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Abstract
In our work, we enhance language model-based
Text-to-Speech (TTS) training from unlabeled
speech data using Direct Preference Optimiza-
tion (DPO). Given the critical challenges re-
lated to the quality and quantity of data re-
quired for high-quality speech generation sys-
tems, it is essential to develop cost-effective ap-
proaches to training such models. We propose
a two-stage fine-tuning approach, which ex-
tends traditional fine-tuning on texts generated
by automatic speech recognition (ASR) models
and incorporates direct preference optimization
(DPO) along with dataset expansion using texts
generated by large language models (LLMs).
Experiments and comparisons conducted on
two different datasets demonstrate that our ap-
proach achieves results comparable to tradi-
tional fine-tuning on human-labeled data. The
code is publicly available on GitHub1.

1 Introduction

In recent years, the quality of speech generation
has significantly improved, largely due to advance-
ments in high-quality audio quantizers such as Hi-
FiCodec (Yang et al., 2023) and VQ-VAE, which
was used in xTTS system (Casanova et al., 2024).
These developments have enabled the use of Trans-
former architectures (Vaswani, 2017), which are
known to perform well with large-scale datasets
but are prone to overfitting on smaller datasets.

As a result, data collection and the quality of
datasets remain critical challenges in the contin-
ued advancement of TTS models. One approach
to increasing data availability involves using ASR
models to automatically annotate raw audio data.
However, this method compromises the quality of
speech generation, as raw audio data is often of
low quality and ASR models introduce recogni-
tion errors. To address these issues, a WV-MOS-
based filtering method (Ogun et al., 2023) has been

1https://github.com/BirdWithDreams/
beyond-labeled-datasets-tts

proposed to improve data set quality by filtering
low-quality samples using WV-MOS models. Ad-
ditionally, it has been demonstrated that raw audio
data quality can be improved using noise-filtering
systems (Ni et al., 2023; Hao et al., 2021), which
boosts TTS model performance but complicates
the preprocessing pipeline.

Fortunately, the Transformer architecture en-
ables the application of techniques from NLP, par-
ticularly training pipelines for large language mod-
els (LLMs). Training LLMs generally consists
of two stages: pretraining and fine-tuning. Dur-
ing pretraining, the model is trained on a large
corpus of low-quality data, and in the fine-tuning
stage, methods such as Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al.,
2022) and instruction tuning are used to improve
the quality of model outputs. Tian et al. (2024)
demonstrated a similar approach and showed that
using the Direct Preference Optimization (DPO)
algorithm is effective for TTS models. In Tian
et al. (2024), preference alignment was guided by
three metrics – WER (Whisper-large model (Rad-
ford et al., 2023)), SPK_SIM (RawNet (Jung et al.,
2024)), and Proxy_MOS (UTMOS (Saeki et al.,
2022)) – to evaluate preferences between sample
pairs and there was shown a great boost on each
metric. Moreover, was shown that improvement
does not depend on the exact metric models. In
another study (Hussain et al., 2025), preference
pairs were constructed using the character error
rate (CER) and cosine similarity (SSIM) metrics,
along with a modified version of the DPO method –
e Reward-aware Preference Optimization (RPO) –
to enable more fine-grained preference calibration.
The study also demonstrated that employing DPO
or RPO for fine-tuning TTS models can lead to
improvements in the overall quality of the resulting
system.

Inspired by the previous findings (Tian et al.,
2024; Hussain et al., 2025), in this work, we
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present a semi-supervised training strategy for a
language model-based text-to-speech (TTS) sys-
tem, aiming to reduce reliance on labeled data
while maintaining high synthesis quality. We ex-
plored six different model training strategies on
two distinct datasets. Additionally, we proposed a
semi-supervised two-stage training strategy: first, a
standard fine-tuning on ASR-labeled data, followed
by DPO fine-tuning on a combination of original
dataset ASR texts and LLM-generated texts.

Our results demonstrate that the proposed train-
ing strategy outperforms traditional fine-tuning on
human-labeled data in two out of the three pri-
mary evaluation metrics. Additionally, we perform
a human evaluation using the Comparative Mean
Opinion Score (CMOS) methodology. The results
indicate that the proposed approach is statistically
comparable to conventional fine-tuning techniques
on human labeled data. Furthermore, we adapted
the popular xTTS framework to support training
using the DPO method.

2 Method

2.1 Semi-supervised training methodology

Since collecting and annotating data for training
a TTS model is a complex and resource-intensive
process, we developed a fully unsupervised training
method. The core idea of our approach consists of
two stages: first, a standard fine-tuning of the base
model on an ASR-labeled dataset, and second, the
creation of a DPO dataset using this model.

