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Abstract

Retrieval Augmented Generation (RAG) has
risen to prominence for boosting the capa-
bilities of Large Language Models (LLMs)
through the integration of external knowledge.
Notably, the document chunking process plays
a central role in the performance of RAG
pipelines. Nevertheless, incoherent document
splits and inappropriate chunk sizes hinder re-
trieval efficiency and contextual accuracy. To
address this, we propose Recursive Seman-
tic Chunking (RSC), a dynamic and adaptive
chunking framework that ensures semantic co-
herence. It maintains coherence by recursively
splitting large chunks and merging smaller
ones. Unlike conventional methods, RSC pre-
serves contextual integrity while optimizing
retrieval efficiency. The evaluation across 4
distinct datasets outperformed traditional se-
mantic chunking techniques on evaluation met-
rics; contextual relevancy, contextual precision,
contextual recall, retrieval time, faithfulness
and answer relevancy. Results demonstrate
that RSC consistently outperforms traditional
chunking techniques, achieving higher contex-
tual relevancy and total score while maintain-
ing efficient retrieval times. These findings
highlight the potential to optimize RAG sys-
tems and to improve the document chunking
steps in the systems.

1 Introduction

Large Language Models (LLMs) are widely
adopted across various domains in the form of
chatbots, AI assistants, and other applications (Sid-
dharth and Luo, 2024; Sahlman et al., 2023). The
performance of LLMs is enhanced via the integra-
tion of external knowledge sources, specifically for
custom applications. In addition, we can leverage
the capabilities of LLMs without training them.
The aforementioned enhancement can be made via
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Retreival-Augmented Generation (RAG) (Lewis
et al., 2020).

The RAG process begins with a user’s query be-
ing sent to the LLM, which generates a retrieval
request based on that query. This request is for-
warded to the retriever system, which searches
the vector database. Embeddings of documents
chunk i.e. context is stored in vector database. The
relevant context is then retrieved and combined
with the user’s query before being sent to the LLM
for a final response, as shown in Figure 1. Re-
searchers have developed various RAG-based solu-
tions across different domains, such as finance and
healthcare (Alkhalaf et al., 2024; He et al., 2024;
Feng et al., 2024; Mathur et al., 2024).

The critical aspect of the RAG pipeline is the
chunking of documents. Chunking in RAG sys-
tems is a technique that breaks down large docu-
ments into smaller, manageable segments known
as "chunks" (LangChain, 2024). This process is
crucial as it enhances the efficiency and accuracy
of information retrieval, which leads to better out-
comes for the system. The nature of context re-
trieved from the vector database is based on the
segmentation of these documents, therefore, the
choice of chunking techniques is a significant step
in the pipeline (Setty et al., 2024). The chunking
techniques directly affect the quality of retrieved-
context and retrieval time. It eventually affects
the quality of the product that is utilizing RAG-
based applications. The choice of chunking is
quite challenging i.e. larger chunks can lead to
slower retrieval, or retrieve irrelevant chunks and
small chunks may not adhere to a coherent infor-
mation unit. Recently, there has been a shift in re-
search focus towards optimal chunking techniques
i.e. (Yepes et al., 2024). Although frameworks
such as LangChain (AI, 2024) and LamaIndex (Liu,
2022) have various chunking strategies. Due to
complexities of the document structure, and cus-
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Figure 1: Information Flow in Retrieval Augmented
Generation (RAG)

tom systems, it is still a challenging task at hand.
In this paper, we propose Recursive Semantic

Chunking that focuses on optimizing the semantic
chunking of the documents. The following are the
key contributions of this work:

• We propose a Recursive Semantic Chunking
method, designed to split textual documents
into coherent semantic chunks of an appropri-
ate size.

• We introduce a dynamic method for adjusting
the chunk size. The recursive nature of this
method ensures that larger text segments are
progressively broken down while maintain-
ing semantic integrity. Smaller segments are
merged strategically, keeping the chunk size
balanced.

• We demonstrate that the proposed method im-
proves retrieval time compared to traditional
chunking techniques.

• As part of this work, we introduce
NewsMatrix-71, a large-scale, multi-domain
news dataset.

