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Abstract
The study explores the performance, robust-
ness, and effects of automatic speech recog-
nition systems when speech is missing or in-
terrupted, with a specific focus on Burmese, a
low-resource language. This study addresses
several key research questions: How does miss-
ing or interrupted speech affect the accuracy
of ASR? What is the link between the length
of missing speech and the accuracy of the tran-
scription? How are errors propagating when
speech is masked or interrupted? By fine-
tuning Wav2vec-bert2.0 and MMS-Zeroshot-
300M (Massively Multilingual Speech) on a
regular speech dataset (OpenSLR) of Burmese,
the study answers these questions by evaluating
the models on OpenSLR and 2 other datasets
(FLEURS and Bloom) on common ASR met-
rics like Word Error Rate and Character Error
Rate. The results reveal significant insights
into error propagation, positional error patterns,
and dataset-specific robustness. The study pro-
vides a baseline and methodological insights
for future ASR research in interrupted settings
for low-resource languages. The study’s find-
ings can inform the development of more ro-
bust ASR systems for real-world applications
in low-resource languages.

1 Introduction

While automatic speech recognition (ASR) has
enabled applications ranging from voice assis-
tants (Dubiel et al., 2018; Sim et al., 2019) to auto-
mated transcription services (Jeffries et al., 2024),
its performance often degrades under real-world
conditions involving missing or incomplete speech
segments (Barker et al., 2013; Gemmeke et al.,
2011). Missing speech in these scenarios com-
monly arises from network packet loss during VoIP
or streaming (Dissen et al., 2024; Lee and Kang,
2013; Kumalija and Nakamoto, 2022), recording
interruptions caused by hardware issues or user-
generated noise, and transmission errors from cor-
rupted media. This challenge is particularly acute

for low-resource languages (LRLs), which have not
seen the same focus on robustness as high-resource
languages (Baevski et al., 2020; Rubenstein et al.,
2023; Radford et al., 2022), raising important ques-
tions about ASR reliability in these contexts.

Accordingly, this study focuses on Burmese, a
Tibeto-Burman language spoken by approximately
42.9 million people and notably underrepresented
in ASR research (Wikipedia contributors, 2025b;
Li and Jian, 2024). The linguistic complexity of
Burmese makes it a compelling case for robustness
analysis. As a tonal language with an agglutina-
tive morphology (Wikipedia contributors, 2025a),
meaning is conveyed through subtle changes in
pitch and duration, while grammatical information
is often encoded in extended word forms. Con-
sequently, the limited data available for training
robust models poses a critical challenge, as even
brief gaps in audio can lead to significant loss of
semantic and grammatical information. Enhanc-
ing ASR robustness for Burmese can thus bridge
communication gaps and enable technological in-
clusion for millions of speakers. To investigate
these challenges, this paper aims to:

• Quantify the performance impact of missing
speech on a fine-tuned Burmese ASR model;

• Perform a detailed error analysis to under-
stand the nature and distribution of errors
caused by missing data; and

• Evaluate model robustness across multiple rel-
evant datasets.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work. Section 3
describes our experimental setup, including the
datasets and methodology. Finally, Section 5 con-
cludes the paper and outlines future work.



2 Related Works

The challenge of handling missing audio in auto-
matic speech recognition (ASR) has long been a
tough problem. In the past, researchers mostly
focused on techniques like robust feature extrac-
tion and model adaptation to reduce the effects of
noise and distortions (Ming and Crookes, 2014).
More recently, the focus has shifted to what’s called
speech inpainting or speech reconstruction, which
involves filling in or estimating missing segments
of audio. These methods range from simple in-
terpolation approaches (Kauppinen et al., 2001) to
more advanced models like Gaussian Mixture Mod-
els (GMMs) (Cooke et al., 2001) and deep learning
techniques using autoencoders or Generative Ad-
versarial Networks (GANs) (Wali et al., 2021).

Another related idea comes from self-supervised
learning, where models are trained to predict
masked parts of the input data. This was first popu-
larized in natural language processing by models
like BERT (Devlin et al., 2019) and later adapted
for speech in models like Wav2vec 2.0 (Baevski
et al., 2020) and HuBERT (Hsu et al., 2021). These
models learn robust representations that help in
handling missing data. Though primarily used
for pre-training, masking is also used as a data
augmentation strategy to make models more ro-
bust (Rebuffi et al., 2021). One recent example is
SpeechPainter (Zalan Borsos and Matthew Sharifi
and Marco Tagliasacchi, 2022), which uses a gen-
erative diffusion model to do high-quality speech
inpainting.