Creating the DPO dataset does not require hu-
man involvement. All we need is a model check-
point M for generation, a set of reference audios A,
and a set of texts T . The latter initially consisted
of ASR-labeled texts from the original datasets,
which we further expanded with LLM-generated
texts. The generation procedure is detailed in Ap-
pendix A.1. Then, for each (a, t) ⊂ A × T pair,
we generated 10 audio {ya,t,1, ya,t,2, . . . , ya,t,10}
variants using the model M . This set of sam-
ples was ranked within each pair using three pri-
mary evaluation metrics, and the final ranking was
determined using a harmonic mean aggregation,
sorting the generated audio y from best to worst
(yfa,t,1 ≻ yfa,t,2 ≻ . . . ≻ yfa,t,10) and based on this
ranking, win-lose pairs were selected for prefer-
ence alignment. The full procedure of DPO dataset
construction is described in Appendix A.2.

Figure 1: Schematic diagram of our model training
pipeline.

2.2 Optimization Objectives
In our work, we used two approaches for training
models (Figure 1). The first is standard fine-tuning
as it was done in xTTS model (Casanova et al.,
2024) with cross-entropy loss. Given an input text
x (represented as a sequence of tokens), reference
audio r, and target audio y (represented as a se-
quence of audio tokens), the model is trained to
minimize the following loss function (a full deriva-
tion and detailed breakdown of its components is
provided in Appendix B):

LFN (πθ) = Laudio (πθ) + α · Ltext (πθ) (1)

The second approach is Direct Preference Opti-
mization, DPO (Rafailov et al., 2024). A win-lose
pair dataset (r, x, yw, yl) was constructed, where
the sequence yw is preferred over yl. To optimize
the model on such data, we can use the LDPO loss
as it was described in the original paper (Rafailov
et al., 2024).

Instead of using the pure LDPO loss, we incorpo-
rated an additional Ltext term, as it is known that
TTS models perform better when optimized not
only with respect to audio but also with respect to
the given text itself. Finally, our DPO loss takes
the form:

L (πθ;πref) = Laudio
DPO (πθ;πref) + Ltext (πθ) (2)

3 Experiment Setup

3.1 Model
We chose xTTSv2 (Casanova et al., 2024) as our
base model. We use it because, firstly, it has an
LM-based architecture, which is critically impor-
tant for DPO fine-tuning. Secondly, it achieves
state-of-the-art zero-shot performance in multiple



languages, including English. Additionally, it is
highly stable during training, which is crucial for
the reproducibility and reliability of our results.

3.2 Data
In our work, we used two datasets: The LJ
Speech Dataset (Ito and Johnson, 2017) (denoted
as Doriginal

LJ ), representing a classic single-speaker
audiobook-like dataset, and the CSTR VCTK Cor-
pus (Veaux et al., 2017) (denoted as Doriginal

VCTK ) as
a multi-speaker dataset. Since these datasets con-
tain manually annotated transcriptions, whereas we
needed synthetic ones, we generated new transcrip-
tions using Whisper-medium (Radford et al., 2023).
We then split the data into a training set and a hold-
out set in a ratio 80/20 for The LJ Speech Dataset
and 90/10 for CSTR VCTK Corpus, resulting in
the following two datasets: DASR

LJ and DASR
VCTK.

Additionally, we generated 15,000 texts using
Llama 3.2 3b (Dubey et al., 2024). During gen-
eration, we employed a specialized text attribute
combinator (considering factors such as length,
topic, domain, complexity, etc.) to ensure max-
imum diversity in the generated texts (see Fig. 2).
These texts were later used to augment the original
datasets, enhancing their variability and robustness.

3.3 Metrics for DPO dataset
To evaluate the models and construct the DPO
dataset, we used three main metrics: intelligibility
(WER), speaker similarity (SS), and Proxy MOS
(PMOS). The following models were used to cal-
culate these metrics: Whisper-Medium (Radford
et al., 2023) for WER, ECAPA2 Speaker Embed-
ding Extractor (Thienpondt and Demuynck, 2023)
for SS, and UTMOS (Saeki et al., 2022) for PMOS.
Model validation was performed on the holdout
subsets of our Doriginal

LJ and Doriginal
VCTK datasets.

