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Abstract

Depression commonly co-occurs with neurode-
generative disorders like Multiple Sclerosis
(MS), yet the potential of speech-based Ar-
tificial Intelligence for detecting depression
in such contexts remains unexplored. This
study examines the transferability of speech-
based depression detection methods to people
with MS (pwMS) through cross-corpus and
cross-lingual analysis using English data from
the general population and German data from
pwMS. Our approach implements supervised
machine learning models using: 1) conven-
tional speech and language features commonly
used in the field, 2) emotional dimensions
derived from a Speech Emotion Recognition
(SER) model, and 3) exploratory speech feature
analysis. Despite limited data, our models de-
tect depressive mood in pwMS with moderate
generalisability, achieving a 66% Unweighted
Average Recall (UAR) on a binary task. Feature
selection further improved performance, boost-
ing UAR to 74%. Our findings also highlight
the relevant role emotional changes have as an
indicator of depressive mood in both the gen-
eral population and within PwMS. This study
provides an initial exploration into generalising
speech-based depression detection, even in the
presence of co-occurring conditions, such as
neurodegenerative diseases.

1 Introduction

Depression is the most common psychiatric mood
disorder (World Health Organization, 2023). Its
prevalence is around 5% worldwide (World Health
Organization, 2023). Despite its prevalence, de-
pression often goes untreated (Johnson et al., 2022)
due to factors such as socioeconomic barriers and a
shortage of healthcare professionals (Evans-Lacko
et al., 2018).

Speech-based Artificial Intelligence (AI) meth-
ods offer a promising approach for fast and non-
invasive screening of neurological and mental
health during routine examinations (Milling et al.,

2022; Hecker et al., 2022), leveraging speech
changes like reduced pitch, slower speaking rate,
and articulation errors, which are common in in-
dividuals with depression (Cummins et al., 2015).
These methods are accessible, scalable, and could
enhance help-seeking behaviour and on-going mon-
itoring (Johnson et al., 2022).

Prior work has utilised Machine Learning (ML)
methods to detect depression using acoustic and
linguistic features (Kappen et al., 2023). Mallol-
Ragolta et al. (2019) trained a Recurrent Neu-
ral Network (RNN) on linguistic features for bi-
nary classification on the Distress Analysis Inter-
view Corpus from the Wizard-of-Oz interviews
(DAIC-WoZ) dataset, achieving an F1 score of
63%. Zhang et al. (2024) used wav2vec 2.0 for
feature extraction and a Long Short-Term Memory
(LSTM) network for binary classification using the
DAIC-WoZ dataset, which yielded a 79% F1 score.

Similar work has also been conducted in other
languages, such as for the German language,
Menne et al. (2024) reported a balanced accu-
racy 88% for predicting depressive disorder against
healthy controls using acoustic information, and
for Italian language, in which Tao et al. (2023) re-
ported an F1 score of 85% on the binary task of
identifying depression using speech information
from a reading task.

Automatic Speech Emotion Recognition (SER)
research has also been effective in depression de-
tection (Wang et al., 2020), for instance, Wang
et al. (2021) developed a SER model on the
DAIC-WoZ dataset for binary classification, report-
ing a 60% F1 score.

Depression is a common co-morbidity among
people with neurodegenerative diseases, such as
Multiple Sclerosis (MS), Parkinson’s Disease (PD),
and Alzheimer’s Disease (AD), among others
(Brenes, 2007), worsening both the Quality of
Life (QoL) and disease prognosis (Hussain et al.,
2020). In MS, for example, the lifetime risk of



depression is estimated around 50% (Arnett et al.,
2008). The overlapping symptomatology of the
two conditions can lead to misdiagnosis, with ei-
ther one of them frequently overlooked (Hussain
et al., 2020). While prior research highlights the
potential of speech-based AI methods for depres-
sion detection (Cummins et al., 2015), further work
is needed to assess their transferability in patients
with neurodegenerative diseases like MS.

