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Abstract

Code-mixing presents significant chal-
lenges for Automatic Speech Recognition
(ASR), especially for Indian languages, due
to homophone ambiguity, domain-specific
word identification, and data scarcity. Tra-
ditional ASR models struggle with these
complexities, often failing to differentiate
between phonetically similar words in mul-
tilingual contexts. To address this, we pro-
pose CLEAR, a novel rescoring model that
integrates descriptive prompting and LLM-
based rescoring while analyzing the im-
pact of n-best hypotheses across multiple
beam widths. CLEAR enhances ASR perfor-
mance, achieving S-WER of 26.9, P-WER
of 26.46, and T-WER of 25.04—improving
by 6.9%, 13.47%, and 4.42%, respectively,
over the best baseline TDNN. These find-
ings demonstrate that CLEAR effectively re-
solves homophone ambiguities and refines
transcriptions, leading to a 13.56% S-WER
and 7.77% T-WER reduction over decoder
only fine-tuned Whisper.

1 Introduction
Code-mixing and code-switching are prevalent
linguistic phenomenon in multilingual commu-
nities, where speakers alternate between lan-
guages within a single discourse. The terms
code-switching and code-mixing are often used
interchangeably1; however, they carry distinct
linguistic meanings. Code-switching is inter-
sentential where the language/code switch oc-
curs at the utterance level; while code-mixing
is intrasentential where the switch happens
at the word or phrase level within a sentence
(Thara and Poornachandran, 2018; Setiawan,
2023; Winata et al., 2022).

Developing automatic speech recognition
(ASR) systems for code-switched speech

1We will also use these two terms interchangeably
to refer our input setting in this paper.
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Figure 1: Proposed architecture of CLEAR.

presents unique challenges due to the na-
ture of the language(Çetinoğlu et al., 2016).
Code-switching introduces linguistic complex-
ities such as cross-lingual homophone disam-
biguation (e.g., Bill in English means a re-
ceipt or a piece of paper; however, िबल(Bill)
in Hindi means a hole or a burrow) (Yu et al.,
2024), code-switching point detection (Wang
et al., 2019), and the identification of embed-
ding and matrix languages, which are crucial
for determining the correct syntactic struc-
ture (e.g., Subject-Verb-Object (SVO) in En-
glish vs. Subject-Object-Verb (SOV) in Hindi)
(Iakovenko and Hain, 2024). Accurately mod-
eling these aspects is essential for generating
grammatically coherent transcriptions.

To mitigate these challenges, recent ad-
vancements (Prabhavalkar et al., 2023) in ASR
have been driven by innovations in neural
architectures, training strategies, and robust
learning techniques. Many explorations in end-
to-end ASR leveraged transformer-based en-
coders and self-supervised pretraining to learn
rich representations from raw acoustic sig-
nals (Baevski et al., 2020; Hsu et al., 2021;
Chadha et al., 2022). Whisper (Radford



et al., 2023) is one of most popular state-of-
the-art multilingual ASR models, trained on
630K hours of data, that can transcribe, trans-
late, and detect speeches across 99 languages.
Peng et al., 2023 incorporated a mixture of
language tags, i.e., <zh><en> for Mandarin-
English code-switched dataset; while Yang
et al., 2024c extended Whisper with a separate
language tag <|en−zh|> to uniquely refer to
Mandarin-English code-mixed sentences.

With the inception of LLMs, recent studies
have leveraged prompting strategies (Liu et al.,
2023b) in Whisper-based architectures. Suh
et al., 2024 explored LLMs to generate con-
textual descriptions, which were then used to
prompt the Whisper for transcription, demon-
strating the potential of LLM-guided ASR.