3.4 Experiments
For each dataset group, DLJ and DVCTK, the fol-
lowing fine-tuning experiments were conducted:

1. Fine-tuning (FN) of the base xTTSv2 model
on Doriginal.

2. Fine-tuning (FN) of the base xTTSv2 model
on DASR.

3. DPO fine-tuning of the base xTTSv2 model
on DDPO.

4. DPO fine-tuning of the base xTTSv2 model
on DDPO +DGenerated.

5. DPO fine-tuning of the model from the cor-
responding checkpoint (LJ-ASR or VCTK-
ASR) on DDPO.

6. DPO fine-tuning of the model from the cor-
responding checkpoint (LJ-ASR or VCTK-
ASR) on DDPO +DGenerated.

Let’s call these experiments L1-6 for DLJ group
of datasets and V1-6 for DVCTK group. The valida-
tion results for each setup are presented in Table 1
and 2 for the DLJ and DVCTK dataset groups,
respectively.

Table 1: Model Performance on DLJ dataset group

Model WER ↓ SS ↑ PMOS ↑

Base xTTSv2 0.071± 0.008 0.423± 0.003 3.68± 0.016

L1 (Original) 0.056± 0.014 0.481± 0.003 3.816± 0.013

L2 (ASR) 0.064± 0.010 0.478± 0.003 3.79± 0.013

L3 (DPO) 0.043± 0.003 0.445± 0.003 3.733± 0.012

L4 (DPO) 0.064± 0.011 0.465± 0.002 3.959± 0.010

L5 (DPO) 0.110± 0.012 0.432± 0.003 2.821± 0.011

L6 (DPO) 0.224± 0.035 0.417± 0.003 2.392± 0.012

Table 2: Model Performance on DVCTK dataset group

Model WER ↓ SS ↑ PMOS ↑

Base xTTSv2 0.020± 0.004 0.481± 0.014 3.895± 0.026

V1 (Original) 0.041± 0.007 0.500± 0.014 3.685± 0.029

V2 (ASR) 0.055± 0.009 0.494± 0.014 3.630± 0.030

V3 (DPO) 0.014± 0.003 0.471± 0.015 4.009± 0.022

V4 (DPO) 0.013± 0.003 0.482± 0.016 4.108± 0.019

V5 (DPO) 0.273± 0.037 0.412± 0.014 2.662± 0.047

V6 (DPO) 0.087± 0.013 0.453± 0.014 3.324± 0.043

3.5 Fine-Tuning vs. DPO Fine-Tuning
When comparing these two training methods, the
first noticeable trend is that standard fine-tuning
achieves the best SS metric across both datasets:
0.481 for DLJ (L1) and 0.5 for DVCTK (V1). As
expected, training on ASR-labeled data (L2, V2)
performs worse than training on human-labeled
data (L1, V1). However, DPO training on ASR-
labeled data (L3, V3) either outperforms or at least
matches traditional fine-tuning with a cross-entropy
objective on human-labeled data (L1, V1).

Interestingly, the best results in speech natural-
ness (PMOS metric) are achieved when the dataset
is expanded with LLM-generated data (L4, V4),
even surpassing a PMOS score of 4. Regard-
ing intelligibility (WER metric), the best perfor-
mance in the DVCTK dataset group (WER 0.013)
is also obtained with DPO tuning on the expanded



dataset (V4), outperforming both classical fine-
tuning on human-labeled data (V1, WER 0.04) and
the xTTSv2 baseline (WER 0.02).

For the DLJ dataset group, the best WER score
is achieved by the L3 model (WER 0.041), out-
performing both L1 (WER 0.053) and the baseline
(WER 0.071). However, the DPO fine-tune on
the expanded dataset (L4) achieves results similar
to traditional fine-tuning on human-labeled data
and worse than DPO tune on unexpanded dataset
(L3). This behavior can be explained by the nature
of the The LJ Speech Dataset (Ito and Johnson,
2017). This dataset consists of audiobook record-
ings where audio is sometimes segmented inaccu-
rately, resulting in partial sentences, such as only
the beginning or end of a sentence like "According
to Secretary Dillon," or "iron and the like
in combination with phosphoric, sulphuric
and other acids.". Expanding the DLJ dataset
with LLM-generated texts, which consist of fully
formed sentences, does not necessarily improve
model performance within the DLJ dataset.

In contrast, the CSTR VCTK Corpus (Veaux
et al., 2017) dataset, which was created by read-
ing newspaper sentences rather than slicing pre-
existing audio, is more aligned with the way LLM-
generated texts are structured. This explains why
in the DVCTK dataset group, fine-tuning on the
expanded dataset (V4) yields better results (WER
0.013, SS 0.481, PMOS 4.108) than fine-tuning on
standard texts (V3) (WER 0.014, SS 0.471, PMOS
4.009).

