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Abstract

Access to spoken language remains a challenge
for deaf and hard-of-hearing individuals due
to the limitations of lipreading. Cued Speech
(CS) addresses this by combining lip move-
ments with hand cues—specific shapes and
placements near the face—making each syl-
lable visually distinct. This system comple-
ments cochlear implants and supports oral lan-
guage, phonological awareness, and literacy.
This paper introduces the first open-source sys-
tem for automatically generating CS in video
format. It takes as input a video recording,
the corresponding audio signal, and an ortho-
graphic transcript. These elements are pro-
cessed through a modular pipeline, which in-
cludes phonetic mapping, temporal alignment,
spatial placement, and real-time rendering of a
virtual coding hand. The system is multilingual
by design, with current resources focused on
French. An evaluation under varied conditions
showed decoding rates up to 92% for manually
coded stimuli, and averages exceeding 80% for
automatically generated ones. Visual clarity of
hand shapes proved more critical than timing
or angle. Stylized designs and frontal views en-
hanced decoding performance, while attempts
at naturalistic rendering or visual effects of-
ten degraded it. These findings indicate that
visual abstraction improves readability. This
work provides a reproducible and scientifically
grounded framework for visual phonetic encod-
ing, and delivers a practical tool for education,
accessibility, and research.

1 Introduction

1.1 Visual Access to Spoken Language
through Cued Speech

Speech production involves both acoustic and vi-
sual cues. While lip movements convey useful
information, many phonemes appear identical on
the lips and form so-called “visemes”—groups
of phonemes that are visually indistinguishable
(Fisher, 1968; Massaro and Palmer Jr, 1998). As

a result, lipreading remains highly ambiguous:
correct word identification rarely exceeds 30%
(Ronnberg, 1995; Ronnberg et al., 1998).

To address this limitation, R. Orin Cornett in-
troduced Cued Speech (CS) (Cornett, 1967), a vi-
sual communication system designed to make each
phoneme visually distinct. CS combines lip move-
ments with hand cues—specific handshapes and
positions placed around the face—that encode con-
sonants and vowels. It provides full visual access to
spoken language and supports phonological aware-
ness, literacy development, and spoken language
acquisition in deaf or hard-of-hearing individuals
(Clarke and Ling, 1976; Neef and Iwata, 1985). CS
has since been adapted to over 65 languages'.

Cued Speech is widely used by speech-language
pathologists to support early language acquisition
in deaf children. Among others, in France, it is pro-
moted by the Association pour la Langue francaise
Parlée Complétée (ALPC)?2, and in the US by the
National Cued Speech Association®. Numerous
studies have shown that CS enhances access to
phonological structure, supports literacy develop-
ment, and fosters inclusive education (Leybaert and
Charlier, 1996; Colin et al., 2017; LaSasso et al.,
2010). Together, these findings highlight its impor-
tance in supporting language acquisition pathways
for deaf learners.

Building on its demonstrated benefits for access
to spoken language, Cued Speech and Sign Lan-
guages serve distinct linguistic and cultural func-
tions. They are not mutually exclusive: while some
deaf children follow a sign language pathway, ac-
cess to reading and writing typically requires ex-
posure to spoken language. By offering a precise
visual representation of sounds, Cued Speech sup-
ports this process. It is therefore relevant to all
deaf learners aiming to acquire spoken language,
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whether or not they use a sign language. This
distinction is essential to avoid misinterpretations:
Cued Speech is not a language and is not intended
to replace natural sign languages such as LSF, but
to complement them when access to spoken lan-
guage is required or preferred.

Following the general principles of CS, the
French adaptation was developed in the 1970s. It
uses eight handshapes to encode consonants and
five facial positions to encode vowels. Each sylla-
ble is represented by a combination of lip move-
ment and a hand cue, also called a key, formed
by a handshape—position pair. A simple syllable
like CV or V is coded by a single key, while more
complex structures, such as CCV, require multiple
successive keys: for example, a *C-’ followed by
a’CV’ structure. To illustrate this system, Figure
1 shows the handshapes used for consonants, and
Figure 2 shows the vowel positions around the face.
Both figures include the neutral position used when
no speech is pronounced.