Although previous methods produced good
results, they required generating different
mixes of language tags or using an LLM to
create prompts for each utterance, we do
not aim to do that also these works have
been experimented on Mandarin-English code-
switchted dataset belongs to different domain
and not on Hindi-English code-switched which
has its own linguistic complexities. Our re-
search builds upon these works but takes a
distinct approach. Unlike prior studies, we
do not introduce new language tags or rely
on LLM-generated prompts. Instead, we pro-
pose CLEAR to demonstrate that descriptive
prompting alone can yield high-quality code-
mixed transcriptions by refining ASR outputs
through LLM-based rescoring. We hypothe-
size that LLM-based rescoring can mitigate
the issue of homophone disambiguation by
scoring the fluent sentences with higher scores.
We obtain n-beams of potential outputs from
Whisper and utilize LLM-based scorer to mea-
sure their linguistic fluency and coherency. We
fine-tune the Whisper decoder while keeping
the encoder in a frozen state. Specifically,
we experiment with leading LLMs – GPT-2,
LLaMA 3.1 (8B), LLaMA 3.2 (1B), DeepSeek
R12, Qwen-2 (7B), Mistral (7B), and GPT-4
(Radford et al., 2019; Dubey et al., 2024; Guo
et al., 2025; Yang et al., 2024a; Jiang et al.,
2023; Achiam et al., 2023) – while varying
beam widths to assess their impact on ASR
performance. We employ MUCS 2021 dataset

2DeepSeek-R1-Distill-Llama-8B

to evaluate CLEAR. Our analysis across six com-
petitive baselines signifies the importance of
CLEAR on code-switched ASR outputs. Our
contributions are summarized below:

• We present CLEAR and contribute novel in-
sights into the role of descriptive prompt-
ing and LLM-based scoring in improving
code-switched ASR systems, paving the
way for more effective transcription mod-
els in multilingual settings.

• We extensively evaluate CLEAR against
6 baseline methods. We present CLEAR
significant improvement evaluated across
evaluation metrics.

Reproducibility: https://github.com/
flamenlp/CLEAR

2 Related Work
Another line of work have explored ap-
proaches to improve language modeling and
context understanding. For instance, Aditya
et al., 2024 investigated attention mecha-
nisms within transformer layers, identifying
attention heads that effectively capture lan-
guage identities and guiding them accord-
ingly. To mitigate multilingual context con-
fusion, Zhang et al., 2022 proposed atten-
tion weight recomputation to better differen-
tiate languages within speech. Further, Liu
et al., 2023a, 2024a introduced language bi-
ases at both the token and frame levels to en-
hance the model’s ability to handle language
switching effectively. Song et al., 2022 pro-
posed a language-specific characteristic assis-
tance (LSCA) method to mitigate the problem
caused by lanugage-specific encoders (LSEs)
since most existing methods did not have lan-
guage constraints; they introduced a language-
specific loss to do that. To disambiguate ho-
mophones Srivastava and Sitaram, 2018 used a
WX-based common pronunciation scheme for
mixed language pairs and unification of homo-
phones during training, resulting in a lower
word error rate for systems built using this
data. Chung et al., 2022 proposed a novel
homophone extension method to integrate hu-
man knowledge of the homophone lexicon into
the beam search decoding process with lan-
guage model re-scoring. Some of the recent
work has also explored Mixture of Experts

https://github.com/flamenlp/CLEAR
https://github.com/flamenlp/CLEAR


(MoE) architectures for code-switched ASR.
Ye et al., 2024 proposed using separate en-
coders as language experts, while Yang et al.,
2024b introduced a disentanglement loss to
enable lower encoder layers to capture inter-
lingual acoustic information while reducing lin-
guistic confusion in higher layers. Liu et al.,
2024b introduced a language alignment loss
in ASR training to align acoustic features to
pseudo-language labels learned from the de-
coder and also employs LLM via generative er-
ror correction to tackle the problem caused by
complex token alternatives for language mod-
eling in bilingual scenarios.

3 Methodology

In this section, we describe CLEAR model
to enhance transcription of Hindi-English
code-switched speech. Our primary objective
is to use a descriptive prompting strategy
that provides contextual guidance to the
decoder, improving transcription accuracy
without requiring extensive fine-tuning of the
entire model. Additionally, we incorporate
LLMs for rescoring to further refine the final
transcription output.