However, MS, due to its impact on the central
nervous system, frequently leads to speech impair-
ment, primarily dysarthria (Noffs et al., 2018). As
a result, MS speech typically presents irregular
articulatory breakdowns, distorted vowels, pitch
breaks, harsh voice quality, and slow speaking rate
(Noffs et al., 2018). This raises the question of
whether speech-based depression detection can dis-
tinguish depressive symptoms in people with a co-
existing speech impairment, such as dysarthria, due
to a neurodegenerative disease, such as MS. We
hypothesise that these methods would struggle to
generalise and distinguish depressive symptoms in
people with MS (pwMS), since some of the MS
speech characteristics are similar to those found in
people with depression.

This contribution aims to address this challenge
by assessing the performance of common speech-
based methods for depressive mood detection in
pwMS. To do so, we conduct a cross-corpus and
cross-lingual analysis using a well-known English-
language corpus with depressive mood assess-
ments, along with a German-language dataset of
people with low MS disability, who also under-
went depressive mood assessments. Our research
questions are:

1. Do ML methods for depressive mood detec-
tion generalise to depressive mood detection
in pwMS?

2. Given that SER models have shown promise
in detecting emotional changes (Wang et al.,
2021), which output from a fine-tuned SER
model is more effective for depression detec-
tion: the model’s final results (the classifica-
tion or regression head output from a SER
model) corresponding to the emotional dimen-
sions –arousal, valence, and dominance– or
the model’s contextualised representations?

3. Can exploratory feature selection analysis im-
prove generalisability of depression detection
in pwMS?

This contribution is structured as follows. Sec-
tion 2 introduces the datasets, features, and meth-
ods employed. Sections 3, 4, 5 present the results,
limitations, and discussions. Finally, section 6
draws conclusions from the analysis.

2 Materials and Methods

2.1 Dataset

We employ two datasets: 1) The DAIC-WoZ de-
pression dataset in English presented in (Gratch
et al., 2014), and 2) a Swiss German dataset for
pwMS collected under the scope of the COMMIT-
MENT trial (Gonzalez-Machorro et al., 2023). The
trial protocol was approved by national regulatory
authorities and local ethic committee (BASEC-ID
number 2021-02423) and registered on clinical-
trials.gov (NCT05561621). The DAIC-WoZ is a
collection of semi-structured interviews containing
speech samples of 189 participants (Gratch et al.,
2014). It provides predefined speaker-independent
training, development, and testing sets, and is seg-
mented at the turn level (Valstar et al., 2016). The
dataset includes scores from the Patient Health
Questionnaire-8 (PHQ-8) self-assessed depression
questionnaire.

The COMMITMENT (Prediction of Non-motor
Symptoms in Fully Ambulatory MS Patients Us-
ing Vocal Biomarkers) dataset consists of 50 fully
ambulatory pwMS and 20 control participants. Par-
ticipants with MS have low levels of disability, with
a median Expanded Disability Status Scale (EDSS)
score of 1.0–indicating minimal impairment– and
a min/max EDSS score of 0.0/3.0, which indicates
no disability to moderate disability but still walking
unaided. For this paper, we only use the MS co-
hort. Details on the speech recordings are described
in (Gonzalez-Machorro et al., 2023). Depressive
mood scores for each participant are available using
the Beck Depression Inventory-II (BDI-II) ques-
tionnaire. The dataset contains multiple speech
tasks. However, in this paper, we utilise two spon-
taneous speech tasks from each patient: (1) de-
scribing the weather on the day of recording and
(2) recalling a neutral memory prompted by the
word “grass”. These tasks are chosen because they
elicit spontaneous speech and resemble the inter-
view style of the DAIC-WoZ dataset. Data was col-
lected using the AISoundLab web platform, which
is a web app, in which each patient could navigate
through a voice recording session under the super-
vision of a study nurse (Gonzalez-Machorro et al.,



2023). All participants provided informed con-
sent prior to participation, and all data was pseudo-
anonymised to protect patient privacy. The ethics
consent unfortunately does not permit the publica-
tion of the recorded data.