However, most of these efforts have focused on
high-resource languages. In our study, we explore
how masking and gapping two strategies for simu-
lating missing speech, differently affect ASR error
patterns and robustness, specifically for Burmese.

3 Experimental Setup

This section outlines the experimental framework
designed to assess the performance and robustness
of ASR systems for Burmese with missing speech.

3.1 Dataset

To evaluate the impact of missing speech on
Burmese ASR, we utilize publicly available
Burmese speech datasets, representing different do-
mains, recording conditions, and potentially vary-
ing levels of annotation quality. The primary
datasets considered are: (a) OpenSLR Burmese

(SLR80) (Oo et al., 2020): Contains approxi-
mately 4 hours of read speech, used here for fine-
tuning and evaluation. Characteristics often in-
clude relatively clean recordings. (b) Few-shot
Learning Evaluation of Universal Representa-
tions of Speech (FLEURS) (Conneau et al., 2023;
Goyal et al., 2022):An n-way parallel dataset with
12 hours of speech per language, representing a
more diverse source. (c) Bloom Dataset (Leong
et al., 2022): Contains 1 hour of burmese read
speech from book paragraphs. Table 1 presents the
dataset splits we use in our study.

Dataset Split Used No. of Samples

OpenSLR Test + Val 196+206
FLEURS Test 880
BLOOM Test + Val 50+50

Table 1: Dataset and Split Configuration for the Study.

To analyze ASR model robustness to incom-
plete speech, we simulate missing data using
two controlled techniques: masking and gap-
ping. These are applied over specified durations
Dm ∈ {0.25s, 0.5s, 0.75s, 1s}, chosen to reflect
real-world interruption lengths, such as network
packet loss in VoIP systems (e.g., 10–40 packets
of 25ms) (Zhang et al., 2024). Let an original
discrete-time audio signal be Sorig[n], with Norig

samples. The gap/mask duration Dm corresponds
to ND samples. If Norig is not a multiple of ND,
Sorig[n] is zero-padded at the end to form a signal
S[n] of length N , where N is the smallest mul-
tiple of ND such that N ≥ Norig. Subsequent
operations refer to this signal S[n] of length N .

Masking Masking simulates data loss by set-
ting a segment of ND samples to zero ampli-
tude, with the masked signal S′

mask,k[n] retain-
ing the length N . For each signal S[n], N/ND

distinct masked versions are generated. The kth

masked signal is formed by zeroing out samples
in the segment n ∈ [kND, (k + 1)ND − 1], where
k ∈ [0, . . . , (N/ND)− 1]. This is described by:

S′
mask,k[n] =


S[n] for 0 ≤ n < kND

0 for kND ≤ n < (k + 1)ND

S[n] for (k + 1)ND ≤ n < N

This technique is analogous to how lost data pack-
ets replaced by silence are handled and is funda-
mental in applying time-frequency masks in speech
enhancement (Kim, 2021). Alternatively, it is an
element-wise multiplication S′

mask,k = S ⊙ Mk,
where Mk[n] is a binary mask.



Gapping Gapping simulates interruptions by in-
serting a silent segment of ND zero-valued sam-
ples into S[n], thereby extending its total dura-
tion to N + ND samples. For each signal S[n],
(N/ND) + 1 distinct gapped versions are gener-
ated. In the jth gapped signal, S′

gap,j [m], silence is
inserted at a position corresponding to jND in the
timeline of S[n], where j ∈ [0, . . . , N/ND]. The
resulting signal S′

gap,j [m] for m ∈ [0, N+ND−1]
is constructed as:
S′
gap,j [m] =

S[m], for 0 ≤ m < jND,

0, for jND ≤ m < jND +ND,

S[m−ND], for jND +ND ≤ m < N +ND

This method alters the signal’s temporal struc-
ture, testing the model’s ability to handle unex-
pected pauses. The key distinction is that masking
overwrites existing audio data while preserving
effective signal duration (N ), whereas gapping in-
serts new silent data, increasing the overall signal
length and specifically challenging resilience to
pauses and temporal shifts.