2 Related Work

Retrieval Augmented Generation systems rely on
the context returned from the retrieval algorithms,
making chunking a key factor in the pipeline
(Yepes et al., 2024). Therefore, the choice of
chunking strategies is a critical step. Ineffective
techniques can result in either incomplete chunks
leading to losing context or large chunks with irrel-
evant information negatively impacting the accu-
racy of the retrieval (Setty et al., 2024).

One of the common approaches is to split the
document based on fixed numbers of chunks. How-
ever, it has a potential loss of context in both cases
larger or smaller chunk size (Teja, 2023). To ad-
dress this, the researchers introduce recursive split
by character technique (LangChain, 2023). It re-
cursively splits keeping the longest text chunks
together with a need to define and constant adjust-
ment of chunk size overlapping making it compu-
tationally expensive.

Although the recursive text split tends to keep
the chunks semantically closed together, it does not
directly account for semantic meaning. Conversely,
semantic chunking (LangChain, 2024) groups the
text that is semantically similar together. It first
splits the text into sentences and groups them into
three sentences, then merges similar groups in the
embedding space. However, this technique does
not ensure optimal chunk sizes. Since its mech-
anism is dependent on the similarity of the em-
bedding vectors, it may lead to larger chunks and
cause hallucinations.

Agentic chunking (FullStackRetrieval, 2024)
pushed this idea further by leveraging Large Lan-
guage Models. It converts text into propositions
via LLMs (Chen et al., 2024). Propositions are de-
fined as standalone statements that convey a single
fact clearly without needing extra context. It can be
referred to as the smallest unit of meaning within
a text, each expressing one distinct idea. Propo-
sitions retain the semantic meaning in individual
statements as shown in the following example:

Once the propositions are created, these are
passed to an LLM, which is then prompted to group
these chunks. This approach offers flexibility and
higher accuracy. Nevertheless, it requires well-
crafted prompts and dependency on the capability
of the acquired LLM.

Working on efficient chunking techniques is an
open research area as not much has been explored
in this regard.



Proposition Conversion Example

Original Sentence

“Three new products were launched
this year, expanding our reach into
international markets.”

Converted Propositions

“Three new products were launched
this year.”

“The company expanded into inter-
national markets.”

3 Dataset

We introduce a new large-scale news dataset,
named NewsMatrix-711. It covers a diverse set
of news categories over multiple years.

3.1 Scraped News Dataset (NewsMatrix-71)

We compile this dataset by scraping English
news articles from Dawn2, Tribune3, and Daily
Times4. This dataset covers the span of three years
(2021–2023) and has up to 96,859 news articles
categorized into 71 unique topics, including Busi-
ness, Fashion, Health, World, and more. It offers a
diverse, time-spanning, and category-rich corpus
suitable for various NLP tasks. It captures a broad
spectrum of global and regional news, making it a
valuable resource for research. Given the size and
scope of this dataset, we will selectively release a
publicly available subset to facilitate reproducibil-
ity and further research.

4 Recursive Semantic Chunking

This section presents the Recursive Semantic
Chunking framework in detail. The primary objec-
tive is to ensure the splitting of chunks is seman-
tically coherent and maintains the integrity of the
content. In addition, the size of the chunks should
be optimal. The standard semantic chunking
technique tends to generate large chunks, which

1This data will be published publicly and free for research
purposes after the paper’s acceptance. It will be shared un-
der the Creative Commons Attribution 4.0 International
License (CC BY 4.0)

2Dawn
3Tribune
4Daily Times

negatively impact the performance of retrieval-
augmented generation systems. Furthermore, in
custom RAG projects, documents often belong to
specific topics, and larger chunks reduce system
efficiency.

Algorithm 1 provides a detailed outline of the
proposed chunking process. All predefined val-
ues are determined after extensive experimentation.
The following steps describe the pipeline.

Segmentation of Textual Data from Files

The data store consists of files fi containing tex-
tual data stored as strings Ti. Since LLMs have
token limits, each Ti undergoes a length check.
If it exceeds the threshold Tmax, the file is split
into smaller segments {t1, t2, . . . , tn}, ensuring
that |tj | ≤ Tmax. The splitting occurs at the nearest
sentence boundary (e.g., full stop, question mark)
to preserve linguistic coherence.