3.6 Effects of ASR Checkpoint Initialization

Comparing experiments 5-6 with 3-4, we observe
that fine-tuning from the ASR checkpoint consis-
tently yields worse results than fine-tuning from
the base model on the same data. L5 and V5
show much higher WER (0.109 and 0.269, respec-
tively) and lower PMOS (2.821 and 2.665). This
can be explained by the fact that standard fine-
tuning narrows the generation space, whereas DPO
fine-tuning only adjusts the probability distribu-
tion within that space without altering it. In other
words, the "softer" DPO fine-tuning from a check-
point with greater generation variability leads to
better results than fine-tuning from a checkpoint
with lower variability. This holds true even though,
in the latter case, the model was explicitly trained
to reproduce the distribution of a specific dataset.

However, we observe that in both cases (L4,

L6 and V4, V6) adding AI-generated texts im-
proves model performance across almost all met-
rics (except for WER in the L3-4 cases), supporting
our hypothesis that expanding the dataset with AI-
generated texts positively impacts model quality.

3.7 CMOS validation

To further evaluate the proposed approach, we
conducted a CMOS (Comparative Mean Opinion
Score) validation following the methodology de-
tailed in Appendix C.1. CMOS evaluation was
conducted on four experimental pairs: (1 vs. 4),
(2 vs. 4), (1 vs. 6), and (2 vs. 6). The evalua-
tion considers two criteria: speaker similarity (SS),
and a combined metric reflecting both naturalness
and intelligibility (CM). Results are presented in
Table 3.

Table 3: Method Pair Comparison Data

Comparison SS CM

Exp. 1 vs Exp. 4 −0.12 −0.06
Exp. 1 vs Exp. 6 0.88 0.21
Exp. 2 vs Exp. 4 −0.21 −0.17
Exp. 2 vs Exp. 6 0.75 0.14

Positive values in Table 3 indicate that the first
experiment in the pair is preferred over the second,
while negative values indicate the opposite.

In the comparison between Exp. 1 and Exp. 4,
the SS metric marginally favors Exp. 4 (−0.12),
while the combined metric indicates near equiva-
lence (−0.06). Similarly, for the Exp. 2 vs. Exp. 4
comparison, both metrics slightly favor Exp. 4,
with −0.21 for SS and −0.17 for CM.

More substantial differences are observed with
Exp. 6. In both (1 vs. 6) and (2 vs. 6) compar-
isons, the metrics are positive (e.g., 0.88 and 0.75
for SS and combined in 1 vs. 6), indicating that the
classical tuning baselines were preferred. These
results support our conclusions based on automatic
validation metrics (WER, SS, PMOS). Addition-
ally, we performed a statistical significance anal-
ysis of the results, detailed in Appendix C.2. We
also provide a detailed subgroup CMOS analysis
in Appendix C.3. Overall, the CMOS evaluation
indicates that the proposed method, particularly
in Exp. 4, achieves quality comparable to conven-
tional fine-tuning using human-labeled data.



4 Conclusion

We have developed a two-stage training strategy
for TTS models based on DPO fine-tuning. We
proposed a fully unsupervised training pipeline for
TTS models and demonstrated that it can achieve
results comparable to traditional supervised fine-
tuning on human-labeled data. This approach sig-
nificantly reduces costs, as manual annotation re-
quires substantial resources and time. Therefore,
our method is more efficient without sacrificing
model quality.

Additionally, we showed that expanding original
datasets with LLM-generated texts substantially
improves the naturalness (PMOS) of generated au-
dio while having a mixed impact on intelligibility
(WER), which requires further investigation across
different data types and datasets.

5 Limitations

Given the limitations of our work, we used the
high-quality xTTSv2 model as our baseline. For
future research, it would be valuable to train sev-
eral models from scratch – one on ASR-labeled
data and one on human-labeled data and compare
how DPO fine-tuning affects their quality. Another
interesting direction is to compare our method of
constructing win-lose pairs for DPO with human-
based pair selection.

Our pipeline involves components that may in-
troduce or amplify societal biases:

1. ASR-Induced Bias: we rely on an Automatic
Speech Recognition (ASR) model (Whisper-
medium) to generate transcripts for unlabeled
audio. It is well-documented that ASR sys-
tems can have higher error rates for speakers
with non-native accents, certain dialects, or
speech impediments. Such transcription er-
rors may degrade the quality of synthesized
speech for already underrepresented groups,
potentially reinforcing existing biases in the
system.