3.2 Models and Parameters
In this work, we selected Wav2Vec-BERT-2.0
(Chung et al., 2021) and MMS-Zeroshot-300M 1

(Pratap et al., 2024) due to their extensive multilin-
gual pre-training and strong performance on LRLs.
Wav2Vec-BERT-2.0’s prior exposure to Burmese
and MMS-Zeroshot-300M’s training on over 1,000
languages make them suitable for this study. We
fine-tune publicly available checkpoints for our ex-
periments. This study fine-tunes both models on
the OpenSLR dataset for up to 16 epochs using
the AdamW optimizer (learning rate 5e-5, batch
size 8), utilizing pretrained checkpoints available
on Hugging Face (Face, 2025) and utilizing the
Transformers library for the fine-tuning process.
For our experiments, we select the best-performing
fine-tuned checkpoints of both Wav2Vec-BERT-2.0
and MMS-Zeroshot-300M on the OpenSLR vali-
dation set with the best validation WER and use
it for all subsequent experiments. All subsequent
evaluations use the data splits detailed in Table 1.
All the experiments were done on a single NVIDIA
RTX A5000 GPU.

3.3 Evaluation Metrices
We assess ASR performance using the following
metrics to quantify transcription errors and to ana-

1The MMS-Zeroshot-300M model checkpoint was used
for fine-tuning. The name denotes the pre-trained model and
does not imply a zero-shot evaluation methodology in our
experiments.

lyze the impact of missing speech:

• WER (Word Error Rate): Measures word-
level transcription errors.

• CER (Character Error Rate): Measures
character-level transcription errors.

• Error Percentage (Error %): The propor-
tion of samples where the transcription differs
from the clean audio baseline after simulating
missing speech.

• Edit Distance Distribution: Examines how
severe the errors are by analyzing the distribu-
tion of edit distances for each affected sample
compared to the baseline.

• Positional Error Analysis: Looks at where
errors tend to occur, focusing on the first and
last segments around the missing speech re-
gion.

Dur. Masking Gapping

Samples Err. (%) Samples Err. (%)

0.25s 9144 69.14 9546 77.92
0.50s 4458 84.28 4860 77.72
0.75s 2924 88.68 3326 78.35
1s 2134 91.38 2536 74.80

Table 2: Total processed samples and error percentage
(%) for Masking vs. Gapping on the OpenSLR dataset
by duration. (Model Used: Wav2Vec-BERT-2.0)

4 Results and Analysis

Across all three datasets, OpenSLR, Fleurs, and
Bloom, our experiments highlight that the im-
pact of missing speech (via masking and gapping)
is closely tied to baseline dataset characteristics
and duration of gap/mask. Trends across datasets
are captured in Appendix Figures 7, 8 (overall
WER/CER), Figure 1 (OpenSLR edit distance),
Figures 4, 5 (Fleurs), Figures 3, 6 (Bloom), and
Tables 3 and 4.

OpenSLR (Appendix Figures 1, 2, 7): This
relatively clean dataset exhibits clear, progressive
increases in both WER and CER as mask dura-
tion grows. Masking is notably more detrimen-
tal than gapping, with Wav2Vec-BERT-2.0’s CER
rising from 6.79% to 21.02% at 1s (compared to
8.89% for gapping). Edit distance distributions
(Figure 1) confirm more severe character-level er-
rors for longer mask durations. Positional analysis



(Figure 2) reveals that masking the final segment of
an utterance dramatically increases edit distances
compared to initial-segment masking, underscor-
ing the importance of utterance-end information for
ASR. This can be attributed to the model’s need for
forward and backward context to correctly decode
speech. When the end of an utterance is masked,
the model loses critical cues for disambiguation,
which is especially important for a tonal and ag-
glutinative language like Burmese where meaning
and grammatical information can be conveyed by
subtle changes at the end of words. The absence
of this final information results in a significantly
higher character-level error rate. Error percent-
ages (Table ??) mirror these patterns, especially for
masking (69.14% to 91.38% with duration).

Fleurs (Appendix Figures 4, 5 ): Fleurs is sub-
stantially more challenging, with baseline WERs
already above 179% and CERs over 21% even with-
out missing speech. Masking consistently elevates
CER (Wav2Vec-BERT-2.0: 21.26% to 25.35%),
while WER shows only minor, sometimes neg-
ative shifts likely due to error saturation. Edit
distance distributions (Figure 4) and average edit
distances (Figure 5) confirm more fine-grained
character errors from masking, especially at utter-
ance ends. Gapping causes a severe but consistent
level of degradation across all gap durations, with
WER and CER remaining largely stable ( Wav2Vec-
BERT-2.0 WER ≈184%, CER ≈22%). Error per-
centages (Table 4) remain extremely high (>90%)
across all gap/mask types and durations.