Initial Semantic Chunking

Each segment tj undergoes an initial semantic
chunking process (LangChain, 2024). In this step,
the semantically similar texts are grouped in the
embedding space, forming C0 = {c1, c2, . . . , cm},
where ck represents an initial chunk.

Recursive Semantic Chunking

For each chunk ck ∈ C0, the semantic chunker is
recursively applied if its length exceeds the thresh-
old Tchunk (1,500 characters). With each recur-
sive iteration, the breakpoint threshold parameter
is gradually reduced, ensuring that large chunks
are broken into smaller, semantically meaningful
segments. The recursive function R(c, T ) operates
as follows:

R(c, T ) =

{
c if |c| ≤ T

R(split(c, T − δ), T − δ) if |c| > T

where δ represents a small reduction factor to
progressively decrease chunk size in each itera-
tion. The reduction factor δ is heuristically set to 3
after initial experimentation. Although not tuned
through systematic search, this value is selected
to ensure a gradual and controlled recursive break-
down of large chunks. This value is kept fixed
across all datasets to maintain consistency and re-
producibility.

https://www.dawn.com/
https://tribune.com.pk/
https://dailytimes.com.pk/


Merging Short Chunks
Following recursive chunking, some chunks may
become too short (i.e., less than Tmerge, set to 350
characters). Extremely small chunks may lack se-
mantic coherence, leading to information loss. To
address this, the similarity score of smaller chunks
is calculated with both preceding and subsequent
chunks. It is merged with the chunk that has the
highest similarity score. This ensures semantic in-
tegrity while preventing the loss of meaningful text.
The merging process is defined as follows:

For i = 1 to n :



If |ci| < Tmerge, compute:
Sprev = sim(ci, ci−1)

Snext = sim(ci, ci+1)

Merge with highest similarity chunk
If Sprev ≥ Snext, then:

ci−1 ← ci−1 + ci
Else:

ci+1 ← ci + ci+1

Here, Sprev and Snext represent the similarity
scores between the small chunk ci and its neighbor-
ing chunks ci−1 and ci+1, respectively. The chunk
ci is merged with the chunk that has the highest
similarity score, ensuring that the resulting merged
chunk maintains semantic coherence.

Uniform Chunk Size Adjustment
Finally, the algorithm checks whether any chunk
exceeds the threshold Tfinal (2,500 characters). If a
chunk surpasses this limit, it undergoes a recursive
character-based text split (LangChain, 2023). The
final adjustment process is defined as:

For i = 1 to m :

{
If |ci| > Tfinal :

Apply Recursive Split Function:
ci ← RecursiveSplit(ci, Tfinal)

This step ensures that the final chunk set,
Cfinal = {c1, c2, . . . , cm}, meets size constraints
while maintaining semantic coherence. The pro-
cessed chunks are then stored in vector databases
for RAG tasks.

Distinction from Baseline Chunkers
While our method incorporates components from
existing LangChain utilities, i.e. semantic chunk-
ing for initial grouping and character-based re-
cursive splitting for final chunk size enforcement.
These steps function as structural helpers rather
than the core of our approach. The key innova-
tion of RSC lies in its intermediate refinement

Algorithm 1: Recursive Semantic
Chunking

Input: Dataset D = {f1, f2, . . . , fN};
Maximum chunk size Tmax = 15,000;
Recursive chunking threshold Tchunk = 1,500;
Final chunk size threshold Tfinal = 2,500;
Minimum chunk size for merging Tmerge = 350
Output: Final set of chunks Cfinal

1 Initialization:
2 Cfinal ← ∅
3 Initial Semantic Chunking:
4 Apply chunking to each segment tj :
5 C0 ← {c1, c2, . . . , cm}
6 foreach chunk ck ∈ C0 do
7 if |ck| > Tchunk then
8 Recursive Semantic Chunking:
9 R(ck, Tchunk) =

R(split(ck, Tchunk − δ), Tchunk − δ)
10 ck ← R(ck, Tchunk)