Figure 1: Handshapes representing consonants

Figure 2: Positions representing vowels

Below is a concrete example showing how a
sentence is encoded into cues:

text: Tu es gris.
phones: tyegwi

CV sequence: cvvccy
cues-structure: C-V.-V.C-.C-V

cues code: 5-t.5-t.7-s.3-m

The internal consistency of Cued Speech makes
it well-suited for automation. Generating cues
from speech or text opens the door to a wide range
of applications: cued videos for learning and ac-
cess, training tools for families and educators, and
greater availability of CS in contexts where trained
coders are not present. More broadly, automatic
cueing can support language acquisition in deaf
children, improve communication in mixed hear-
ing environments, and reinforce lipreading skills.

This paper presents the first complete and share-
able system for automatic CS generation. It takes
as input a video recording, its audio signal, and a
transcript, and produces a new version of the video
in which a synchronized virtual hand encodes the
CS transcription. The architecture was built en-
tirely from scratch, formalizing each stage of the
process from segmentation to cue rendering. It is
designed for multilingual use and has been imple-
mented and tested for French. The full system is
open-source, and all components have been evalu-
ated with end-user testing.

1.2 Related Works

The first attempt to automate cue generation, Au-
toCuer, was developed by R. Orin Cornett himself
(Cornett et al., 1977). Between 1995 and 2000, a
series of studies at the Massachusetts Institute of
Technology (MIT) explored real-time automatic
cueing for American English (Bratakos, 1995; Sex-
ton, 1997, Bratakos et al., 1998; Duchnowski et al.,
2000). These remain the most advanced docu-
mented efforts in the field. Their system relied on
speaker-dependent automatic speech recognition
to extract phonemes from live recordings, which
were then converted into hand cues and displayed
as a virtual hand overlaid on the video. Evalua-
tions showed significant gains in decoding accu-
racy, with some conditions yielding scores twice as
high as lipreading alone. However, many compo-
nents required manual adjustments (Sexton, 1997):
cue positions were initialized by hand, transitions
were interpolated without formal modeling, and the
mapping rules were not described in reusable form.
The lack of published code or reproducible design
has prevented further development or reuse.



To date, no operational or open-source tool exists
for automatic CS generation in any language, de-
spite increasing scientific interest and documented
benefits.

1.3 Foundations and Scope

Developing a complete system was a necessary
step, independently of data availability. It provided
the opportunity to define a structured architecture,
implement a fully functional version, and formal-
ize the modeling of each component. The resulting
system is transparent, reproducible, and already
usable in real conditions. It operates with minimal
computational cost, can be refined through expert
feedback, and offers a solid basis for future im-
provements, including data-driven modules once
annotated resources become available.

A French Cued Speech corpus has recently been
collected and partially annotated (Bigi et al., 2022),
but the annotation process is still ongoing due to
the precision required.

This work then marks the beginning of a long-
term effort to build a reliable and extensible frame-
work for automatic CS generation. It defines a
shared foundation for future developments in aug-
mented video production and evaluation.

2 System Description

While many studies describe individual aspects of
CS production—such as articulation, speech coor-
dination, timing, or spatial organization—formal
descriptions remain rare. Few are presented in
a way that supports computational modeling or
system implementation. The literature describes
many aspects of CS production. However, for-
mal accounts of its speech coordination, timing,
and spatial organization remain rare. Few works
address these questions, and the descriptions are
rarely framed in terms of computational modeling.

In this work, the cueing process was analyzed
by combining published linguistic descriptions (At-
tina, 2005; Aboutabit, 2007) with structured discus-
sions conducted with experienced coders. This led
to the identification of four core processing com-
ponents, which structure the system: determining
what to code (i.e., the sequence of keys from the
phoneme transcription), when to display the cues
(synchronization with the speech signal), where to
place the hand (spatial positioning, angle, and size),
and how to render it visually (hand design).

The four components are interdependent: timing

depends on phoneme alignment, spatial position-
ing requires both timing and content, and visual
rendering builds on all previous stages. This struc-
ture is the result of the analysis described above.
It defines an architecture for cue generation and
supports the implementation of a consistent and ex-
tensible system. The same framework has guided
the present system and can serve as a reference for
future developments.