Proposed Pipeline: Whisper, unlike con-
ventional ASR models, allows for prompting
(Suh et al., 2024) through special tokens
that guide the transcription process. These
tokens include <|sop|> (start-of-previous),
<|sot|> (start-of-transcript), <|en|> or
<|hi|> (language tags), <|transcribe|>
(specifies the task as transcription), and
<|notimestamps|> (to disable word-level
timestamps). In our proposed pipeline, we
strategically place our custom prompt after
the <|sop|> token. This placement provides
contextual information to the decoder while
ensuring compliance with Whisper’s input
constraints, as only 224 tokens3 can be used as
a prompt. We also experiment with different
prompts to check which is working best,
more details will be discussed in section 4.
Our constructed prompt follows the format:

<|sop|><|prompt|><|hi|><|transcribe|><|notimestamps|>

We fine-tune Whisper by integrating our
designed prompt to influence the decoder’s

3https://cookbook.openai.com/examples/
whisper_prompting_guide

behavior.

LLM-Based Scorer: To further refine tran-
scription quality, we introduce a rescoring
mechanism utilizing LLMs. LLMs are trained
on vast multilingual corpora (Gurgurov et al.,
2024), effectively capture semantic structures
and can assist in selecting the most plausible
transcription candidate. Given a beam width
of n, the Whisper decoder generates n tran-
scription hypotheses {x(1), x(2), . . . , x(n)}. The
rescoring process involves computing the sum
of log probability of each hypothesis x(i) based
on the LLMs ouput logits, we call this sum as
score. The log probability of a candidate se-
quence is given by:

logP (x(i)) =

T∑
t=1

logP (xt|x1:t−1, θ)

=

T∑
t=1

log
(

exp(z(xt)
t )∑

j exp(z(j)t )

)

=

T∑
t=1

(
log
(

exp(z(xt)
t )

)
− log

∑
j

exp(z(j)t )

)

=

T∑
t=1

(
z
(xt)
t − log

∑
j

exp(z(j)t )

)
(1)

where t is current time step, and T is the
total number of steps. The sequence x =
(x1, x2, . . . , xT ) consists of tokens xt, each as-
signed a logit z

(xt)
t by the LLM. The LLMs

parameters are denoted by θ. j is the index in
the output vocabulary.
The best transcription x∗ is then selected as
the one with the highest log probability among
all n hypotheses:

x∗ = arg max
i∈1,2,...,n

logP (x(i)) (2)

We conduct experiments with different LLMs
and beam widths to assess their impact on
transcription quality.

Fine-Tuning: Our fine-tuning process fo-
cuses solely on the decoder while keeping the
encoder frozen. Since Whisper has been pre-
trained on 630K hours of multilingual speech
data, its encoder already possesses a strong
understanding of the acoustic properties of
speech. Freezing the encoder prevents over-
fitting and ensures that the model retains its

https://cookbook.openai.com/examples/whisper_prompting_guide
https://cookbook.openai.com/examples/whisper_prompting_guide


Prompt-1 Prompt-2 Prompt-3
This transcript is a code-
switched text. Mix of dev-
nagri and english words are
present. Text is related to tu-
torials on academic or techni-
cal subjects.

This transcript is a code-
switched text. Mix of Devana-
gari and English words are
present. Text is related to tu-
torials on academic or techni-
cal subjects. Few examples
look like this:
तो electricity bill option पर
click करें
कुछ गलत password दीिजए और en-
ter पे्रस करें

The transcript comprises tele-
phone quality speech data in
Hindi. Transcript is mixed of
Hindi and English words like
this: hi hi hi hi en hi hi hi hi
hi en hi hi hi hi. Transcribe
the speech in this format.

Table 1: Prompts use to fine-tune the CLEAR is listed here. We experiment with many prompts, few of
them are shown in this table.

general ASR capabilities while adapting its de-
coder for improved handling of code-switched
speech. Previous studies (Yang et al., 2023)
have shown that Whisper with a frozen en-
coder can achieve superior performance on
certain ASR tasks. We will also prove that
decoder-only finetuning works in the section 5.
Our methodology, which integrates Whisper’s
ASR capabilities with descriptive prompting
and LLM-based rescoring, presents an effi-
cient approach for improving code-switched
speech recognition without altering language
tags (Yang et al., 2024c).