2. LLM-Induced Bias: The use of a Large Lan-
guage Model (Llama 3) to generate supple-
mentary text for training introduces the risk
of inheriting its intrinsic biases. While we
employed an attribute combinator to encour-
age text diversity (Appendix A.1), the gen-
erated content may still reflect dominant cul-
tural viewpoints or stereotypes present in the
LLM’s training data.

Future work should involve auditing the model’s
performance across more diverse demographic
groups and developing methods to mitigate any
identified biases.

6 Ethical concerns

The development of advanced Text-to-Speech
(TTS) technologies, such as the one presented in
this paper, carries significant societal implications
that warrant careful consideration. We are com-
mitted to the responsible advancement of AI and
outline the primary ethical concerns related to our
work below.

The most significant risk associated with high-
fidelity TTS is the potential for misuse in creating
synthetic audio, often referred to as "deepfakes."

• Using unauthorized voice synthesis to imper-
sonate someone for fraudulent purposes, such
as deceiving individuals or bypassing voice
authentication systems.

• Disinformation and propaganda involve fabri-
cating audio evidence to spread misinforma-
tion, defame individuals, or manipulate public
opinion.

• Generating non-consensual audio content to
harass or bully.

While our research aims to advance machine
learning methodology, we recognize this dual-use
nature. We advocate for the development and adop-
tion of robust safeguards, such as audio watermark-
ing techniques and detection models for synthetic
speech, which should accompany any deployment
of this technology in real-world applications.
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A Experiment Details

A.1 Generation of LLM texts
To enhance the diversity of LLM-generated texts,
we used a specialized attribute combinator to con-
struct prompts for the LLM. Fig. 2 shows what
attributes, sub-attributes and constraints were used
to create high variability of generated texts.

All of this enables the creation of a highly di-
verse vocabulary, addressing one of the key chal-
lenges in TTS model training – bias between over-
represented and underrepresented words. At the
same time, using LLM-generated texts helps to fill
in gaps in the vocabulary and allows for fine control
over text types and formats. This can be particu-
larly useful when fine-tuning a model for a highly
specialized domain with limited original data.

A.2 Creating DPO datasets
In the first stage, the LJ-ASR and VCTK-ASR
models were trained using standard fine-tuning on
ASR-generated texts from the base xTTSv2 model.
Then, using the latest checkpoints of these mod-
els, the datasets DDPO

LJ , DGenerated
LJ , DDPO

VCTK, and
DGenerated

VCTK were constructed.
Method for Constructing DGenerated

LJ : a selec-
tion of audio samples was taken from the origi-
nal dataset Doriginal

LJ , and AI-generated texts were
evenly distributed among them. For each (au-
dio, text) pair, 10 samples (ya,t,1, ya,t,2, . . . , ya,t,10)
were generated using the LJ-ASR model, and evalu-
ation metrics were computed for each sample using
our evaluation models. Notice, that each y is not
a generated audio, but a sequence of audio codes
produced by LM head (see Casanova et al. (2024)).

Next, these samples were ranked from
best to worst according to each metric(
ywera,t,1 ≻ ywera,t,2 ≻ . . . ≻ ywera,t,10

)
. Based on

their ranking, a normalized score between 0 and 1
was assigned to each sample.

metric_rank = place/10

To determine the final ranking, we calculated
harmonic mean of our metrics’ ranks:

f_rank =
3

1
wer_rank + 1

ss_rank + 1
mos_rank

.

Then, based on its values, the preferred (yw)
and less preferred (yl) samples were selected. We
choose them as the second sample from each

edge, mean yw = yf_ranka,t,2 and yl = yf_ranka,t,9 . The
most extreme samples, the absolute best (yf_rank1 )
and worst (yf_rank10 ), were excluded to ensure that
the preference optimization for the model was
not overly obvious. Following this process, the
DGenerated

LJ dataset was constructed: (a, t, yw, yl),
where a is reference audio sample, t - reference
text, yw - preferred sequence of audio codes and yl
- non-preferred sequence of audio codes.

Method for Constructing DGenerated
VCTK : Since

Doriginal
VCTK contains 108 unique speakers and 13,000

unique texts—where different speakers may read
the same text—the dataset includes a total of
44,000 (speaker, text) pairs. Each speaker has be-
tween 200 and 500 recordings. We decided to con-
struct the DPO version of this dataset in a similar
manner. Our 15,000 LLM-generated texts were
evenly distributed among all speakers, with repe-
titions, ensuring that each speaker had an average
of 500 unique texts. The subsequent sample gen-
eration, ranking, and win-lose pair selection fol-
lowed the same approach as for DGenerated

LJ , with
the VCTK-ASR model used during sample genera-
tion.