In this paper, participants from the two datasets
are categorised as having depression or no de-
pression based on clinically validated threshold
scores from two depression questionaries (BDI-II
and PHQ-8). For the PHQ-8, participants with a
score of 10 or higher are classified as having depres-
sion (Kroenke et al., 2001; Dhingra et al., 2011);
and for the BDI-II participants with a score higher
than 19 were defined as having depression (Beck
et al., 1961). It is important to keep in mind that
these scores serve as indicators of depressive symp-
toms rather than definitive clinical diagnoses of
depression.

Audio files are downsampled to 16 kHz. Diari-
sation for the DAIC-WoZ data is performed using
the turn-level segments provided for each speaker.
A Voice Activity Recognition (VAD) algorithm1 is
applied to segment audio files from both datasets,
which due to license restrictions, is not open-source.
For consistency with previous work, we employ
the same VAD parameter values as in (Gonzalez-
Machorro et al., 2023). Transcripts are automati-
cally obtained for each VAD segment using Whis-
per version 2 (Radford et al., 2023) with the base
model for English and German language. For the
DAIC-WoZ dataset, we merge the original training
and development sets while the original testing set
is left intact. The motivation is that due to the small
dataset, we opt to use a Cross-Validation (CV) strat-
egy for a more robust evaluation. The COMMIT-
MENT dataset, as its purpose is purely for evaluat-
ing cross-corpus and cross-lingual generalisation,
is not partitioned and it is used as an additional
testing set.

Table 1 describes the metadata for both datasets
across the different dataset partitions. Missing val-
ues for the questionnaires are dropped before pro-
cessing. Models trained solely on the COMMIT-
MENT dataset would likely over-fit due to insuf-
ficient participants with depressive symptoms to
learn acoustic and linguistic markers of depression.
Given the imbalance of the two classes, random
oversampling with replacement for the two classes
and a random seed of 42 is applied. To do so, we
employ the package imbalanced-learn (Lemaître

1provided by audEERING GmbH

Table 1: Metadata for the two datasets employed in this
study and the train-test split.

Subset Dataset Total
Partici-
pants

Sex
(F/M)

Depression /
No Depres-
sion

Train DAIC-WoZ 135 59 / 76 42 / 93

Test DAIC-WoZ 44 22 / 22 13 / 31
COMMITMENT 50 37 / 13 4 / 46

et al., 2017).

2.2 Feature extraction

We extract six commonly used acoustic and lin-
guistic feature sets, and normalise them per dataset
using the Robust Scaler, which is robust against out-
liers. All features are extracted at a VAD segment-
level.

1. The Wav2Vec2 contextualised representations
of length 1024 correspond to the mean pooling
of the encoder output. These representations
are extracted using a publicly available fine-
tuned Wav2Vec2 model for 3-dimensional
SER task (Wagner et al., 2023).

2. SER-dimensions –arousal, valence, and
dominance– are obtained using the same
Wav2Vec2 SER model (Wagner et al., 2023).
These features represent the final outputs of
the model returned by the 2-layer multitask
regression head (Wagner et al., 2023). By
extracting both types of information –the con-
textualised representations and the emotion
dimensions– from the Wav2Vec2 SER model,
we aim to investigate which one is more effec-
tive for depression detection.

3. Praat features (Feinberg, 2022) are extracted
using Nkululeko (Burkhardt et al., 2022) and
correspond to 39 features, such as voice qual-
ity, shimmer, jitter, and duration. This type of
features has shown significance for depression
detection (Cummins et al., 2015).

4. extended Geneva minimalistic acoustic param-
eter set (eGeMAPS) (Eyben et al., 2016) is ex-
tracted using the Speech & Music Interpreta-
tion by Large-space Extraction (openSMILE)
feature extraction tool (Eyben et al., 2010).
It contains 22 acoustic features related to
prosody, voice quality, and articulation. Pre-
vious work has reported promising results in



depression detection (Cummins et al., 2015).
We employ the 88 functionals and summary
statistics from these features.

