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Abstract

In this study, we examine the impact of do-
main adaptation and question-answer pooling
on text-based aphasia prediction with standard
and medically specialised BERT models for
a German corpus. Modelling tasks comprise
aphasia type classification as well as multitask
regression of communicative, semantic, and
syntactic skills. We found that domain adap-
tation before finetuning as well as question-
answer pooling increased performance for the
standard but not for the specialised models on
all classification and regression tasks.

1 Introduction

Aphasia is a language impairment due to brain dam-
age, after a stroke, traumatic head injury, brain
tumours, or progressive neurological conditions.
Depending on the brain regions affected, aphasia
is featured differently. The most common types of
aphasia are: global, amnesic (anomic), Wernicke’s
and Broca’s aphasia (Caplan, 2003; Ardila, 2010).
In Broca’s aphasia, patients typically exhibit phone-
mic substitutions and have a non-fluent speech pat-
tern. Wernicke’s aphasia is characterised by an
effortless but nonsensical speech. Global aphasia
combines aspects of both Broca’s and Wernicke’s
aphasia. Amnesic aphasia is primarily character-
ized by word retrieval and naming problems. Apha-
sia subtype classification is not straightforward and
it is common that various aphasia types co-exist
(Fridriksson et al., 2018).

Effective evidence-based therapy consists of
high-intensity Speech-Language Therapy (SLT)
which has been shown to improve linguistic capa-
bilities (Peitz et al., 2024). However, this needs to
be based on detailed diagnostics using appropriate
tests. In German-speaking countries, the most com-
mon test used for aphasia diagnosis and monitoring
is the standardised Aachen Aphasia Test (AAT)
(Huber et al., 2013; Huber, 1983). This compre-
hensive test is designed to assess various aspects of

language function, including comprehension, ex-
pression, repetition, and naming skills. It also pro-
vides information of probabilistic aphasia subtype
and severity (Kohlschein et al., 2018). It consists of
an examination of spontaneous language and five
subtests. A 10-minute semi-structured interview,
recorded during therapy, is rated in six domains:
communicative behaviour, articulation/prosody, au-
tomatised language, semantics, phonology and syn-
tax (Kohlschein et al., 2017). However, AAT is
time-consuming and its result depends highly on
the rater (Kohlschein et al., 2018), which usually
is a highly trained speech and language therapist.
An automatic aphasia diagnosis based on the AAT
could help reduce waiting periods for patients and
clinicians’ burden as well as provide personalised
remote rehabilitation strategies.

Prior work employing Machine Learning (ML)
methods has explored aphasia and its subtype
classification using connected speech, derived ei-
ther from manual transcripts or Automatic Speech
Recognition (ASR) systems (Fromm et al., 2022).
These studies have focused on feature-based su-
pervised methods, including traditional discourse
features (e.g., syntactic complexity, proportion of
nouns, verbs, adjectives) or embeddings by end-
to-end approaches using large pre-trained models.
Zusag et al. reported an F1 score of 0.84 for de-
tecting amnesic aphasia, 0.77 for identifying Broca
aphasia; and 0.78 for Wernicke aphasia using a Sup-
port Vector Classifier (SVC) and linguistic features
(Zusag et al., 2023). Dunfield et al. employed sen-
tence representation similarity features to capture
symptoms of fluent aphasia and found a correlation
of 0.61 with the Western Aphasia Battery-Revised
Aphasia Quotient (Dunfield and Neumann, 2020).
These features include question-answer similarity,
closest question-answer pair identification, and bi-
nary sentence pair classification. The latter was
obtained using BERT to predict the likelihood of
a given sentence pair being related (Dunfield and



Neumann, 2020). Cong et al. leveraged Large
Language Model (LLM)-surprisals to predict apha-
sia, its subtypes, and the level of severity. They
reported an F1 score of 0.92 for predicting aphasia
from healthy controls and 0.79 F1 score for identi-
fying aphasia subtypes (Cong et al., 2024b). In an-
other work, Cong et al. further employed surprisal
values of LLMs, including GPT-2, Llama2, and
BERT, alongside utterance length, to predict apha-
sia and its subtypes. Their results demonstrated an
F1-score of 0.61 for detecting aphasia and 0.86 for
classifying its subtypes in Chinese. For English,
they reported an F1-score of 0.79 for identifying
aphasia and 0.54 for distinguishing its subtypes
(Cong et al., 2024a).

The contributions of our work of automatised
aphasia assessment are as follows: (1) Aphasia
transcripts are atypical on the lexical, syntactic,
and semantic level. Such transcripts are usually
not contained in the training material of pre-trained
models, which might lower their general applicabil-
ity on such clinical data. We are going to address
this potential shortcoming by domain adaptation as
described in section 3.2. (2) Relevant information
is expected not to be contained only in the patients’
answers in isolation but also within the context of
the underlying question. We are going to address
this contextualization by embedding pooling alter-
natives as presented in section 3.3.