4 Experiments
Dataset Description: We use the Hindi-
English code-switched dataset4 from the
MUCS Challenge, Interspeech 2021 (Diwan
et al., 2021), derived from spoken tutorials
on technical topics. All audio files are sam-
pled at 16 kHz with 16-bit encoding. The
dataset comprises spontaneous speech from
educational settings, making it particularly
challenging due to variations in speaker
accents, speech disfluencies, and technical
terms. It consists of ~100 hours of data and
splitted into train (89.86 hrs), test (5.18 hrs),
and blind (6.24 hrs) sets. Moreover, the
dataset has code-switching percentage5 of
85.88%, 81.88%, and 95.55% in train, test,
and blind sets, respectively. The dataset also
contains enunciated punctuation (e.g., “<”

4https://www.openslr.org/104/
5code-switched utterances upon total no. of utter-

ances

for “lesser”). Furthermore, the train and test
sets have ~33.9% overlaps; however, blind
test-train sentence overlap is 2.1%. Therefore,
we evaluate CLEAR on blind set only.

Evaluation Metric: For evaluation, we com-
pute three variants of word-error-rate (WER),
i.e., strict-WER (S-WER), punctuation-WER
(P-WER), and transliterated-WER (T-WER).
S-WER is the standard WER metric which
computes the transcription error rate at
the surface level. In comparison, P-WER
accounts for variations in punctuation by
applying a predefined punctuation mapping
before computing WER (replace “greater” by
“>”); thus, ensuring consistency in evaluation.
On the other hand, T-WER assesses errors
in cross-linguistic transcription by replacing
words in the predicted transcriptions with
their corresponding transliterated forms
(replace िडिस्क्रप्शन by description). These
three WER variants provide a comprehensive
assessment of the ASR model, capturing both
standard transcription errors and linguistic
variations of code-mixed languages.

Descriptive Prompt Details: We experi-
ment with different numbers of prompts in dif-
ferent styles to guide the decoder; a few of
them worked and some did not. Some exam-
ples of prompts are listed in Table 1. The
prompts that gives the best performance are
Prompt-1 and Prompt-2 and also in in CLEAR
architecure we have used this Prompt-1, you
can see in the Fig. 1. Prompt-1 is very simple

https://www.openslr.org/104/


Model S-WER P-WER T-WER
TDNN 28.90 – 26.20
E2E Transformer 33.65 – 29.80
PromptingWhisper 42.10 41.72 34.75
Whisper (ZS) 266.5 265.84 263.30
Whisper (FT) 32.16 31.64 28.54
Whisper (FE) 31.12 30.58 27.15

CLEAR 26.9
(↓ 6.9%)

26.46
(↓ 13.47%)

25.04
(↓ 4.42%)

Table 2: Comparative results on MUCS dataset.
ZS = Zero Shot, FT = Full finetuning, and FE =
Finetune by Frozen Encoder

to tell the decoder that text is code-switched
and guiding what code-switching means by
mentioning about type of languages involed
and also telling the decoder that dataset is re-
lated to technical subject and tutorial taught
in academic setting, basically it is giving the
contextual cues about the dataset. Similary
Prompt-2 is doing the same, additionally it is
also giving the examples to make it more clear.
And Prompt-3 even tells the decoder when the
language switch is happening, which will al-
low the decoder to predict the language switch
even better, one of the major problems of code-
switching. But sometimes these Prompt-2, 3
and some more which are not listed here do
not work. One of the problems we find is that
these are longer prompts, which may be longer
for some utterances, and Whisper can under-
stand only 224 tokens as a prompt and any-
thing longer that will be truncated. Therefore,
Prompt-3 mostly will fail due to its dynamic
nature for each utterance, Prompt-2 can work
if it is within the token limits.

