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Abstract

Topic models are statistical tools that allow
their users to gain qualitative and quantitative
insights into the contents of textual corpora
without the need for close reading (Nielbo et al.,
2024). They can be applied in a wide range
of settings from discourse analysis (Bednarek,
2024), through pretraining data curation (Peng
et al., 2025), to text filtering (Ma et al., 2016).
Topic models are typically parameter-rich, com-
plex models, and interpreting these parameters
can be challenging for their users. It is typical
practice for users to interpret topics based on
the top 10 highest ranking terms on a given
topic. This list-of-words approach, however,
gives users a limited and biased picture of the
content of topics (Gillings and Hardie, 2022).
Thoughtful user interface design and visual-
izations can help users gain a more complete
and accurate understanding of topic models’
output. While some visualization utilities do
exist for topic models, these are typically lim-
ited to a certain type of topic model. We intro-
duce topicwizard !, a framework for model-
agnostic topic model interpretation, that pro-
vides intuitive and interactive tools that help
users examine the complex semantic relations
between documents, words and topics learned
by topic models.

1 Introduction

Topic models are statistical instruments, which
have been developed to wuncover human-
interpretable topics in corpora of text (Blei,
2012). These methods have allowed analysts gain
insights into the contents of large corpora, the
manual reading of which would be impractical or
impossible. Topic models also often offer a more
impartial account of a corpus’ content (Nielbo
etal., 2024).

Typically, topic models’ outputs are presented to
users in the form of the highest-ranking words and
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perhaps documents on a given topic. While this
allows users to gain a superficial understanding of
a topic, one might miss crucial details, and a lot
of nuances, when topic models are exmined this
way (Gillings and Hardie, 2022). We suggest that
topic models capture more detailed information
about topics than simple word lists convey, and that
carefully designed interfaces can help users better
explore this complexity.

1.1 Topic Models are Diverse

While topic models all carry out a similar task, they
can also be very different from each other in how
they conceptualize topic discovery.

Topic models originally relied on a bag-of-words
model of documents where they are represented as
sparse vectors of word-occurrence counts, with an
optionally applied weighting scheme, such as tf-
idf. Most commonly, these models either discover
topics by matrix factorization (Gillis and Vavasis
2014, Kherwa, Pooja and Bansal, Poonam 2017)
or by fitting a probabilistic generative model over
these representations (Blei et al. 2003, Yin and
Wang 2014, Hofmann 1999) or biterms (Yan et al.,
2013).
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More recent topic models, however, also rely on
context-sensitive, dense text representations from
neural networks (Reimers and Gurevych, 2019).
These models can conceptualize topic discovery as
document clustering and post-hoc term importance
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estimation (Grootendorst 2022, Angelov 2020),
document generation with amortized variational
inference (autoencoders) (Bianchi et al. 2021a,
Bianchi et al. 2021b), semantic relation reconstruc-
tion (Wu et al., 2024), or semantic decomposition
(Kardos et al. 2025a, Kristensen-McLachlan et al.
2024).

1.2 Topic Models are Alike

Despite these differences, all topic models have
a lot in common. Topic models, in essence,
learn a three-way relationship between words ,
documents and topics.
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Figure 2: Common Components Computed by Topic
Models

All topic models have a method for extracting the
K most relevant words from the discovered topics.
These top K words are calculated from a topic-
term matrix (¢), which is either inferred as part
of topic discovery. This matrix has IV rows, corre-
sponding to the number of topics, and M columns
corresponding to the size of the model’s vocabu-
lary. In addition, models compute a document-
topic-matrix (©), where rows represent the D
documents in the corpus, while the N columns
represent topics. This matrix contains the impor-
tance/relevance of a topic in a document.

1.3 Contribution

We introduce topicwizard, a model-agnostic
topic model visualization framework that allows
users to investigate complex semantic relations be-
tween words, documents and topics in their cor-
pora. topicwizard is natively compatible with
topic modelling libraries, which use the scikit-learn
API (Pedregosa et al., 2011), such as tweetopic
(Kardos, 2022) and Turftopic (Kardos et al., 2025b)
and comes with compatibility layers for Gensim
and BERTopic.

2 Related Work

Due to Latent Dirichlet Allocation’s (LDA) pop-
ularity, a considerable amount of work has been
dedicated to visualizing and interpreting its outputs.
Chuang et al. (2012b) discuss best practices and
design considerations for visualization and inter-
pretation systems for LDA. Chuang et al. (2012a)
introduced the Termite system for interactively vi-
sualizing and interpreting LDA output. The main
visualization in Termite is a stylized version of
the topic-term matrix (see Figure 8), where circles
of different size are at the intersection of terms
and topics indicating their importance. The au-
thors also propose a scheme for selecting the most
topically salient words, since displaying all words
in the corpus would not be feasible. As a conse-
quence, Termite can only display a limited number
of words. Additionally, Termite is no longer under
active maintenance 2.