11 foreach chunk ck ∈ C0 do
12 if |ck| ≤ Tmerge then
13 Compute similarity with previous chunk:
14 Sprev ← similarity(ck−1, ck)
15 Compute similarity with next chunk:
16 Snext ← similarity(ck, ck+1)
17 if Sprev ≥ Snext then
18 Merge with previous chunk:
19 ck−1 ← ck−1 + ck

20 else
21 Merge with next chunk:
22 ck+1 ← ck + ck+1

23 Add merged chunks to Cfinal

24 foreach chunk ck ∈ Cfinal do
25 if |ck| > Tfinal then
26 Split chunk:
27 ck ← split(ck, Tfinal)

28 Return: Final set of chunks Cfinal

logic: recursive breakdown with dynamic thresh-
olds, similarity-based merging of smaller chunks,
and controlled preservation of semantic coherence.
These operations are not present in the baseline
LangChain chunkers and are designed to address
the limitations of fixed-size or purely embedding-
based segmentation. Therefore, while we lever-
age LangChain for low-level chunk initialization
and splitting, the significant performance improve-
ments observed in contextual and answer-level met-
rics stem from our recursive and adaptive chunking
strategy.

5 Experimental Design

Our evaluation framework is designed to rigorously
assess the impact of our proposed technique: Re-
cursive Semantic Chunking (RSC). Incorporating
RSC in the RAG pipeline for question-answering
tasks, we demonstrate its capabilities in preserving
contextual coherence and improving retrieval preci-
sion. This section details our evaluation methodol-
ogy, covering dataset selection, synthetic question



Table 1: Summary of Datasets used for Evaluating the
Proposed Chunking Technique, including Open-source
Corpora and the Custom Dataset NewsMatrix-71.

Dataset Words Characters Paragraphs Source

BBC 854,490 5,039,982 2,225 BBC Dataset
SQuAD 152,394 966,345 1,204 SQuAD
QuaC 440,971 2,664,801 1,000 QuaC
NewsMatrix-71 677,258 4,227,679 1,500 Dawn, Tribune

Daily Times

generation, chunking techniques, implementation
setup, and performance metrics

5.1 Datasets
We evaluate our proposed chunking technique
using four datasets, including three open-source
corpora—BBC (Greene and Cunningham, 2006),
SQuAD (Rajpurkar et al., 2016), and QuaC (Choi
et al., 2018)—along with a custom-scraped news
dataset, NewsMatrix-71. The NewsMatrix-71
dataset, created by scraping English news arti-
cles, is stored in .txt format. For experimentation,
we use a 1,500-article subset containing 677,258
words and 4,227,679 characters. A summary of all
datasets is provided in Table 1.

5.2 Synthetic Question Generation
These evaluations of the chunking techniques are
based on the response from the question-answering
system. Therefore, we utilized LLM to create
synthetic questions from each dataset. For each
dataset, we randomly generate 50 synthetic ques-
tions per dataset to balance computational feasi-
bility with evaluation diversity. This quantity is
consistent with recent study Merola and Singh,
2025. This quantity is consistent with recent study
Merola and Singh, 2025. To generate synthetic
questions, we randomly selected passages from
each dataset. To ensure reasonable topic coverage,
we manually examined multiple random subsets
and selected one for question generation. While
this approach does not guarantee perfect topic strat-
ification, it provides a practical balance between
topic diversity and simplicity in sampling. We em-
ploy Gemini Flash 1.5 to generate corresponding
questions. The ChatPromptTemplate module from
LangChain is used to structure the input prompt,
guiding the model to generate relevant and context-
aware questions for each passage. Once generated,
the synthetic questions are stored and later used to
assess the retrieval and response quality of differ-
ent chunking techniques. By introducing synthetic

queries, we create an additional layer of evaluation
that allows us to measure how well-chunked text
segments support question-answering tasks beyond
the scope of existing datasets.

5.3 Chunking Techniques

To establish a baseline, we implement three widely
used chunking techniques. Recursive Character
Text Splitter segments (LangChain, 2023), and Se-
mantic Chunking (LangChain, 2024). Next, we
employ our proposed technique; Recursive Seman-
tic Chunking framework for comparison.