5. The psycholinguistic feature set consists
of 51 linguistic features that represent the syn-
tactic complexity, the proportion of sentiment
tokens, and the proportion of nouns, verbs,
negations, adjectives, among others.

6. RoBERTa embeddings are extracted using a
multilingual model –XLM Large RoBERTa
(Conneau et al., 2020) –. These embeddings
correspond to the [CLS] pooling output ap-
plied to the last hidden states of the model.
Each segment is defined with a maximum
length of 512 tokens and represented by a size
of 768.

2.3 Methods
We define the following three modelling scenarios
to investigate whether ML methods for depressive
mood detection generalise in the presence of MS:

A) Baseline Performance: Each feature set and
model type is trained and evaluated on the
DAIC-WoZ training and testing sets. This
task establishes a baseline for model perfor-
mance in depression detection.

B) Generalisability Evaluation: Each feature
set and model type is evaluated on the
DAIC-WoZ testing set –to ensure consistent
performance on the general population– and
the COMMITMENT dataset. The aim is
to assess how well models trained on data
from the general population (DAIC-WoZ)
generalise to the pwMS data.

C) Feature Selection Modelling: Following
an exploratory feature analysis on the
DAIC-WoZ training set, the resulting sig-
nificant features are used for training and
evaluation. This task aims to improve model
performance by selecting relevant features
for depression detection. Two scenarios are
investigated:

C_A) Models are trained and evaluated on
the DAIC-WoZ training and testing sets
using selected features. In other words,
it is Task A with selected features. This
task assesses whether feature selection
improves performance within the general
population.

C_B) Models are trained on the DAIC-WoZ
training set using selected features and
evaluated on both the DAIC-WoZ test-
ing set and the COMMITMENT dataset.
This scenario, equivalent to Task B with
selected features, explores whether fea-
ture selection improves generalisability
to pwMS data.

Exploratory feature analysis. To investigate
which features are significant to distinguish be-
tween speakers with and without depression in
the training set, we use the Mann-Whitney U test
(p < 0.05) because it is non-parametric and does
not require the assumption of a normal distribution.
This makes it suitable for our data, where not all
features follow a normal distribution. Additionally,
it is more conservative than other statistical tests,
reducing the risk of Type I errors. To quantify the
effect size, we use Cohen-R (Cohen, 1988). Rel-
evant features are found by selecting among the
significant ones those with an r ≥ .30. Corrections
for Type 1 errors are not performed due to the large
size of the feature sets, so that the aim of this anal-
ysis is restricted to explore acoustic and linguistic
feature trends.

Modelling. We implement supervised ML clas-
sification for implementing the three modelling
tasks. For reproducibility, we seed the pseudo-
random number generation. The models used
are Support Vector Machine (SVM), Random For-
est (RF), and eXtreme Gradient Boosting (XGB).
These supervised learning algorithms were selected
due to their consistently strong performance across
a wide range of classification tasks (Fernández-
Delgado et al., 2014). Each model is trained using
Grid search 5-fold speaker-independent CV on the
training set.

The hyper-parameter values optimised for the
Grid Search for each model are as follows: for
SVM, C ∈ [10−4, 10−3, 10−2, 10−1, 1, 10], the
kernel options include linear and rbf, and
the gamma parameter is chosen from scale
and auto. For XGB, the number of estima-
tors ∈ [200, 300, 450, 500], the learning rate ∈
[0.001, 0.01, 0.1, 0.2], the maximum tree depth ∈
[4, 5, 6], the column subsample ratio ∈ [1, 0.3, 0.5],
and the subsample ratio ∈ [0.8, 1]. Lastly,
for the RF model, the number of estimators ∈
[50, 100, 300, 500, 800, 1000], the criterion is ei-
ther gini or entropy, the minimum number of
samples required to split an internal node is ∈ [2, 3],



and bootstrap sampling is either True or False.
The optimal hyper-parameters identified through

this process are then used to train the model on
the entire training set. Class weights are calcu-
lated from the training set and are incorporated to
address the class imbalance in the data.