For example, the system is multilingual by de-
sign in the sense that language-specific knowl-
edge is externalized into modular, open-format re-
source files. The core components—covering nor-
malization, phonetic transcription, alignment, and
cue generation—are implemented in a language-
independent way. Language-specific resources,
such as dictionaries, acoustic models, and cueing
rules, are handled through separate, editable files.
This modular architecture follows the same strat-
egy as adopted in SPPAS for text normalization
(Bigi, 2014), phonetic transcription (Bigi, 2016),
and alignment (Bigi and Meunier, 2018). Its ap-
plicability to multiple languages has already been
validated in these components (Lancien et al., 2020;
Bigi et al., 2021; Pakrashi et al., 2023), and is here
extended to the novel task of Cued Speech genera-
tion.

Figure 3 presents the full processing pipeline,
from user inputs to the final coded video. It il-
lustrates the modular organization of the system
and the sequence of required operations. The first
stages involve automatic processing of the input
transcript, audio, and video using the open-source
SPPAS toolkit (Bigi, 2015), including normaliza-
tion, phonetization, forced-alignment, and face
analysis. These annotations are used without man-
ual correction and provide the foundation for re-
producible experiments. The subsequent steps im-
plement the proposed framework, computing the
sequence of keys, their temporal and spatial prop-
erties, and rendering the virtual hand accordingly.

2.1 What to Code

The first component of the system determines the
sequence of keys to be produced from the phoneme
transcription. Each key encodes a consonant—vowel
association as a pair of handshape and position.
Based on the aligned phoneme sequence, the sys-
tem infers the structure and associates each seg-
mental unit with a key of type C-, -V, or CV. A
deterministic finite automaton (DFA) formalizes



Figure 3: Workflow of the full process: from the user’s data to the coded video

all valid transitions and decomposes complex syl-
lables into successive keys.

This component was previously described and
evaluated in a dedicated study (Bigi, 2023). On
a manually annotated corpus, the predicted se-
quences aligned closely with those produced by
expert coders, with most deviations reflecting in-
dividual preferences rather than systemic errors.
The DFA-based system was found to be both reli-
able and sufficient. A web-based text-to-cue con-
verter®, developed in collaboration with the deaf
community, provides public access to this module
for educational and training use.

2.2  When to Display the Cues

Once the sequence of keys is defined, the next step
is to determine their temporal coordination with
speech. It is already known that the hand must
anticipate the associated phonemes to allow visual
decoding. This principle has been consistently sup-
ported in the literature (Cornett, 1967; Bratakos
et al., 1998; Duchnowski et al., 1998, 2000) and
confirmed by French studies (Cathiard et al., 2003;
Attina, 2005; Aboutabit, 2007), which highlight the
role of anticipation in perception.

Four timing models were implemented: three
drawn from previous work, and a fourth developed
specifically for this system. The notation intro-
duced in (Attina, 2005) is used throughout. Al
marks the acoustic onset of the key—consonant
onset in *C-" or ’CV’ keys, vowel onset in ’-V’
keys. A3 marks the acoustic offset—vowel end in
"CV’ or ’-V’ keys, consonant end in *C-’ keys. M1

4https ://auto-cuedspeech.org/textcue.html

and M2 represent the start and end of the manual
transition. The interval A1-A3 corresponds to the
acoustic duration of the key, while M1 and M2 are
the time points to be predicted by the models.

Model 1 reproduces the configuration described
in (Duchnowski et al., 1998), in which the hand
appears 100 ms before the phoneme, with no tran-
sition phase. This model was implemented for
reference purposes but was not included in the ex-
perimental protocol, as later studies (Duchnowski
et al., 2000) have shown that Model 2 yields better
results. Model 2 introduces a fixed transition of
150 ms, so that the hand reaches its target 100 ms
prior to the phoneme onset.

Model 3 adjusts anticipation values based on
the consonant—vowel structure of the key. It is de-
rived from French-language studies (Attina, 2005),
which reported consistent variation in cue timing
across key types. Transitions are defined as propor-
tions of the A1-A3 interval, assuming an average
duration of 400 ms. For ’CV’ and *C-’ keys, M1
starts 62% before A1 and M2 occurs 10% after Al.
For ’-V’ keys, M1 starts 46% before A1 and M2
occurs 21% after Al.