5.4 Implementation Details

For downstream question-answering tasks, we
store the chunks in the RAG pipeline using
LangChain5. All the techniques use “all-MiniLM-
L6-v2” 6embedding. The resulting chunks are
stored in the Facebook AI Similarity Search
(FAISS) vector database (Douze et al., 2024). The
“ChatPromptTemplate module” is used with “Gem-
ini Flash 1.5” 7, a state-of-the-art Large Language
Model optimized for contextual reasoning.

5.5 Evaluation metrics

We assess chunking techniques by integrating them
into the RAG pipeline for a question-answering
task. For evaluation, we use DeepEval by Confi-
dent AI 8, an open-source framework designed for
LLM evaluation. DeepEval leverages LLMs and
other NLP models to measure performance. In our
study, GPT-3.5-turbo generates answers, with eval-
uation metrics focusing on contextual accuracy and
relevance in both retrieval and generation stages.
The following formulas are taken from DeepEval
for evaluation. Additionally, we compare retrieval
time across different strategies.

Contextual Precision

It measures how well relevant nodes are ranked
higher in the retrieval context.

CP =
1

Rel. Nodes

n∑
k=1

(
Rel. Nodes to k

k
× rk

)

where rk is 1 for relevant nodes, 0 otherwise.

5LangChain
6Sentence Embedding: all-MiniLM-L6-v2
7Gemini Flash 1.5
8https://www.confident-ai.com

http://mlg.ucd.ie/datasets/bbc.html
https://rajpurkar.github.io/SQuAD-explorer/
https://www.kaggle.com/datasets/jeromeblanchet/quac-question-answering-in-context-dataset
https://www.dawn.com/
https://tribune.com.pk/
https://dailytimes.com.pk/
https://python.langchain.com/v0.2/docs/introduction/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://ai.google.dev/gemini-api/docs/models/gemini
https://www.confident-ai.com


Contextual Recall
The metric evaluates the ability of the system to
capture relevant information:

CR =
Attributable Statements

Total Statements

Contextual Relevancy
It measures the overall relevance of the retrieval
context with respect to the query:

CRel =
Relevant Statements

Total Statements

Answer Relevancy
Answer Relevancy evaluates the relevance of the
generated output:

AR =
Relevant Statements

Total Statements

Faithfulness
Faithfulness measures how factually accurate the
output is:

Faithfulness =
Truthful Claims

Total Claims

Retrieval Time
The Retrieval Time RT is defined as the total time
taken to retrieve the context and generate the final
answer for a query:

RT = tend − tstart

These evaluation metrics allow us to compare the
trade-offs between semantic integrity, retrieval ef-
fectiveness, and computational efficiency across
different chunking approaches.

6 Results and Analysis

6.1 Results
Table 2 shows the chunk counts for different tech-
niques. RSC achieves the best balance between
granularity and coherence. In contrast, the Re-
cursive Character Text Splitter generates the high-
est number of chunks due to its character-based
splitting, while Semantic Chunking produces the
fewest, resulting in larger segments. This bal-
ance reflects an important trade-off in RAG sys-
tem design. Excessive chunking can inflate the re-
trieval space, leading to fragmented context. While
larger chunks provide broader context, they in-
crease the risk of irrelevant retrieval, hallucinations,

Table 2: Number of Chunks Formed by Each Chunking
Method Across Datasets.

Dataset Recursive Semantic RSC
Character (Proposed)

BBC News 12,674 3,844 8,115
SQuAD 1,258 2,327 2,343
QuAC 2,464 2,307 4,121
NewsMatrix-71 3,793 2,961 5,474

and longer retrieval times. RSC finds a middle
ground, ensuring semantic integrity while main-
taining meaningful chunk sizes. By keeping the
chunk count within an optimal range, RSC im-
proves contextual relevancy, as further supported
by the downstream performance metrics in Table 3.

Table 3 presents the comparative performance
of chunking techniques on the question-answering
task across multiple datasets. The proposed Re-
cursive Semantic Chunking consistently outper-
forms other techniques, particularly in Contextual
Relevancy and Total Score, while maintaining an
optimal balance between chunk size and retrieval
efficiency.