Construction of DDPO
LJ and DDPO

VCTK: The
datasets DDPO

LJ and DDPO
VCTK were constructed sim-

ilarly to DGenerated
LJ and DGenerated

VCTK , with the key
difference that the texts were taken from the origi-
nal Doriginal

LJ and Doriginal
VCTK datasets.

B Objectives definitions

Classical cross-entropy (CE) loss on text and audio
tokens:

LFN (πθ) = Laudio (πθ) + α · Ltext (πθ)

= −E(x,r,y)∼D log πθ (y | x, r)
− α · E(x,r,y)∼D log πθ

(
xt | xt−1, r

)
(3)

DPO loss from the original paper (Rafailov et al.,
2024):

LDPO (πθ;πref) =

= −E
[
log σ

(
β log

πθ (yw | x)
πref (yw | x) − β log

πθ (yl | x)
πref (yl | x)

)]
(4)

where πθ is the model that is being optimized
and πref is the original model.

Final objective for second stage of proposed
method:



Figure 2: Combinator’s attributes diagram

L (πθ;πref) = Laudio
DPO (πθ;πref) + Ltext (πθ)

= −E
[
log σ

(
β log

πθ (yw | x)
πref (yw | x) − β log

πθ (yl | x)
πref (yl | x)

)]
−αE log πθ

(
xt | xt−1, r

)
(5)

C CMOS validation details

C.1 Validation methodology

To facilitate the CMOS validation process, an au-
tomated service was developed to efficiently and
conveniently collect user feedback. This service op-
erates in a fully automated mode and presents eval-
uation tasks in a user-friendly format. The selection
of speakers and texts for CMOS validation was in-
tentionally made diverse: from the VCTK dataset,
two speakers (one male and one female) were cho-
sen for each of five distinct accents—American,
British, Indian, Irish, and Scottish—resulting in a
total of ten speakers, with an additional speaker
selected from the LJ-Speech dataset. For each
speaker, four different texts were selected from the
validation subsets of the original datasets (Doriginal

LJ

and Doriginal
VCTK ), and synthetic audio was generated

for these texts using the corresponding TTS model.
The survey methodology is as follows: for

each participant, the service randomly selects three

speakers from the ten available in Doriginal
VCTK and

adds one speaker from Doriginal
LJ . The participant

is then presented with 32 evaluation items: four
method pairs × four speakers × four comparisons
per speaker. Each evaluation item is structured as
follows: "Please assess which of the two audio sam-
ples better corresponds to the reference recording
according to a specific criterion, using a scale from
−3 to 3, where 3 indicates that the first sample
is significantly better, 0 means both are approx-
imately equal, and −3 indicates that the second
sample is significantly better."

C.2 Statistical significance analysis

To assess the reliability of the CMOS evaluation,
we conducted a statistical significance test by eval-
uating the null hypothesis that the mean CMOS
score is zero. A p-value above the significance
threshold (0.05) indicates that the compared mod-
els are statistically equivalent, whereas a value be-
low the threshold suggests a significant preference
for one model over the other. The outcomes of this
analysis for the SS and CM metrics are presented
in Table 4 and Table 5, respectively.

The statistical analysis of the CMOS metrics (Ta-
ble 4 and Table 5) reveals that Experiment 6, which
implements the proposed method, significantly un-
derperforms in speaker similarity compared to tra-



Table 4: Statistical significance of the SS metric

1–4 1–6 2–4 2–6

Mean −0.12 0.88 −0.21 0.75
t-test p-val 0.4 0.001 0.22 0.007
Wilcoxon p-val 0.5 0.001 0.25 0.015
Sample size 83 80 76 73

Table 5: Statistical significance of the CM metric

1–4 1–6 2–4 2–6

Mean −0.06 0.21 −0.17 0.14
t-test p-val 0.74 0.34 0.39 0.52
Wilcoxon p-val 0.74 0.34 0.35 0.49
Sample size 83 80 76 73

ditional approaches. In particular, Experiments 1
and 2 show strong and statistically significant ad-
vantages over Experiment 6 in the SS metric, with
p-values well below 0.001. In contrast, compar-
isons involving Experiment 4 do not exhibit signifi-
cant differences, indicating that this configuration
achieves perceptual speaker similarity comparable
to traditional fine-tuning.

For the Combined Metric (CM), none of the com-
parisons across experimental conditions yield statis-
tically significant differences (all p > 0.3), suggest-
ing that all methods perform similarly in terms of
overall speech naturalness and text accuracy. These
findings indicate that the proposed method, espe-
cially in Experiment 4, maintains competitive per-
ceptual quality, while Experiment 6 demonstrates
limited effectiveness in preserving vocal identity.