Baselines: We compare the performance
of our CLEAR model with following baselines.
DNN-HMM (Diwan et al., 2021) is a neural
network created using the Kaldi toolkit6,
consisting of 8 TDNN (Time-Delay Neural
Network) blocks (Peddinti et al., 2015) with
a dimension of 768. End-to-End (E2E)
Transformer (Diwan et al., 2021) is a hybrid
CTC-Attention model (Watanabe et al., 2017)
with a 12-layer encoder and a 6-layer decoder,
each with 2048 units and 0.1 dropout rate. It
employs a CTC weight of 0.3 and an attention
weight of 0.7, using eight 64-dimensional

6https://kaldi-asr.org/

Scorer Beam S-WER P-WER T-WER

– 1 28.09
(↓ 9.73%)

28.42
(↓ 7.06%)

26.06
(↓ 4.01%)

GPT2 5∗ 26.9 26.46 25.04
10 27.11 26.67 25.47

LLaMA 3.1 (8B) 5 28.26 27.78 25.02
10 28.39 27.91 25.09

LLaMA 3.2 (1B) 5 27.75 27.30 25.69
10 27.86 27.42 26.03

DeepSeek 5 27.60 27.14 25.55
10 28.20 27.74 26.35

Qwen-2 (7B) 5 27.48 27.01 25.40
10 27.89 27.44 26.06

Mistral (7B) 5 27.55 27.11 25.49
10 27.91 27.50 26.09

GPT-4 5 27.85 27.29 24.82

Table 3: Ablation on different beam widths.
Star(∗) signifies the CLEAR model.

attention heads per layer. PromptingWhisper
(Peng et al., 2023) is a Whisper-large model
tested in a zero-shot setup by changing the
language tag. Here, we use <|hi|><|en|> as
the language tag. Additionally, we employ
Whisper in both zero-shot and fine-tuning
settings. For CLEAR we utilize Whisper-small7
(12 self-attention layers in both the encoder
and the decoder) which is capable of process-
ing 30-second audio segments and generates
text autoregressively.

Training Details: We fine-tune CLEAR for 10
epochs using a learning rate of 1e−4. The
training was conducted on an NVIDIA A100
GPU with a batch size of 16. We employ
AdamW as the optimizer with a weight decay
of 0.01 to regulate parameter updates. The
training procedure leverages mixed-precision
training to improve efficiency and reduce mem-
ory consumption while maintaining numerical
stability. During inference, we adopt beam
search decoding (beam-width = n) to improve
transcription accuracy. We also experiment
with temperature scaling to prevent overly con-
fident incorrect predictions.

5 Results and Analysis

Table 2 presents the comparative analysis of
CLEAR against other baselines on the blind set
of the MUCS dataset. Our initial evaluation

7https://huggingface.co/openai/
whisper-small

https://kaldi-asr.org/
https://huggingface.co/openai/whisper-small
https://huggingface.co/openai/whisper-small


of Whisper in a zero-shot (ZS) setting revealed
a drastic degradation in performance, with S-
WER exceeding 260%. This excessively high
WER is primarily caused by repetitive char-
acter sequences and a lack of domain adap-
tation, leading to significant transcription er-
rors. The model struggles with both code-
switching regions and the specific linguistic
patterns of the dataset, underscoring the lim-
itations of the out-of-the-box Whisper-small
model in handling code-mixed speech. To mit-
igate these issues, we fine-tune Whisper in two
settings, first full fine-tuning (FT) and second
fine-tuning by frozing encoder (FE), results
are shown in Table 2. Whisper (FT) shows im-
provement in S-WER (32.16), P-WER (31.64),
and T-WER (28.54) as compared to ZS set-
ting. We further fine-tune Whisper by frozing
encoder (FE) on our dataset, allowing it to
adapt to the linguistic characteristics of code-
switched speech. This results in a substantial
improvement in S-WER (31.12) compared to
ZS setting and this is also an improvement over
Whisper(FT), as the model exhibit a better
understanding of language semantics, reduced
character repetition, and improved handling
of code-switching boundaries. The results of
Whisper(FT) and Whipser(FE) shows that
fine-tuning by the frozing encoder works very
well as compared to full fine-tuning. There-
fore, for our proposed pipeline we will use
Whipser (FE) for all our experiments. Despite
these gains, domain-specific challenges per-
sisted, particularly for low-frequency words,
homophone inconsistency, and unseen terms
that were not well represented in the corpus.