The performance of chunking techniques across
the datasets reveals interesting trends as shown
in Figure 2. The best results are observed in
SQuAD and NewsMatrix-71. SQuAD, achiev-
ing the highest Total Score under RSC, highlights
the advantage of semantically coherent segmen-
tation in structured question-answering datasets.
NewsMatrix-71 achieves the highest Contextual
Relevancy with RSC, demonstrating its effective-
ness in handling diverse and large-scale articles.

In contrast, QuAC performs the worst, partic-
ularly under Semantic Chunking and Recursive
Semantic Chunking. This is likely due to its conver-
sational nature, which demands deeper contextual
understanding.

While RSC does not lead in Answer Relevancy
across all datasets, it is an important metric for
evaluating end-to-end RAG performance. It consis-
tently achieves top performance in Total Score and
Contextual Relevancy. It is important to note that
Answer Relevancy may be influenced by factors be-
yond chunking quality, such as the formulation of
user queries (Sclar et al., 2024) or reasoning behav-
ior of the language model during generation (Jiang
et al., 2025). In contrast, Contextual Relevancy
more directly reflects the quality and alignment
of retrieved content with the query, making it a



Table 3: Performance Metrics for Different Chunking
Techniques Across Datasets. Scores are out of 50, ex-
cept Total Score (out of 250). Retrieval time is mea-
sured in seconds.
Abbreviations: RC = Recursive Character, RSC = Re-
cursive Semantic Chunking,Avg Retv Time = Average
Retrieval Time
Bold values indicate the highest performance for
each metric.

Metric RC Sem RSC (Proposed)

BBC News
Answer Relevancy 45.89 43.89 41.97
Answer Faithfulness 38.51 35.18 42.55
Contextual Recall 43 45.5 46.33
Contextual Precision 47.02 44.82 48.98
Contextual Relevancy 11.40 8.78 11.56
Total Score ↑ 185.83 178.17 191.39
Avg Retv Time(s) ↓ 0.721 0.799 0.716

NewsMatrix-71
Answer Relevancy 47.92 47.81 47.08
Answer Faithfulness 43.96 43.93 40.11
Contextual Recall 46.33 46.5 45.67
Contextual Precision 48.5 47.26 48.83
Contextual Relevancy 13.94 14.71 19.83
Total Score ↑ 200.65 200.21 201.52
Avg Retv Time(s) ↓ 0.72 0.71 0.71

SQuAD
Answer Relevancy 47.28 46.67 48.59
Answer Faithfulness 44.98 43.71 46.5
Contextual Recall 50 49 50
Contextual Precision 47.09 47.99 47.99
Contextual Relevancy 17.7 20.09 20.12
Total Score ↑ 207.05 207.46 213.2
Avg Retv Time(s) ↓ 0.97 0.97 0.96

QuAC
Answer Relevancy 45.4 44.69 43.67
Answer Faithfulness 41.675 44.25 43.63
Contextual Recall 47.08 45.33 48.58
Contextual Precision 43.67 45.16 45.76
Contextual Relevancy 12.47 9.64 9.38
Total Score ↑ 190.29 189.07 191.01
Avg Retv Time(s) ↓ 0.62 0.65 0.64

stronger indicator of chunking effectiveness.

Overall, among the chunking techniques, RSC
achieves the highest Total Score across all datasets.
The recursive breakdown mechanism in RSC en-
sures that large chunks do not negatively impact
RAG tasks. Additionally, Contextual Relevancy
improves significantly with RSC, as evident in
datasets like BBC News (11.56) and NewsMatrix-

71 (19.83), demonstrating its capability to maintain
semantic coherence.

These findings suggest the impact of the type
and structure of data on the chunking techniques.
However, in comparison, RSC is the most effective
among the baseline chunking techniques.

SQuAD QuAC NewsMatrix-71 BBC-News
Dataset
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Figure 2: Performance Comparison of Chunking Tech-
niques Across Datasets

6.2 Analysis

To evaluate the impact of Recursive Seman-
tic Chunking on retrieval efficiency and chunk
coherence, we conduct performance analysis
across multiple datasets. The evaluation uses
datasets of varying structures such as structured
question-answering datasets (SQuAD, QuAC) and
unstructured large-scale datasets (BBC News,
NewsMatrix-71). It ensures that our findings are
generalizable across multiple RAG tasks.