C.3 CMOS on specific groups

To further investigate the behavior of the proposed
models across different speaker characteristics, we
conducted a stratified CMOS analysis by accent
and gender. As described in Appendix C.1, we ex-
amined the same four experimental method pairs:
(1 vs. 4), (2 vs. 4), (1 vs. 6), and (2 vs. 6). For each
pair, two criteria were evaluated: speaker similar-
ity (SS) and a composite metric capturing clarity,
naturalness, and intelligibility (CM). Results are
presented in Table 6 and Table 7.

Overall, positive values in Tables 6 and 7 indi-
cate a preference for the first method in each com-
parison, while negative values indicate preference
for the second.

The proposed Method 4 (DPO training with gen-
erated data) demonstrates advantages in percep-
tual quality (CM) across several accents, with mod-
erate gains in speaker similarity (SS). Compared

Table 6: CMOS Results by Accent

Method
Pair

Accent SS CM N

1–4 American −0.545 0.818 11
English −0.235 −0.706 17
Indian 0.300 0.500 10
Irish −0.533 −0.400 15
Scottish 0.444 −0.111 9
lj 0.048 −0.095 21

1–6 American 1.300 0.800 5
English 1.400 −1.200 5
Indian 0.933 0.333 15
Irish 1.231 0.000 13
Scottish 0.400 −0.050 20
lj 1.000 0.647 17

2–4 American 0.833 −0.333 6
English −0.600 0.000 10
Indian −0.263 −0.526 19
Irish −0.333 0.000 12
Scottish 0.545 0.364 11
lj −0.667 −0.278 18

2–6 American 1.417 0.417 12
English 0.909 0.091 11
Indian −0.071 −0.214 14
Irish 0.667 0.111 9
Scottish 0.444 0.222 9
lj 1.056 0.222 18

to the baseline trained on human-annotated data
(Method 1), Method 4 achieves better CM scores
for the LJ speaker (−0.095), English (−0.706),
and Irish (−0.400), and also shows improved SS
for English (−0.235) and Irish (−0.533), suggest-
ing enhanced or preserved speaker identity. Rel-
ative to the ASR-supervised baseline (Method 2),
Method 4 again receives more favorable CM values
for American-accented speech (−0.333) and Scot-
tish (−0.364), along with strong SS improvements
for English (−0.600) and the LJ speaker (−0.667),
highlighting its robustness on several accent groups.
However, performance on some accents, such as
Indian and American in the 1–4 comparison, re-
mains challenging. By contrast, Method 6 (DPO
with generated data initialized from a pretrained
checkpoint) mostly underperforms relative to both
baseline methods across individual accent groups,
showing less consistent gains in either CM or SS.
It is also important to note the variability in group
sizes (N ), with some accent groups containing rel-
atively few samples. This limits the statistical ro-
bustness of per-accent conclusions and calls for
caution when interpreting fine-grained differences.

Gender-based analysis further supports the effec-
tiveness of the proposed Method 4, particularly
for female speakers. Compared to the human-



Table 7: CMOS Results by Gender

Method
Pair

Gender SS CM N

1–4 F −0.292 −0.250 24
M −0.105 0.079 38
lj (F) 0.048 −0.095 21

1–6 F 0.656 0.031 32
M 1.032 0.161 31
lj (F) 1.000 0.647 17

2–4 F −0.379 −0.069 29
M 0.241 −0.207 29
lj (F) −0.667 −0.278 18

2–6 F 0.300 0.150 30
M 0.857 0.086 35
lj (F) 1.056 0.222 18

annotated baseline (Method 1), Method 4 achieves
better CM scores for female speakers (−0.250) and
the LJ speaker (−0.095), while also improving SS
for females (−0.292), indicating that the proposed
approach is preferred in terms of both perceptual
quality and speaker similarity. For male speakers,
results are more mixed: while SS is slightly better
(−0.105), the CM score (0.079) indicates a mild
preference for the baseline. In comparison to the
ASR-supervised baseline (Method 2), Method 4
again shows lower CM for female (−0.069) and
male (−0.207) speakers, and achieves a strong im-
provement for the LJ speaker (−0.278), with con-
sistent SS gains for females (−0.379) and the LJ
speaker (−0.667), reinforcing the robustness of
Method 4 for female voices. In contrast, Method
6 performs worse than both baselines across all
gender groups. CM scores are consistently positive
when compared to both Method 1 and Method 2,
indicating that listeners preferred the baseline sys-
tems in terms of clarity, naturalness, and intelligibil-
ity. SS values also show degradation, with all com-
parisons yielding positive scores, suggesting less
accurate speaker identity preservation. As with the
accent-based analysis, these observations should
be interpreted with caution due to relatively small
group sizes (N ), especially for the LJ speaker.