Model 4 was developed specifically for this sys-
tem. It extends previous models by incorporat-
ing finer adjustments derived from coder expertise
and by explicitly modeling transitions involving
the neutral position, which are absent from earlier
systems. The model adapts timing to speech rate
and defines transition points as proportions of the
Al1-A3 interval.

For the first key, corresponding to a transition
from the neutral zone to a facial position, M1 oc-
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curs 140% before Al and M2 20% before Al. For
the second key, these values are 125% and 15%
before Al. For the third, 100% and 10%. For
subsequent keys, M1 is set to 90% and M2 to 5%
before Al. For the return to neutral, M1 is delayed
to 20% after A1, and M2 to 80% after M1.

2.3 Where to Place the Hand in the Video?

This component determines the position, angle, and
size of the hand relative to the speaker’s face for
each frame of the video.

The vowel positions were first defined by expert
coders on a theoretical face, then formalized us-
ing the 68-point facial landmark model given by
SPPAS. Each position is computed as a function
of facial landmarks. The formulas used for the
positions of French Cued Speech were derived in
collaboration with expert coders and adapted to en-
sure consistency across speakers and morphologies.
They are summarized in Table 1 and illustrated
in Figure 4. No variability was introduced at this
stage: for each frame, the fingertip is placed at the
target coordinates.
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Table 1: Estimated positions from facial landmarks

Figure 4: Estimated positions relatively to the landmarks

Hand orientation is also controlled to improve
visual realism. Three models were implemented.
Model 0 uses a fixed angle of 60°, serving as a base-
line (Figure 5). Model 1 introduces expert-defined

Figure 5: Hand angle of Model 0 is 60°.

variations by position. Excluding the neutral zone,
the average angle is 71.2°, with a standard devia-
tion of 9.3°. Model 2 uses a data-driven approach:
five annotated frames per position were manually
selected to estimate average orientations. It yields
an average angle of 61.8° and a standard deviation
of 12.5°. Detailed values are given in Table 2.

Position Model 1 Model 2
n (chest) 50° 50°
b (cheek bone) 75° 62°
¢ (chin) 67° 59°
m (mouth) 73° 56°
s (side) 83° 83°
t (throat) 58° 49°

Table 2: Hand angles (in degrees) for Models 1 and 2.

The hand size is scaled proportionally to face
height and remains fixed throughout. Transitions
between positions follow a straight-line trajectory
at constant speed. Handshape transitions occur at
the midpoint of this trajectory, using a three-frame
fade between the two handshapes. These simpli-
fications reflect a design choice: only one spatial
parameter is introduced at a time for evaluation.

This component of the system then produces a
complete 2D hand trajectory of the hand, it’s angle
and it’s size, for each frame of the given video.

2.4 How to Represent the Hand in the Video?

The final module of the system handles the visual
rendering of the cueing hand, based on the timing
and spatial information computed in the previous
stages. This component determines how the hand
appears in the video and offers several options in
terms of style and visual clarity.

Four handsets were integrated into the system.
Two are based on photographs: a male hand set
(’l’), and a female hand set (’b’) shown in Figure 5.



The other two use 2D illustrations: ’d’ displays a
uniform yellow shape, while ’c’ assigns colors to
specific keys to reduce visual confusions—key 3 is
pink, key 8 is blue, and the neutral hand is white;
all others remain yellow. These assignments build
on prior work (Duchnowski et al., 1998) indicating
that color can help distinguish keys that are visually
similar but phonologically distinct.

Figure 6 shows examples of these handsets,
along with enhancement filters described below.

Figure 6: Some hands configurations: "l+1", "14+2",
lld+3ll’ Hd”, lch

Three visual enhancements were implemented
to explore whether additional graphic information
could improve the visual distinction between simi-
lar handshapes. Each one is exclusive and applies
to a single rendering at a time. The first one adds a
dot at the fingertip target and a line along the index
for keys 3 and 8, to improve distinction from keys
4 and 2, similarly to the ’c’ handset. The second
one draws a line along the back of the hand and
a dot at the target point, highlighting orientation.
The 3rd one overlays the full 21-point hand sights
with connecting lines, as illustrated in Figure 5.

This rendering module supports both realistic
and stylized outputs and can be adapted to user
needs or preferences.