To further enhance transcription accuracy,
we use descriptive prompt-based fine-tuning
approach (Peng et al., 2023), where the Whis-
per decoder was fine-tuned while keeping the
encoder frozen. This strategy led to a 9.73%
reduction in S-WER and a 4.01% reduction in
T-WER (beam n = 1 in Table 3) compared
to Whisper (FE). These results indicate that
prompt-based fine-tuning is an effective adap-
tation strategy for code-switching ASR, signif-
icantly improving performance without requir-
ing architectural modifications to the Whisper
model. Building on this, we employ our scor-
ing mechanism to grade the n-best hypothe-
sis from the fine-tuned Whisper model. CLEAR

reports a reduced score of S-WER (26.9), P-
WER (26.46), and T-WER (25.04) – a sig-
nificant reduction of +6.9%, +13.47% and
+4.42% in S-WER, P-WER, and T-WER, re-
spectively, over the best baseline (i.e TDNN).

As reported in Table 3, we employ mul-
tiple open-source LLMs, such as GPT-2,
LLaMA 3.1 (8B), LLaMA 3.2 (1B), DeepSeek,
Qwen-2 (7B), Mistral (7B), and GPT-4 for
transcription scoring. We systematically
analyzed the impact of beam width on WER,
experimenting with n = 5, 10, 15 and 208.
Our findings indicate that a beam width of
5 consistently yielded the best results across
models. In particular, compared to fine-tune
(FE) Whisper-small, GPT-2 achieved a
13.56% reduction in strict WER and a 7.77%
reduction in transliterated WER; LLaMA 3.1
(8B) yielded a 9.19% reduction in strict WER
and a 7.84% reduction in transliterated WER;
LLaMA 3.2 (1B) yielded a 10.82% reduction
in strict WER and a 5.37% reduction in
transliterated WER; Deepseek yielded a
11.31% reduction in strict WER and a 5.89%
reduction in transliterated WER; Qwen
yielded a 11.69% reduction in strict WER
and a 6.44% reduction in transliterated WER;
Mistral yielded a 11.47% reduction in strict
WER and a 6.11% reduction in transliterated
WER; GPT-4 yielded a 10.50% reduction
in strict WER and a 20.24% reduction in
transliterated WER, It outperforms GPT2 by
0.87% only in T-WER. However, we would
like to highlight that GPT-4 incurred a sig-
nificant 3̃$/100 hypotheses during inference.
This justifies the use of GPT-2 based scorer
in CLEAR as a budget effective solution. Also
rescoring mechanism with GPT-4 was differ-
ent compared to other LLMs because we can’t
extract the logits from GPT-4 therefore we
rank the hypothesis based on their accuracy,
coherency, and fluency on a scale of −10
(very inaccurate) to 10 (perfectly accurate).
Calculating sum of log probabilites of logits
will not work in the case of GPT-4.
These results highlight the effectiveness of
LLM-based rescoring techniques, demonstrat-
ing their ability to refine transcription outputs
and further reduce errors in code-mixed ASR

8We do not report n=15 and n=20 due to inferior
results. We observe performance drops across multiple
scorers with beam>5.



Model Text Remarks
Se

nt
en

ce
1 GT अब इस method पर आते हैं –

W-(ZS) अब इस मेफ पर आते “method” is missing, and substitution leads to loss of meaning
W-(FE) और formula का स्टेटमेंट दें Extraneous words introduced, altering the intended meaning.
CLEAR–R अब इस method पर आते हैं Matches GT exactly, correct transcription.
CLEAR अब इस method पर आते हैं Matches GT exactly, correct transcription.