To complement the CMOS evaluation, we con-
ducted statistical significance testing on the speaker
similarity (SS) and clarity/naturalness (CM) scores
within each subgroup. For every experimental
method pair and demographic subgroup (by gen-
der and accent), we applied one-sample t-tests and
Wilcoxon signed-rank tests against a null hypoth-
esis of zero (i.e., no perceived difference between
systems). The resulting p-values are presented in

Table 8 (gender) and Table 9 (accent).

The statistical significance analysis supports the
earlier observations (Table 4 and Table 5). For
Method 4, p-values across most gender groups are
above the 0.05 threshold in both SS and CM com-
parisons against baseline Methods 1 and 2, indicat-
ing no statistically significant difference and sug-
gesting that the proposed method performs com-
parably to the baselines. In contrast, Method 6
consistently shows statistically significant differ-
ences in SS when compared to both baselines (e.g.,
p < 0.05 for both males and females), pointing to
a degradation in speaker similarity. For CM, how-
ever, most comparisons yield p-values above 0.05,
implying that the perceptual quality of Method 6
is not significantly different from the baselines de-
spite the SS drop.

For accent-based comparisons, the majority of p-
values also exceed 0.05, which may reflect a lack of
statistical power due to small sample sizes within
individual accent groups. Nevertheless, a few ac-
cents (e.g., Irish and American in 1–6 and 2–6
pairs) show marginal or significant effects, particu-
larly in SS, indicating that accent-specific behavior
may warrant closer examination in future studies
with larger cohorts.

These findings underscore the importance of
subgroup-level analysis in evaluating TTS systems.
Listener demographics—such as gender and ac-
cent—can influence judgments of speaker similar-
ity and perceptual quality, and adequate subgroup
representation is crucial to draw robust, generaliz-
able conclusions.

Table 8: Statistical Significance of CMOS Scores by
Gender

Method
Pair

Gender SS
t-p

SS
w-p

CM
t-p

CM
w-p

1–4 M 0.612 0.618 0.761 0.766
F 0.307 0.349 0.434 0.532
lj (F) 0.867 0.769 0.820 0.744

1–6 M 0.0001 0.0006 0.643 0.603
F 0.0001 0.0006 0.662 0.606
lj (F) 0.063 0.078 0.287 0.223

2–4 M 0.452 0.504 0.546 0.552
F 0.163 0.189 0.828 0.729
lj (F) 0.014 0.023 0.508 0.520

2–6 M 0.0001 0.0006 0.782 0.776
F 0.410 0.392 0.679 0.622
lj (F) 0.015 0.023 0.664 0.668



Table 9: Statistical Significance of CMOS Scores by
Accent

Method
Pair

Accent SS
t-p

SS
w-p

CM
t-p

CM
w-p

1–4 Scottish 0.498 0.531 0.834 1.000
Indian 0.343 0.531 0.363 0.424
Irish 0.072 0.072 0.361 0.404
lj 0.867 0.769 0.820 0.744
American 0.216 0.030 0.156 0.055
English 0.431 0.463 0.055 0.054

1–6 Scottish 0.237 0.227 0.878 0.975
Indian 0.025 0.034 0.559 0.523
Irish 0.009 0.004 1.000 1.000
lj 0.063 0.078 0.287 0.223
American 0.004 0.008 0.236 0.254
English 0.478 0.750 0.109 0.188

2–4 Scottish 0.327 0.336 0.420 0.539
Indian 0.426 0.365 0.213 0.169
Irish 0.529 0.624 1.000 1.000
lj 0.014 0.023 0.508 0.520
American 0.259 0.375 0.679 0.750
English 0.193 0.219 1.000 1.000

2–6 Scottish 0.447 0.516 0.708 0.844
Indian 0.856 0.917 0.609 0.667
Irish 0.169 0.250 0.824 1.000
lj 0.015 0.023 0.664 0.668
American 0.002 0.008 0.499 0.550
English 0.074 0.110 0.884 0.902

Figure 3: DPO training loss

D Additional Experimental Results

D.1 DPO optimzation
Figure 3 illustrates the average training loss across
several model variants using DPO. Most models
demonstrate a smooth and consistent decrease in
loss, indicating stable convergence behavior. While
some variance exists across configurations, there
are no signs of divergence or abrupt fluctuations.
Overall, these results suggest that training with
DPO is stable under the tested conditions.