Evaluation. We calculate speaker-level Un-
weighted Average Recall (UAR), F1-score, preci-
sion, and recall. Receiver Operating Characteristic
(ROC) curves and the Area Under the Curve (AUC)
scores were also calculated at a speaker-level. Due
to space limitations, only the ROC curves for the
best-performing tasks are presented. We also com-
pute the 95% Confidence Interval (CI) for the UAR.
The CIs were calculated using 1000 bootstrapping
iterations 2.

3 Results

3.1 Exploratory feature analysis
The Mann-Whitney U test is applied to each fea-
ture in the training set of the DAIC-WoZ dataset.
Due to interpretability limitations, the Wav2Vec2
and the RoBERTa representations are excluded
from the analysis. The number of significant
(p < 0.05) features with a sufficiently high ef-
fect size (r ≥ 0.30) identified per feature set
are: 1) SER-dimensions: 1 feature–valence–
; 2) Praat features: 33 out of 39 features; 3)
eGeMAPS: 64 out of 88 functionals; 4) Psycholin-
guistic feature set: 18 out of 51 features. These
selected features are used in the modelling task
C_A and C_B to assess whether feature selection
improves modelling performance. Figure 1 shows
the valence distributions for the binary depression
class (“no_depression” and “depression”), which
is the only significant features found for the SER-
dimensions.

3.2 Modelling Results
Table 2 shows UAR and its CIs, F1-score, precision,
and recall for depression (Dep.) and no depression
(No Dep.) classes, across the best-performing mod-
els and all feature sets. As we are tackling a bi-
nary classification problem, the chance-level UAR
is 50%. The best result for Task A (Baseline Per-
formance) with acoustic features is achieved using
SVM and SER-dimensions (UAR: 73%), while the
best result with linguistic features is achieved using
SVM and RoBERTa embeddings (UAR: 56%). For

2https://github.com/luferrer/
ConfidenceIntervals
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Figure 1: Feature distributions for the binary depression
class depression class and valence dimension from SER
in the DAIC-WoZ training set. This feature presents a r
of 0.66 and p < 0.001.

Task B (Generalisability Evaluation), Wav2Vec2
embeddings and Psycholinguistic features achieved
the best performances (UAR: 66% and 62%, re-
spectively). SER-dimensions in Task B show
a performance drop. For Tasks C_A and C_B
(Feature Selection Modelling on Tasks A and B),
XGB with SER-dimensions obtained the highest
UARs of 79% and 74%, respectively. Since SER-
dimensions shows consistently good performance
in all tasks, Figure 2 shows the ROC curves and
AUC values for all tasks.

4 Discussion

In this paper, we explore three research questions:
1) Do ML methods for depressive mood detection
generalise to depressive mood detection in pwMS?
Results in Table 2 indicate that for Task B (General-
isability Evaluation), acoustic-based features show
reasonable generalisability to distinguish depres-
sion in pwMS, with only a modest performance
decline compared to results from Task A (Baseline
Performance).

In the case of the Wav2Vec2 features, a drop in

https://github.com/luferrer/ConfidenceIntervals
https://github.com/luferrer/ConfidenceIntervals


Table 2: Speaker-level test results. A: Baseline Performance. B: Generalisability Evaluation. C_A: Feature Selection
on Task A. C_B: Feature Selection on Task B. The best-performing combinations for acoustic-based models are
marked in bold and *; and linguistic models as bold†. Dep. corresponds to the depression class and No Dep.
correspond to no depression

.
Task Feature Model UAR[%] F1[%] Precision[%] Recall[%]

Dep. No Dep. Dep. No Dep.