Se
nt

en
ce

2 GT get noise profile पर click करें –
W-(ZS) अगर तो तो तो तो तो तो तो तो तो Repeated words result in meaningless output.
W-(FE) cat noise profile पर click करें Incorrect word “cat” instead of “get”, missing domain-specific knowledge.
CLEAR–R get noise profile पर click करें Correctly retains “get” and follows GT structure.
CLEAR get noise profile पर click करें Matches GT exactly, preserving domain-specific knowledge.

Se
nt

en
ce

3 GT अब वापस IDE पर आते हैं –
W-(ZS) अब वापस आईडी पर आते Misrecognition of “IDE” as “आईडी” changes the meaning.
W-(FE) अब वापस ID पर आते हैं Homophones is not correctly identified
CLEAR–R अब वापस IDE पर आते हैं Correctly identifies “IDE” and follows GT.
CLEAR अब वापस IDE पर आते हैं Matches GT exactly, resolving homophone ambiguity

Se
nt

en
ce

4 GT िंच͆ता न करें यिद class diagram view में नहीं खुलता है –
W-(ZS) िजतना न करें ये िदखाएगा जगे वू्य में नहीं खुलता है Unintelligible phrase with extra words.
W-(FE) िंच͆ता न करें यिद, टगग्राम डायग्राम में नहीं खुलता है Incorrectly replaces “class diagram view” with an unrelated term.
CLEAR–R िंच͆ता न करें यिद class tag view में नहीं खुलता है Partially correct, but “class tag view” is incorrect.
CLEAR िंच͆ता न करें यिद class diagram view में नहीं खुलता है CLEAR Matches GT exactly, ensuring correct code-switching.

Se
nt

en
ce

5 GT 1123 put insulin . fasta file के िलए contents ������ �� –
W-(ZS) अप्रोट इंसुिलन ड़ प्रश्टा फाँँईल के िलए, ख़न्टेंस िदखाता है. Misrecognized words distort the sentence meaning.
W-(FE) आउटपुट insulin dot first फाइल के िलए कंटें ट्स िदखाता है Incorrect segmentation of “fasta file” as “dot first file.”
CLEAR –R default insulin dot firster file के िलए कंटें ट्स िदखाता है Better than W-(FE), but still modifies “fasta file.”
CLEAR default installation dot firster file के िलए कंटें ट्स िदखाता है CLEAR Corrects some errors but still alters “fasta file.”

Table 4: Comparison of ASR outputs among competitive models. CLEAR–R: CLEAR without scorer (i.e.,
beam=1 and Whisper fine-tuned with descriptive prompt).

tasks. Overall, our findings establish that a
combination of prompt-based fine-tuning and
LLM-based rescoring substantially enhances
the performance of the code-mixed ASR task.

Complexity of LLMs: While large language
models (LLMs) are often associated with high
computational costs, we carefully designed
CLEAR to avoid these burdens. Rather than
fine-tuning the LLMs, which would require
significant GPU hours and memory, we
utilized them solely for inference to score ASR
hypotheses. This approach is lightweight -
each hypothesis takes only about 0.6 to 0.7
seconds to evaluate — making it both efficient
and practical for real-world post-processing
scenarios. Interestingly, we also observed
significant improvements in transcription
quality even when using relatively smaller
LLMs such as LLaMA-3.2 (1B). This suggests
that even modest-sized language models can
capture contextual nuances well enough to
resolve ambiguities and correct ASR output,
particularly in challenging settings such as
code-mixed speech. This balance between
performance gain and computational overhead

suggests that we can use LLMs as scorers for
post-processing the ASR outputs and makes
our method feasible for broader deployement.

Qualitative and Error Analysis:
To further assess the quality of the generated
transcriptions, we conduct a detailed quali-
tative and error analysis, as shown in Ta-
ble 4. This analysis highlights the advan-
tages of our proposed pipeline over the zero-
shot and fine-tuned models in handling various
linguistic complexities in code-switched ASR.
Our pipeline exhibits significant improvements
in multiple aspects, including word ordering,
domain-specific terminology, homophone dis-
ambiguation, and rescoring-based refinement.