2.5 System Summary

The system covers the full pipeline of automatic
CS generation. Starting from a video, an audio
signal, and an orthographic transcript, it performs
phoneme alignment, transformation into keys, syn-
chronization of each key with the speech signal,
analysis of facial landmarks, determination of hand
angle, hand size, handshape transitions, spatial tran-
sitions between positions, and visual rendering.
The process results in a synchronized and aug-
mented video, where a virtual hand encodes the
Cued Speech transcription with precise timing and
positioning. All elements—phonetic inference, tim-
ing models, spatial computation, and graphical out-
put—are integrated into a reproducible framework.

This combination of coverage and modularity is, to
our knowledge, the first of its kind.

This framework is implemented in Python and
released under an open-source license. Its graphical
user interface and user-friendly installation process
allow non-specialists to use it.

3 System Evaluation

The system was evaluated through a decoding task
with eight deaf participants, all fluent in French
Cued Speech and familiar with video-based cueing.
The goal was to assess the readability of automati-
cally generated cues and to compare different con-
figuration options. The task consisted in watching
short cued videos and writing down what was de-
coded. Their responses were scored using SCLite,
designed for evaluating ASR output. It aligns each
decoded transcription with a reference using utter-
ance IDs and computes word-level scores: correct
(Corr), substituted (Sub), deleted (Del), and in-
serted (Ins). In this setting, the reference is the
recorded sentence, and the hypothesis is the partic-
ipant’s transcription.

Decoding accuracy was then used as a proxy for
system performance. This metric was deliberately
chosen to reflect the perceptual clarity of the gen-
erated cues, independently of participant-specific
inference or language comprehension skills. Al-
though comprehension-based tasks might better re-
flect communicative effectiveness, they would con-
found system output quality with individual-level
interpretation strategies. By focusing on transcrip-
tion alignment, the evaluation isolates the contribu-
tion of the system itself, ensuring a more rigorous
and interpretable measure of cue readability.

3.1 Experimental Conditions

The evaluation was conducted during the 2024 an-
nual internship organized by the ALPC. Eight deaf
adults participated on a voluntary basis and gave
informed consent. All participants watched a stan-
dardized instructional video before the session. The
protocol was anonymous, non-intrusive, and ap-
proved by the organizing institution.

Each participant decoded 20 silent videos: five
manually coded by a professional (used as a refer-
ence set), and fifteen automatically generated using
the system with different configurations. To con-
trol for inter-participant variability, each participant
was assigned to a single experimental dimension:
timing, angle, hand appearance, or visual enhance-



ment. This allowed for within-subject comparisons
across three variants per parameter. Each system
configuration was identified by a four-character
code: the first digit refers to the timing model (2,
3, or 4), the second to the angle model (0, 1, or
2), the third to hand appearance (’b’, °c’, or ’d’),
and the fourth to optional enhancements (1, 2 or 3).
Participants were divided into four groups:

* Group 1 - Timing: P1 and P5 decoded sets
2.1.1.0, 3.1.1.0, and 4.1.1.0.

* Group 2 — Angle: P2 and P6 decoded sets
4.0.1.0,4.1.1.0, and 4.2.1.0.

* Group 3 — Appearance: P3 and P7 decoded
sets 4.1.b.0, 4.1.c.0, and 4.1.d.0.

* Group 4 - Enhancement: P4 and P8 decoded
sets 4.1.1.1,4.1.1.2, and 4.1.1.3.

The five manually coded reference videos were
presented first. The fifteen system-generated clips
followed, in a fixed interleaved order balancing
topic and condition. Playback issues affected two
participants (three clips for P1, two for P2) due to
local hardware errors. Since all videos had been
generated beforehand, only playback was affected
and the evaluation protocol remained valid. This is
reported here in accordance with FAIR principles.

3.2 Global Decoding Performance

Table 3 presents the decoding scores for the con-
trol set (professionally coded) and for the system-
generated output (all configurations combined).
Manual coding achieved 92.3% accuracy. The
system, with no participant training or adaptation,
reached 80.7%.

SPK Corr Sub Del Ins Err
Control 923 52 25 23 10.0
Allsets 80.7 9.7 9.6 13 206

Table 3: Participant decoding scores

These results were obtained using strict word-
level alignment. Minor spelling differences were
counted as substitutions, and no correction was
applied to participant input. The control score re-
flects the best achievable performance under these
conditions and serves as an oracle reference.