LDAvis (Sievert and Shirley, 2014) is an inter-
active visualization R package for LDA (see Fig-
ure 9). LDAvis combines elements of previous
topic visualization systems, including an inter-topic
distance map, term distribution plots, and a term-
weighting scheme to show only the most specific
and (relevant) terms. Similar to Termite, the orig-
inal LDAvis package is no longer maintained. Its
Python port, PyLDAuvis, receives occasional up-
dates, but does not enjoy feature parity with the
original package.

Notable visualization utilities are also included
in the BERTopic library (Grootendorst, 2022),
which boasts model-specific plotting functions,
such as an inter-topic map, document cluster vi-
sualizations, and term distribution bar-charts. Simi-
larly, Turftopic (Kardos et al., 2025b) also contains
model-specific visualization utilites for a number
of models, including cluster maps, concept com-
passes for S3 (Kardos et al., 2025a) and interactive
timeline plots for dynamic topic models. While
these visualizations are useful, they are typically of
limited interactivity, and are limited to a particular
type of model.

3 topicwizard

To address these challenges, we outline
topicwizard, a novel system for topic model
interpretation. Our framework is model-agnostic,

The Termite repository on Github was last committed to
11 years prior to the writing of this article
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Figure 3: An overview of visualizations and pages in the topicwizard framework
All visualizations were produced using KeyNMF (Kristensen-McLachlan et al., 2024)

allows users to investigate topic models from a
number of distinct perspectives, and is highly
interactive, thereby providing a more complete
picture of topic models’ output,

3.1 Topic Models Learn Topic
Representations

Topic models’ primary objective is to discover la-
tent themes in a corpus. Being able to understand
what concepts make up such topics, and how these
topics are related is perhaps the most important
aspect of interpreting topic models.

In topicwizard (see Figure 3a), similar to Siev-
ert and Shirley (2014) an inter-topic map is
displayed, which shows the relative distances of
topics to each other. While Sievert and Shirley
(2014) utilize PCA for this visualization, projec-
tions in topicwizard are calculated with UMAP
(Mclnnes et al., 2018), since it is better at captur-
ing local structure. The size of the topics on the
graph is determined by a topic importance score.
This score, and thereby the size on the graph indi-
cates how prevalent a given topic is in the corpus
overall, also taking into account the length of the
documents. Topic importance is calculated in the
following manner:

D
st=) O -|d
d

where Oy, is the importance of topic ¢ and docu-
ment d and |d| is the number of terms in a given
document, and D is the size of the corpus.

To provide users with insights about topics’
word content, the topic-word plot displays the
distribution of the highest ranking words for a
given topic, and also how globally prevelant these
words are across topics >. Since 10-20 words are
rarely enough to give a complete picture of the
words relevant to a topic, a more comprehensive

topic wordcloud is also displayed To aid fur-
ther analysis, users can also manually name topics
on this page.

3.2 Topic Models Learn Word Embeddings

While topic models’ are mainly oriented at discov-
ering topics, they also implicitly learn meaningful
representation of words within the corpus. Each
column of the topic-term matrix can technically
be thought of as a semantic embedding for a given
word, with the dimensions being interpretable. This
implicit learning of word representations allows us
to examine words’ relation to each other in a cor-
pus, without explicit reference to the topics.

In topicwizard (see Figure 3c), a word map
is displayed to users, allowing them to quickly and
interactively investigate the semantic landscape of
words in their corpus. Word positions are calcu-
lated by projecting word embeddings to two dimen-
sions using UMAP.

Word embeddings are useful for investigating as-
sociative relations in corpora, and have been used
for a variety purposes such as query expansion

3Unlike LDAvis, we do not compute relevance scores,

since they rely on the assumption that ¢ contains word proba-
bilities.



(Kuzi et al., 2016), or to uncover authorship pat-
terns in literature (Baunvig, 2024). Clicking on a
word on the word map highlights the words most
closely related to the selected one and displays
the topical distribution of the selected term and its
neighbourhood on the word-topic plot. Dis-
playing closely associated words with the selected
keywords in topic models can give practitioners a
more nuanced picture of word use (Liu and Lei,
2018).

3.3 Topic Models Organize Documents

An important aspect of topic models is that they
learn a representation of documents in the corpus
they are fitted on. Document representations dis-
covered by topic models were historically used for
a number of purposes, including retrieval (Yi and
Allan, 2009), and studying information dynamics
(Barron et al., 2018).