• Word Ordering: One notable enhance-
ment is the model’s ability to predict
words in the correct order. As observed in
Sentence 1, while the zero-shot model pro-
duces an incomplete and incorrect phrase,
and the fine-tuned model introduces ex-
traneous words, both the CLEAR–R and
CLEAR versions successfully reconstruct
the correct sentence structure. This sug-



gests that our approach effectively learns
the sequential dependencies within code-
mixed speech, leading to more coherent
and grammatically accurate outputs.

• Domain-specific terminology: An-
other key improvement is in handling
domain-specific terminology, as illus-
trated in Sentence 2. The fine-tuned
model incorrectly transcribes “cat” in-
stead of “get”, demonstrating its struggle
with differentiating both similar-sounding
words and domain-specific words. CLEAR–
R approach, however, accurately tran-
scribes “get”, showcasing a better un-
derstanding of contextual cues. This
improvement is crucial in technical and
specialized domains, where precise word
recognition significantly impacts the us-
ability of transcriptions.

• Homophone Disambiguation: In Sen-
tence 3, CLEAR effectively tackles homo-
phone disambiguation, particularly distin-
guishing between “id” and “ide”. The fine-
tuned model fails to capture this distinc-
tion, incorrectly predicting “id” instead of
“ide”, whereas the CLEAR–R and CLEAR ac-
curately recognize the correct term. This
capability is essential in technical envi-
ronments where similar-sounding words
carry distinct meanings, ensuring that
transcripts remain contextually relevant.

• Rescoring Refinements: In sentence 4,
demonstrates the effectiveness of rescor-
ing in refining transcriptions. While the
CLEAR–R output closely aligns with the
ground truth, it incorrectly transcribes
“class tag view” instead of “class diagram
view”. The CLEAR output successfully cor-
rects this error, emphasizing the impact
of our rescoring mechanism in enhancing
transcription accuracy. This step ensures
that even when the initial transcription is
suboptimal, the model can refine its pre-
dictions to achieve greater alignment.

• Pitfall of CLEAR: It is not like our CLEAR
model is giving good performance of every
utterances. In some scenarios it is fail-
ing. As we can see in the sentence 5, it is
not correctly predicting many words. One

reason for this may there are two many
code-switches available, puctuation “.” is
present, and domain specific word is also
present. There may be possibility because
the presence of these challenges causing
the problem to the ASR.

6 Conclusion

This study introduces CLEAR, a novel approach
to enhancing Hindi-English code-mixed ASR
by integrating descriptive prompt-based fine-
tuning and LLM-based rescoring. Our findings
reveal that fine-tuning the Whisper decoder
while freezing the encoder is a highly effective
strategy for code-switching transcription (refer
2nd last row of Table 2), yielding substantial re-
ductions in various word error rates.Extensive
ablation and qualitative analysis establishes
LLM-based rescoring as an efficient refinement
mechanism, effectively disambiguating homo-
phones, and also enhances overall readability
and domain-specific accuracy without requir-
ing explicit language tags or specialized pre-
training. These insights pave the way for more
adaptable and resource-efficient LLM-guided
ASR systems, particularly in low-resource and
multilingual settings.

Limitations

This work has also certain limitations. Due
to GPU memory constraints, we did not ex-
plore the impact of larger batch sizes, which
could potentially influence model performance.
Additionally, there is a lack of a diverse and
high-quality code-mixed dataset for Indian lan-
guages. Our experiments are limited to MUCS
code-switching data. To the best of our knowl-
edge, this is the only publicly available dataset.
We did not evaluate the approach on other
pairs of Indian languages. The limited dataset
diversity hinders the robustness, highlighting
the critical need for high-quality datasets in
this research area. However, we believe that
the overall pipeline of our CLEAR model is
highly adaptable to other language pairs as
well. Another challenge is tackling too many
code-switching points, availability of punctu-
ation, and domain specific words all these
togther if present in a sentence. sometimes
CLEAR fails to handle this. In future we also
plan to handle this limitaion of our model.
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