That the system reaches over 80% under the
same constraints is a key finding. Participants
had no prior exposure to the system and received

no training. Despite this, several decoded videos
scored near the reference level. The output is there-
fore not only intelligible but already close to expert
quality for a majority of sentences.

The most frequent errors were deletions, increas-
ing from 2.5% in the control set to 9.6% with sys-
tem output. Substitutions also rose, though to a
lesser extent. Informal debriefings suggest that fast
speech segments were harder to decode, especially
when hand transitions compressed timing contrasts.

To our knowledge, this is the first publicly doc-
umented benchmark comparing professional and
system-generated Cued Speech. These results show
that automatic cue generation is not only feasible,
but already yields intelligible output close to expert
performance. This first benchmark sets a high base-
line for future systems and provides a reproducible
framework for comparison.

The 80.7% score reported above reflects an av-
erage across multiple system variants. It includes
different timing strategies, spatial models, hand ap-
pearances, and visual enhancements. The result
therefore combines heterogeneous outputs, some
of which led to higher decoding scores than others.

3.3 Detailed evaluation and discussion

The three sentence sets used in the experiment
yielded average decoding scores of 83.6%, 84.4%,
and 74.9%, respectively, indicating noticeable
differences in difficulty. Without normalization,
such variation would interfere with the analysis of
model-specific effects. To control for these biases,
all scores were normalized by participant and by
sentence set. This adjustment accounts for individ-
ual decoding ability and for intrinsic difficulty of
the material. Final results are reported as z-scores:
a positive value indicates that the participant de-
coded better than their own average, and a negative
value indicates below-average decoding accuracy.

3.3.1 Group 1 - Timing Models

Participant P1 showed slightly negative perfor-
mance on the baseline (model 2), and slightly
positive scores on models 3 and 4 (» = —0.07,
+0.04, +0.06). P5 had the best result on model 2
(z = 40.08), followed closely by model 4 (+0.02),
with model 3 performing lower (—0.04). Overall,
model 4 seems less sensitive to speaker or mate-
rial, while model 3 is more sensitive to speaker or
sentence variation.



3.3.2 Group 2 - Angle Models

For P2, model 1 yielded the best performance
(4+0.03), followed by model 2 (—0.04), while
model O performed neutrally (—0.001). P6
achieved highest scores on models 0 and 1 (4-0.07
and +0.06), with lower performance on model 2
(—0.03). The results suggest that moderate expert-
defined angle variation (model 1) provides a good
compromise between visual consistency and real-
ism, while corpus-derived angles (model 2) may
introduce instability.

3.3.3 Group 3 - Hand Appearance

P3 had a slight preference for the ’d’ design
(40.01), with lower results on the ’b’ and "¢’ de-
signs (—0.09, —0.03). P7 also favored ’d’ (+0.12),
followed by ’b’ (4-0.05), and had a neutral response
to ’c’ (—0.01). Unlike earlier findings reported in
(Duchnowski et al., 1998), our results do not repli-
cate a consistent benefit from color coding: one
participant improved with the ’¢’ design, while an-
other performed better without it. These observed
trends confirm that the simplified, high-contrast ’d’
illustrations enhance decoding performance, likely
due to their visual clarity and reduced ambiguity.

3.3.4 Group 4 - Visual Enhancements

P4 showed balanced performance across the three
enhancement types (z-scores ranging from 0.0 to
+0.04), while P8 experienced a sharp decline, par-
ticularly on Skeleton (—0.19). These results sug-
gest that while visual enhancements may assist
some users, they may also introduce distracting or
overly complex visual elements, especially for less
experienced decoders.

3.3.5 Discussion

The experimental results converge on a configura-
tion that favors clarity over realism. The most
effective combination includes a fixed anticipa-
tion model refined by phonetic context (Model 4),
expert-defined orientation values (Model 1), and
a stylized 2D design with strong visual contrast
(’d’). This setup does not aim to reproduce natu-
ral hand movement but rather to enhance cue dis-
criminability. It consistently produced the best de-
coding scores across participants and conditions.
Visual enhancements overlays did not improve per-
formance and occasionally introduced confusion,
suggesting that additional graphic elements may
interfere with the perception of essential features.
These findings support the adoption of a simpli-

fied, controlled rendering strategy as the system’s
default configuration for future use.