2 Data

The German dataset was collected within the au-
toAAT BMBF project. It contains spontaneous
speech samples, manual transcripts, and their as-
sociated clinical scores from the AAT. Transcripts
were anonymised by removing all personal infor-
mation. This dataset is built on the work presented
in (Kohlschein et al., 2018). Many patients pro-
vided more than one recording due to repeated
treatment cycles.The scores comprise the aphasia
type classification and linguistic skills assessment.
Aphasia type is categorised into the four classes
Amnesic, Broca, Global, and Wernicke; since the
project focus is to automatise aphasia diagnosis
for tailored SLT, the dataset does not contain a
control group. Other types of aphasia, such as pri-
mary progressive aphasia or unclassifiable, have
been excluded of the analysis due to data sparsity.
Linguistic skills are assessed separately in various
impairment levels and on an expert-annotated six
point scale (with 0 being the most severe and 5

meaning no impairment). This study focuses on
three linguistic impairment levels: communicative
behaviour (understanding and responding to ques-
tions), semantic structure (word finding difficulties
and semantic paraphasias), and syntactic structure
(sentence completeness and complexity).

The dataset comprises 331 participants, 92 fe-
male, 239 male, with a mean age of 53± 13 years.
The major aphasia types are represented by the
following numbers: 105 Global, 70 Broca, 32 Wer-
nicke, and 34 Amnesic. The rest of the participants
correspond to the excluded classes. Due to data
protection regulations, the dataset cannot be shared.
The dataset was split into speaker-disjunct training,
development (10%), and test (20%) sets stratified
on the aphasia type of each speaker by means of
splitutils (Reichel, 2024). A random seed of 42
was applied to ensure reproducibility. Texts were
cleaned by removing transcriber comments and
special annotation symbols. The linguistics skills
scales ranging from 0 to 5 were re-scaled to the
range [0, 1].

3 Methods

3.1 Modelling variants

For both tasks, aphasia type classification and lin-
guistic skills regression, we started from two dif-
ferent base models: the general-purpose model
dbmdzbert-base-german-uncased (Devlin et al.,
2019) (referred to as standard encoder in the fol-
lowing), and GerMedBERT/medbert-512 (Bressem
et al., 2023), which was pre-trained on medical
documents for applications in the clinical domain,
henceforth referred to as specialised encoder.

For each of these encoders, we further created
a variant domain-adapted to our specific aphasia
dataset as described in section 3.2. Each of these
four variants we combined with three different pool-
ing architectures as described in section 3.3. We
finetuned each of these 12 model variants on the
two clinical tasks with 5 different random seeds,
which we describe in section 3.4.

3.2 Domain adaptation

For domain adaptation, we followed the recipe of
(Lendvai et al., 2023) applying vocabulary exten-
sion and Masked Language Modelling (MLM). We
applied a 90/10 speaker disjunct and aphasia-label
stratified split of the training partition into MLM
training and development partition. Based on the
MLM training partition we extended the tokeniz-



ers’ vocabularies with the lexical content of the
transcripts by adding up to 300 most frequent, yet
unknown words with a minimum length of five
characters. Subsequently, each base model was
finetuned on the MLM task with a standard Bert-
ForMaskedLM head. Finetuning was done in 20
epochs with the AdamW optimizer, a learning rate
of 2e− 5, a perplexity loss, and a batch size of 16.
We kept the best model in terms of the lowest loss
for the development set.

3.3 Pooling
We applied three types of pooling of the last hidden
states of the encoder:

a: answer-only; we extract the embeddings only
for the patient’s answer and apply mean pooling of
these embeddings;

qa-c: answer contextualised by question; we
concatenate question and answer with a [SEP] to-
ken as for text entailment tasks (Putra et al., 2024),
extract the embeddings for this text pair, and apply
mean pooling on the answer part of this pair only,
which is forwarded to the classification head;

qa-cc: answer contextualised by question plus
question-answer coherence; as for qa-c we concate-
nate question and answer. Then, we concatenate
the initial CLS token embedding with the mean em-
bedding of the answer. This concatenated pooling
we forward to the classification head.

Schematically, the pooling variants can be ex-
pressed as follows (the underlined constituents go
into the pooling):

a: [CLS] answer
qa-c: [CLS] question [SEP] answer

qa-cc: [CLS] question [SEP] answer
We expect qa-cc to capture not only answer con-

textualisation but also question-answer coherence
due to the ‘semantics’ of the CLS token. Since this
token had been pre-trained on the next sentence
prediction task, it is expected to represent the infor-
mation the pre-[SEP] text part contains about the
post-[SEP] text part, which can be considered as an
aspect of text coherence.

In total, we get 12 model variants defined by all
combinations of encoder type (standard, special-
ized), domain adaptation (yes, no) and pooling
(a, qa-c, qa-cc). The finetuning of these models
on the two downstream tasks is described in the
subsequent section 3.4.