A

Wav2Vec2 XGB 66(49-81) 65 81 47 71 62
SER-dimensions SVM 73(57-84)* 67* 48 90 85 61
Praat XGB 49(42-62) 45 70 25 90 8
eGeMAPS XGB 54(46-69) 53 72 50 94 15

Psycholinguistic SVM 46(32-63) 46 68 25 61 31
RoBERTa SVM 56(48-71)† 54† 67 73 15 97

B

Wav2Vec2 SVM 66(54-80)* 67* 50 88 41 91
SER-dimensions SVM 64(50-76) 57 28 89 65 64
Praat SVM 47(33-60) 39 16 79 53 40
eGeMAPS XGB 56(49-69) 57 43 84 18 95

Psycholinguistic SVM 62(48-74)† 54† 26 88 65 60
RoBERTa SVM 55(49-67) 54 50 83 12 97

C_A

SER-dimensions XGB 79(70-87)* 70* 50 100 100 58
Praat SVM 51(36-68) 51 31 71 31 71
eGeMAPS XGB 58(48-74) 58 60 74 23 94

Psycholinguistic SVM 48(33-66) 48 69 28 58 38

C_B

SER-dimensions XGB 74(60-84)* 65* 37 93 76 71
Praat SVM 46(32-59) 38 16 79 53 39
eGeMAPS XGB 57(46-70) 56 29 84 29 84

Psycholinguistic SVM 54(42-68) 51 22 84 41 68
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Figure 2: ROC curve and AUC value at a speaker-
level for the best-performing models using the SER-
dimenions as feature set across all tasks. Task A: Base-
line Performance. B: Generalisability Evaluation. C_A:
Feature Selection on Task A. C_B: Feature Selection on
Task B.

performance for the two tasks is not found, which
suggests that these features are transferable to other
languages and groups with other co-morbidities
such as MS. Interestingly, in the case of the
eGeMAPS features, a minimal increase in perfor-
mance is observed in Task B, which also suggests
a generalisability capacity.

For Tasks C_A and C_B (Feature Selection
Modelling), similar patterns are observed as in
Tasks A and B, with SER-dimensions consistently
outperforming other feature sets and demonstrat-
ing strong transferability in detecting depression
among pwMS. This is further illustrated in Fig-
ure 2, which highlights the effectiveness of SER-
dimensions in the context of MS.

The top-performing results for Tasks A (using
SER-dimensions) and B (using Wav2Vec2 features)
demonstrate greater precision in predicting the ab-
sence of depression (90% for “No Dep.” in Task



A; 88% for “No Dep.” in Task B) compared to
predicting depression. This finding indicates that
identifying depression using speech presents sim-
ilar challenges in both same-language and cross-
lingual contexts, as well as in the general popula-
tion and among groups with co-morbidities, such
as MS.

Interestingly, RF models did not outperform
XGB or SVM in any task or feature set; conse-
quently, they are excluded from Table 2. This
was already reported by (Fernández-Delgado et al.,
2014), where XGB has been shown to outperform
RF in many cases.

2) Given that SER models have shown promise
in detecting emotional changes, which output from
a fine-tuned SER model is more effective for de-
pression detection: the model’s final predictions
corresponding to the emotional dimensions or the
model’s contextualised representations? As shown
in Table 2, the SER-dimensions and Wav2Vec2
representations achieve the highest UAR for Task
A and Task B, respectively. SER-dimensions also
outperform all other feature sets in Task C reach-
ing the highest performance. Likely due to the
high dimensionality of the Wav2Vec2 embeddings,
SER-dimensions show overall better results by a
small margin. However, the performance of SER-
dimensions and Wav2Vec2 features heavily relies
on the performance of the underlying SER model
(Wagner et al., 2023), which was finetuned using
the MSP-Podcast dataset (English language) (Lot-
fian and Busso, 2019). It is, therefore, unclear
the cross-lingual generalisability of these features
when training data would include languages other
than English.