In topicwizard (see Figure 3d), a
document map is displayed, where docu-
ment’s UMAP-projected embeddings can be
seen, and documents are coloured based on most
prevalent topic. In the case of BoW models, these
representations are derived from the document-
topic matrix, while with contextual models, the
pre-computed sentence embeddings are used.

Secondly, individual documents’ contents can be
investigated on a document-topic plot , which
displays the distribution of the most relevant topics,
a document-topic timeline, which displays
how the topical content changes throughout the
course of the document and a document viewer ,
where a snippet of the document is displayed, and
the most topically relevant words are highighted.
The combination of these document inspection util-
ities can help users ground and verify topic models’
output in the documents themselves, which elevates
trust (Chuang et al., 2012b). Additionally, this in-
terface encourages close reading, which provides
additional insight into the corpus’ content.

3.4 Topics Augment User-Defined Groups

Commonly, users of topic models also have some
externally defined grouping of documents, which
might be relevant for their analyses. This could
be binning documents by time period, predefined
categories or place of origin. While most topic
models do not utilize external labels, meaningful
inferences can be made about topics’ relation to
these labels post-hoc.

An important part of this process is to compute a

group-topic matrix, the cells of which contain the
summed importance of a given topic for documents
in a given group:

D
Gij =Y Ok - I(gr = 1)
k

where G; is the importance of group i for topic j,
gk is the group label of document k, and I (g = i)
is the indicator function.

In topicwizard (see Figure 3b), semantic dis-
tances between user-defined groups can be seen
on the group map , where group-topic represen-
tations are projected to 2D space using UMAP.
Groups are coloured based on the dominant topic
in the group. Topic distributions in groups can
be seen on the group-topic plot, and groups’
lexical content can be examined in detail on the
group wordcloud to the right.

3.5 Software Design Considerations

The topicwizard Python package was designed
with both research and enterprise use in mind. As
such, our goal was to develop a package that is
accessible to new users and sufficiently flexible to
accommodate specific use cases — ranging from
academic writing and technical reporting to enabel-
ing business analysts to interact with topic models
via a web interface.

The Web Application (see Figures 4 - 7) was de-
signed to make topic model interpretation as seem-
less and quick as possible, in as many environments
as possible, including Jupyter notebooks, in the
browser, or deployed to the cloud. which produces
a readily deployable Docker project to a specified
folder.

The Figures API makes it trivial for our users
to produce specific figures tailored to their needs.
This is especially crucial for producing publica-
tions, since some colour schemes, fonts or aspect
ratios, while appropriate for an interactive web ap-
plication, might not be visually appealing in a static
document.

4 Conclusion

This paper introduces topicwizard, a comprehen-
sive, interactive, and model-agnostic topic model
visualization framework. Our framework is a no-
table extension over previous topic model visualiza-
tion systems, thanks to a) supporting a much wider
range of models b) allowing users to ground topic
models in the corpus, and investigate them from



numerous angles and c) being flexible, actively sup-
ported, and production-ready. The topicwizard
software package has so far been downloaded more
than 45000 times from PyPI, demonstrating that
practitioners have already found it useful.

Limitations

While topicwizard is the most comprehensive
topic model visualization tool to date, it still lacks
coverage of a number of aspects of topic modelling.
It, for instance, does not have visualization utili-
ties for dynamic, hierarchical and supervised topic
models. This is a clear limitation and will have to
be addressed in future package releases.

Our framework, as of now, does not provide any
utilities for comparing outputs from different topic
models either. This is yet another aspect that future
work should address.

Furthermore, while we consider model-
angosticity to be one of the strengths of our
approach, it does, to an extent, limit its usefulness
for certain models. Certain visualizations, such
as concept compasses, might be highly useful
tools for examining the output of Semantic Signal
Separation, but their utility might be limited for
clustering topic models. We encourage our users,
therefore, to use topicwizard in tandem with
model-specific interpretation utilities from libraries
such as BERTopic or Turftopic.
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A Appendix

See Figures 4-7 for screenshots of topicwizard, Figure 9 for LDAvis and Figure 8 for Termite.
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Figure 4: Screenshot of the Topics page in the topicwizard Web Application
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Figure 5: Screenshot of the Words page in the topicwizard Web Application
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Layout...” for example, respond to keyboard traversal even though the pointer is NOT in the dialog window and
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Figure 7: Screenshot of the Groups page in the topicwizard Web Application
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Figure 8: Screenshot of the Termite System
Figure from (Chuang et al., 2012a)
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Figure 9: Screenshot of LDAvis
Figure from (Sievert and Shirley, 2014)
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