3.4 Finetuning
Architecture: To each encoder, we add a two-

layer head with a non-linear (tanh) layer and a
linear output projection. For classification, this
output projection has 4 outputs, one per aphasia
type. For multitask regression, it has 3 outputs, one
for communicative, semantic, and syntactic skills,
respectively.

Hyperparameters: Each model was finetuned
in 8 epochs with the AdamW optimizer, a learn-
ing rate of 3e − 5 and an effective batch size of
32. For classification, we used the weighted cross
entropy loss and unweighted average recall (UAR)
as metrics to be maximised on the development
set. For regression, we used a Concordance Cor-
relation Coefficient (CCC) loss and CCC metrics
for the development set. We kept the models per-
forming best on the development set for further
evaluation on the test partition. Finetuning and
evaluation was repeated five times with different
random seeds (1, 9, 20, 21, 42, generated with
numpy.random.default_rng()).

4 Results

Figures 1 and 2 show the results in terms of UAR
and mean CCC for aphasia type classification and
linguistic skills regression, respectively. As an
overall tendency for the standard encoder, we ob-
serve that domain adaptation as well as question-
answer contextualisation slightly improve the per-
formances for classification as well as for regres-
sion, but not so for the specialised encoder.

The best aphasia type classification result, a
UAR of 0.653 averaged over all random seeds, was
obtained with the standard encoder, and the qa-cc
pooling variant accounting for contextualisation
and coherence. For linguistic skills multitask re-
gression, again, the standard encoder this time with
the qa-c pooling variant for contextualisation only
performed best, yielding a mean CCC of 0.755
averaged over all random seeds. Split into the lin-
guistic dimensions it achieved a CCC of 0.738 for
communicative, 0.695 for semantics, and 0.831 for
syntactic skills prediction.

5 Discussion and Conclusion

We identified two challenges for finetuning pre-
trained transformer models with aphasia data: First,
this text data is rather atypical and usually not part
of pre-training datasets. This missing link was ad-
dressed by domain adaptation. Second, patients’
answers are not only to be seen in isolation but
also within context with the corresponding ques-
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Figure 1: Aphasia type classification results: Un-
weighted average recall (UAR) values for all encoder
and pooling variant combinations (see section 3). Error
bars indicate 95% confidence intervals.
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Figure 2: Communication, semantics, and syntactic
skills multitask regression results: arithmetic mean Con-
cordance correlation coefficient (CCC) values over the
three regression dimensions for all encoder and pooling
variant combinations (see section 3). Error bars indicate
95% confidence intervals.

tion. This contextualisation and coherence assess-
ment was addressed by introducing different kinds
of question-answer poolings.

For the standard encoder, domain adaptation as
well as question-answer pooling turned out to be
beneficial for both aphasia type classification as
well as linguistic skills regression. Both strategies,
by a low margin but consistently, lead to increased
performance. As to pooling, for aphasia type clas-
sification, joint contextualisation and coherence
assessment worked best, for regression contextuali-
sation only lead to the highest performance.

The specialised encoder overall yielded lower
performances compared to the standard encoder,
which on first sight might appear counter-intuitive.

However, the specialised model was not necessar-
ily expected to work better for patient data clas-
sification in the first place, since the pre-training
material consists exclusively of expert texts from
scientific publications and dictionaries, as reported
in (Bressem et al., 2023). These documents usually
do not include a large amount of patient transcripts,
but rather few illustrative examples only. Therefore,
this specialised model is well suited for tasks such
as clinical expert text classification, but not nec-
essarily for patient transcript classification. One
major reason for the overall lower performance
of the expert model might be that the specialised
pre-training material contains much less variability
than the standard encoder’s pre-training data, so
that it is less capable to extrapolate to that kind
of data. Likely due to this shortcoming, the spe-
cialised model neither could profit from domain
adaptation nor question-answer pooling.

For question-answer pooling, longer error bars
were observed for qa-cc as opposed to qa-c in Fig-
ures 1 and 2. This indicates that joint contextu-
alisation and coherence assessment is less stable
across random seed variations than contextualisa-
tion alone, so that the latter seems to be preferable
in terms of model robustness.

To conclude and to give an outlook, our results
show that for the given data, aphasia modelling
works best with domain-adapted standard BERT
models with contextualised mean pooling of the
embeddings of patients’ utterances. These results
were obtained on narrow manual transcripts that
preserve linguistic peculiarities relevant for aphasia
assessment. For a fully automated aphasia assess-
ment, such transcripts would need to be generated
by ASR models, that keep track of clinically rele-
vant utterance characteristics such as disfluencies;
see, e. g., (Zusag et al., 2023; Mihajlik et al., 2024;
Gohider and Basir, 2024) for such ASR methods.
Our next steps thus will include combining auto-
mated narrow transcription with our aphasia mod-
elling approach.
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