These results highlight that controlled visual sim-
plicity can effectively outperform realism by en-
hancing usability and reducing cognitive load in
accessibility-focused systems.

4 Conclusion

Despite the documented benefits of Cued Speech
for phonological awareness and literacy, no opera-
tional system has yet addressed its automatic gener-
ation in a reproducible and open manner. The only
prior effort explicitly targeting cue generation in
video, developed at MIT in the late 1990s, remains
undocumented, non-reproducible, and is no longer
maintained.

This paper presents the first functional and pub-
licly available system for automatic Cued Speech
generation. It targets French and implements a
modular pipeline structured into four components:
determining what to code, when to display, where
to place, and how to render. Each step is formally
defined and operational, from phoneme alignment
to video rendering with an integrated virtual hand.
The system provides explicit control over linguistic
content, synchronization, spatial placement, and
visual output.

Evaluation with deaf participants confirmed that
the output is readable and effective: decoding accu-
racy averaged 80.7%, compared to 92.3% for pro-
fessionally coded videos. This result was obtained
without participant training or adaptation. Among
the tested parameters, hand appearance had the
strongest impact. The highest scores were obtained
with a stylized 2D design, limited angle variation,
and no visual enhancement. These findings indi-
cate that intelligibility benefits from simplification
rather than natural imitation.

This work defines a complete and reproducible
framework for Cued Speech generation in video.
Moreover, it provides a usable tool with a graphical
interface, ready for practical use and offering a ref-
erence baseline for future systems. The system is
already integrated into the actively maintained soft-
ware platform SPPAS, and has been successfully
used by non-technical users in applied settings.

The next step will involve inserting transitional
frames when needed, to reduce deletion errors and
improve comfort. The goal is to better match the
rhythm of the speaker with the decoding strategies
used by human coders.



Limitations

This study presents the first fully documented and
reproducible system for automatic CS generation.
However, several limitations must be acknowl-
edged.

First, the system has been implemented and eval-
uated only for French. While the architecture is de-
signed to support multiple languages, further work
is needed to confirm its adaptability to different
phonological inventories and cueing conventions.
This is currently being addressed through the ongo-
ing adaptation of the system to American English.

Second, although the evaluation protocol was
carefully designed, the number of participants re-
mains limited. This constraint, inherent to the diffi-
culty of recruiting expert Cued Speech users, may
affect the generalizability of some findings.

Third, while the current design provides trans-
parency and control, it may miss fine-grained vari-
ations observed in natural cueing. To address this,
a follow-up project has been launched to explore
targeted data-driven modeling, restricted to cases
where statistical learning is justified — in line with
principles of ecological minimalism and method-
ological necessity.

Finally, two aspects of the system have been
fixed a priori and remain to be systematically eval-
uated: the precise spatial placement of hand po-
sitions around the face, and the trajectory mod-
eling, which currently assumes straight-line mo-
tion at constant speed. While hand cue positions
are algorithmically inferred from facial landmarks,
we acknowledge that systematic validation against
manual annotations remains limited due to the com-
plexity of recruiting trained evaluators. Preliminary
cross-checks on held-out data indicate promising
consistency, and ongoing work is extending this
evaluation as resources permit.
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A Reproducibility

All data and source code referenced in this pa-
per comply with the principles of open science.
The source code of the proposed system is re-
leased under the GNU Affero General Public Li-
cense v3 (AGPLv3). It is part of SPPAS and can
be downloaded at https://sourceforge.net/
projects/sppas/.

The experimental scripts are also made available
under the same license and can be obtained from
the author upon request.

The datasets used in this work are distributed
under both the Open Database License v1.0
(ODbL) and the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC
4.0) licenses. They can be downloaded at https:
//hdl.handle.net/11403/clelfpc/vie.

Software and Evaluation Tools:

* The full speech segmentation pipeline, includ-
ing text normalization, phonetic transcription,
and alignment, was performed using SPPAS,
version 4.11 (https://sppas.org/),

e Evaluation metrics were computed us-
ing SCTK 2.4.12 (https://github.com/
usnistgov/SCTK).
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