Study on Propositional Segmentation

We conduct a study to analyze the effect of propo-
sitional segmentation incorporated in our proposed
chunking technique. The hypothesis is that propo-
sitional segmentation enhances Contextual Rele-
vancy.

To validate our hypothesis, we experiment by
including propositional segmentation in RSC and
compare the results. For this case study, we employ
the BBC News dataset. The comparison of results
is presented in Table 4

The results confirm that propositional segmen-
tation improves Contextual Relevancy (11.56 to
16.09). However, it is to be that improvement
comes at the cost of increased retrieval time (from
0.716s to 0.8183s). In addition, it also has a com-
putational overhead to convert all the sentences
into propositions before they can be passed on for



Table 4: Comparison of RSC with and without Proposi-
tional Segmentation on BBC News Dataset.

Metric RSC RSC
Without Propositions With Propositions

Answer Relevancy 41.97 42.95
Answer Faithfulness 42.55 39.51
Contextual Recall 46.33 45.14
Contextual Precision 48.98 47.99
Contextual Relevancy 11.56 16.09
Total Score ↑ 191.39 191.68
Avg Retv Time(s) ↓ 0.716 0.8183

chunking. However, it is an interesting area of
study for the future.

Challenges of Agentic Chunking

Although not included as a formal baseline, we
initially explored Agentic Chunking to assess the
viability of LLM-based chunking pipelines. How-
ever, due to its high computational demand, it is
excluded from comparative evaluation. Details
of Agentic Chunking are mentioned in Section 2.
Since the Agentic approach operates at the proposi-
tional level, so for this technique, on average, each
proposition requires 6 to 7 calls to the LLM for
chunk assignment and metadata updates. To start
with, we use this technique on the BBC dataset.
The dataset contained more than 75,000 proposi-
tions, but after 8 hours of processing, only 1,500
propositions were successfully assigned to chunks.
Due to the high computational overhead, we dis-
continued the experimentation. Hence, high com-
putational cost makes this approach impractical for
large-scale datasets.

Despite its inefficiencies, Agentic Chunking
may become viable in the future as LLMs improve
in speed and affordability. However, for now, RSC
provides a far more efficient and scalable solution.

The results and analysis confirm that RSC en-
hances retrieval efficiency and semantic coherence.
Additionally, our findings highlight a new direction
with propositional segmentation, which improves
Contextual Relevancy. Overall, RSC consistently
outperforms both Recursive Character Text Splitter
and Semantic Chunking in Total Score and Contex-
tual Relevancy, making it the preferred approach
for RAG generation pipeline. Moving forward, fu-
ture work will focus on optimizing propositional
segmentation to reduce retrieval time, ensuring that
the benefits of enhanced semantic coherence do not
come at the expense of computational overhead.

7 Conclusion

Our work offers a targeted contribution to opti-
mizing the chunking process in RAG-based sys-
tems. The proposed technique, Recursive Semantic
Chunking maintains a balance between retrieval
efficiency and context relevancy. The novelty of
RSC lies in the recursive nature of the proposed
method dynamically adjusting the chunk size and
going beyond the traditional approaches. The re-
sults, evaluated against the traditional techniques
i.e. recursive character split, semantic and agen-
tic techniques highlight the superiority of the pro-
posed methodology. Additionally, its robustness
is validated across structured question-answering
datasets and unstructured large-scale datasets, with
evaluation based on relevancy, retrieval quality, and
time efficiency. The evaluation is based on rele-
vancy, retrieval quality and time efficiency. These
findings have significant implications for RAG-
based applications such as medical, finance, legal,
and education etc. Looking forward, the retrieval
time will be further optimized with respect to Re-
cursive Semantic Chunking on varied datasets.

Limitation

The scope of this study is limited to textual data,
and it can be widened to more complex document
types which may include tables, codes etc. In addi-
tion, Recursive Semantic which depends on propo-
sitions provides a new direction. However, its high
computational cost, despite yielding improved re-
sults, highlights the need for a more efficient and
scalable approach.
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