3) Can feature selection improve generalisabil-
ity of depression detection in pwMS? Results
for acoustic-feature-based models, with the excep-
tion of the Praat features, suggest that indeed, fea-
ture selection can improve the performance of de-
pression detection. The feature analysis for SER-
dimensions reveals that only valence among the
three dimensions is significantly predictive, high-
lighting its important role as an indicator of de-
pression in both the general population and pwMS.
This finding is illustrated in Figure 2, which shows
that individuals without depressive symptoms tend
to use higher positive valence in spontaneous in-
terviews compared to those with depressive symp-
toms. This aligns with prior research, such as (Trifu
et al., 2024), which found that individuals with de-

pression display lower positive valence than those
without. This pattern may be attributed to a core
symptom of depression: emotional dysfunction
characterised by a predominant negative emotional
state (Yang et al., 2023).

5 Limitations

In the case of text-based models, RoBERTa embed-
dings achieve above-chance performance in both
Task A and Task B while psycholinguistic-feature-
based models exhibit an unexpected trend: their
performance on Task B surpassed that of Task A,
C_A, and C_B. The suboptimal performances of
text-based models may be due to the use of VAD
segments for feature extraction, which ensured a
consistent preprocessing pipeline across acoustic
and text features, enabling direct comparisons be-
tween model types in detecting depression. While
VAD segments effectively captured acoustic cues,
contributing to strong performances, their short du-
ration may have been less optimal for text-based
features, such as word class proportions, which ben-
efit from longer discourse contexts. The language-
specific nature of these features also might have
contributed to their struggle to generalise to the
German-speaking MS population. Future work
should explore longer segments to optimise text-
based models, building on this study’s foundation.

A limitation of this contribution arises from the
use of different languages, recording conditions,
and depression assessments. Although we try to
tackle this by feature normalisation and the restric-
tion to spontaneous speech, further research should
explore the impact of language, depression assess-
ments, and recording variations on the generalis-
ability of speech-based depression detection. In
this paper, we cannot definitively differentiate the
extent to which the drop in model performance
when evaluated on the MS population is influenced
by language differences, recording conditions or
the presence of MS itself.

Moreover, since both MS and depression are
heterogenous conditions (Gaitán and Correale,
2019), implementing personalised approaches
when screening for depression in pwMS is a crucial
next step. Future work should also explore different
stages of MS –this study focused on low-disability
patients– and account for other co-morbidities in
MS, like fatigue and cognitive decline, which may
also influence speech. Also, the MS cohort was re-
ceiving pharmacological treatment, including com-



mon antidepressants for those MS patients diag-
nosed with depression, that could influence mood
and, consequently, speech patterns. Although the
general population diagnosed with depression from
the DAIC-WoZ dataset may also have been under-
going pharmacological treatments, this information
is not available in the dataset, preventing analysis
of this potential confounding factor.

To further evaluate the transferability of speech-
based depression detection, it is important to ex-
amine other common diseases where depression is
a common co-morbidity and speech is impacted,
such as PD or AD. A lack of depression scores
in speech datasets for these disorders is a major
limitation in this regard. Finally, acoustic and lin-
guistic features alone cannot fully capture the mul-
tifaceted nature of depression. These ML methods
are intended to augment established screening ap-
proaches. Incorporating other bio-signals, such
as physiological data, could not only enhance per-
formance but also provide a more comprehensive
understanding of the disorder.

6 Conclusion

In this cross-corpus and cross-lingual study, we ex-
plore the efficacy of speech-based depressive mood
detection in the presence of MS and across English
and German languages. Our findings highlight the
significance of emotional dimensions –arousal, va-
lence, and dominance– in identifying depressive
symptoms, not only in the general population but
also within pwMS. Additionally, acoustic feature
sets like eGeMAPS also demonstrate potential for
generalisability in this context. However, further
research is needed to establish robust conclusions.
This study, despite its limitations, represents a step
forward towards the integration and generalisabil-
ity of speech-based depression detection methods.
Non-invasive speech-based AI systems for depres-
sion detection hold the potential to improve the
QoL for individuals with this disorder, even in the
presence of other illnesses.
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