frozen feature extractors shows that essential
phonetic information is learned by the feature ex-
tractor within brief temporal windows during pre-
training. Another sharp degradation is noticeable
for CUPE-PT word context compared to 120ms;
it is possibly due to 30M parameters being not
enough for longer sequences (1000ms vs 120ms).

Our approach faces several limitations in its cur-
rent form. The fixed 120 ms window presents inher-
ent trade-offs in phoneme recognition: too long for
short stop consonants and insufficient for capturing
long phonemes fully. The model shows the best
recall of stop consonants, but the worst recall of in-
frequent vowels. This issue is particularly evident
in languages with contrastive length distinctions,
where the model struggles to maintain consistent
performance across different phoneme durations.

The performance gap between supervised and
pre-trained+fine-tuned results points to architec-
tural limitations in both the projection mechanism
and loss objectives. The current projection ap-
proach may not optimally preserve phonetic fea-
tures during self-supervised learning, while the loss
objectives could better reflect the hierarchical na-
ture of phonemic contrasts. Additionally, the rela-
tively modest size of the model (30M parameters)
may limit its capacity to capture the full complexity
of cross-linguistic phonetic variations. Addition-
ally, our systematic mapping of rare phonemes,
while practical, may obscure certain phonological
contrasts. Although we achieve competitive results
on the UCLA Phonetic Corpus, direct comparisons
with methods such as Epitran (Li et al., 2021a) and



Table 5: Zero-shot PER comparison on UPC (UCLA Phonetic Corpus) with other works. Our CUPE:120ms
results are fine-tuned on language splits matched to each baseline study for fair comparison, which differ from the
UPC-eval/UPC-seen partitions in Tables 3-4. Direct performance comparison is limited due to different phoneme
mapping systems. Ln = number of unseen test languages (of 95).

Study Ln ↓ PER (%) Phoneme Inventory Approach
(Li et al., 2021a) 47 51.2 Epitran+Allovera+Panphon
Ours 47 46.1 Systematic mapping to 65 classes
(Liu et al., 2023) 10 64.7 Direct UPC inventory
Ours 10 44.1 Systematic mapping to 65 classes
(Li et al., 2022) 77 64.2 Bayesian tree-based estimation
Ours 77 48.6 Systematic mapping to 65 classes
(Glocker et al., 2023) 84 45.62 35 articulatory attribute system
Ours 84 48.98 Systematic mapping to 65 classes

Allophant (Glocker et al., 2023) are challenging
due to fundamentally different phoneme inventory
approaches.

While CUPE demonstrates strong performance
in contextless phoneme recognition, several limi-
tations warrant discussion. The model’s varying
performance across language families suggests po-
tential biases in the feature extraction process that
merit further investigation. Some languages with
distinct phonological structures or phoneme inven-
tories may require specialized preprocessing or ar-
chitectural adaptations to achieve optimal perfor-
mance. Additionally, the fixed 120ms window size,
while effective across our evaluation datasets, may
not be optimal for all languages or phonetic con-
texts—some phonemes naturally require longer or
shorter temporal windows for accurate characteri-
zation.

Most importantly, this work establishes the foun-
dation for more complex speech analysis systems.
We have demonstrated how to extract clean em-
beddings for individual allophones—the next crit-
ical step is implementing a sentence-level speech
style encoder that learns from these contextless al-
lophone embeddings. Such a system would enable
comprehensive analysis of speaker characteristics,
accent patterns, and speaking styles while maintain-
ing the interpretability and cross-linguistic general-
izability that contextless representations provide.

While our approach achieves competitive results
on the UCLA Phonetic Corpus compared to exist-
ing methods listed in Table 5, these comparisons
should be interpreted cautiously - each method
uses fundamentally different phoneme inventory
systems, from Epitran’s probabilistic mappings
(Li et al., 2021a) to Allophant’s 35 articulatory
attributes (Glocker et al., 2023), making direct per-
formance comparisons less meaningful. Our choice
of 65 systematically mapped classes represents a

different trade-off between granularity and gener-
alization. The 65 class system is pragmatic imple-
mentation which can be expanded depending on
the dataset. We selected 65 phonemes by empiri-
cally analyzing their occurrence across MSWC’s
50 languages, including only those that appeared at
least 10,000 times. While phoneme mapping can
further reduce the number of classes, our findings
show that the impact on error rate is limited. For
instance, when we applied broad phoneme group
mapping to reduce the set to just 15 phonemes, the
PER on MSWC-eval dropped from 0.45 to 0.40.

4 Conclusion

Through this work, we have demonstrated that
effective universal phoneme recognition can be
achieved using brief 120ms windows of speech
input. Our CUPE model achieves competitive per-
formance while requiring an order of magnitude
fewer parameters than current approaches. The
model’s success in cross-lingual generalization val-
idates our core finding that essential phonetic infor-
mation can be captured through focused analysis of
brief speech segments. These results provide com-
pelling evidence that extensive temporal context
is not a requirement for robust speech processing
tasks. While our approach has some limitations,
particularly with very long phonemes and limited
phoneme inventory, it opens promising directions
for lightweight, language-agnostic speech process-
ing systems. CUPE’s effectiveness has significant
implications for real-world applications, from low-
latency speech recognition and ASR self-learning
to speech pathology diagnostics. Our results indi-
cate that future speech processing systems may ben-
efit from focusing on fundamental acoustic patterns
rather than extensive contextual dependencies.
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A Confusion Heatmaps

Figure 2: Confusion matrix for contextless phoneme recognition on MSWC-eval dataset using CUPE:120ms
model trained on MSWC-train. The heatmap shows predicted phonemes (x-axis) versus ground truth phonemes
(y-axis), with color intensity indicating count frequency on a logarithmic scale. The ‘Un’ counts show the
unaligned trues or predictions (i.e., the true sequence had a phoneme that didn’t exist or aligned in the
predicted sequence and vice-versa). The matrix reveals systematic confusion patterns, with darker cells
along the diagonal indicating correct predictions. Notable off-diagonal clusters highlight acoustically similar
phoneme pairs that are challenging for contextless recognition, such as front vowels, central vowels, and
voiced/voiceless consonant pairs. The sparse structure demonstrates that most confusions occur within
phonetically related categories rather than across distant phoneme classes.



Figure 3: Phoneme probability distributions over time for an example utterance using CUPE:120ms model. The
top panel shows a heatmap of phoneme probabilities (y-axis) across time frames (x-axis), with color intensity
representing probability values. Ground truth phoneme alignments are displayed at the bottom with text. The
visualization demonstrates the model’s ability to capture temporal phoneme transitions in contextless recognition,
with clear probability peaks corresponding to ground truth phonemes. Notable patterns include smooth transitions
between phonemes within words and distinct silence regions (SIL) between words, highlighting the model’s temporal
resolution at 13ms.