Bloom (Appendix Figures 3, 6): The Bloom
dataset poses the greatest challenge, with baseline
CERs over 66% and WERs exceeding 150%. Nei-
ther masking nor gapping meaningfully alters the
already saturated error rates (CER ≈67-68%, WER
≈150-160%). Edit distance distributions and error
percentages (near 100% for all conditions) con-
firm that the models nearly uniformly fail on this
dataset, irrespective of the missing speech scenario.
Overall, our key takeaways include:

• Masking generally introduces more severe
character-level errors (as seen in CER and
edit distance shifts), particularly on cleaner
datasets like OpenSLR and moderately so on
Fleurs. This highlights that real-world ASR
systems deployed in environments with short-
duration or partial occlusions (e.g., coughs,
short microphone dropouts) are likely to see
disproportionately larger transcription errors,

especially on simpler, cleaner audio inputs.

• Gapping causes more stable but consistently
high errors, with less sensitivity to gap/mask
duration. This suggests that silent gaps or
short audio losses (e.g., packet loss in VoIP
or poor connectivity) might degrade perfor-
mance consistently across a range of scenar-
ios, rather than in a duration-dependent man-
ner.

• Dataset Difficulty Dominates: On challeng-
ing datasets (Fleurs, Bloom), extremely high
baseline errors overshadow the incremental ef-
fects of missing speech, leading to error satu-
ration. This indicates that for real-world ASR
robustness, improving baseline model per-
formance (e.g., adapting to domain-specific
vocabularies, reducing dataset-domain mis-
match) is critical, as gap/mask effects become
secondary when baseline transcription itself
is unreliable.

These insights reinforce that efforts to improve
ASR robustness in real-world scenarios must pri-
oritize both baseline domain adaptation and gap or
mask specific resilience, especially for character-
level fidelity and utterance-end information crucial
for downstream tasks.

5 Conclusion

In conclusion, this study reveals significant chal-
lenges in applying any ASR system to LRLs when
encountering simulated missing speech segments.
Our findings indicate a clear degradation in perfor-
mance, measured by WER and CER, as the dura-
tion or ratio of missing data increases. Notably, the
structure of the missing data matters; our results
suggest that masking the audio signal generally
causes more severe degradation than inserting gaps.
Furthermore, the errors induced by these missing
segments are not localized; they often propagate be-
yond the immediate vicinity of the gap or mask, pri-
marily manifesting as deletions and substitutions,
which aligns with observations from edit distance
analysis. Finally, the system’s resilience is not
uniform, varying significantly across the different
datasets tested (OpenSLR, Fleurs, Bloom), under-
scoring the influence of acoustic conditions, speak-
ing styles, and domain specificity on robustness.
These results highlight the need for targeted strate-
gies to improve the robustness of Burmese ASR



systems against various forms of missing speech
data encountered in real-world scenarios.

Limitations

This study’s limitations include the simulation of
missing speech (zero-masking, gapping), which
may not fully mirror real-world data loss com-
plexities. Findings are also specific to the chosen
pre-trained models (Wav2Vec-BERT-2.0, MMS-
Zeroshot-300M) potentially differing for other
ASR architectures or training methods. Further-
more, the employed Burmese datasets, while valu-
able, may not encompass the language’s complete
dialectal or acoustic diversity, which could affect
the broader generalizability of the observed robust-
ness levels.

Future Works

Future work will focus on three key areas. First, we
will explore advanced speech inpainting and recon-
struction techniques to better mitigate the effects
of missing speech. Second, we plan to investigate
more dynamic and realistic interruption patterns,
such as randomly distributed or non-uniform seg-
ment lengths, to provide a more accurate assess-
ment of ASR robustness. Finally, we will consider
a broader range of Burmese datasets to improve
the generalizability of our findings. We also plan
to evaluate models with shorter durations, such as
0.10s, to capture more nuanced effects on perfor-
mance.
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Figure 1: Edit distance distribution across samples for
OpenSLR dataset. (Model: Wav2Vec-BERT-2.0)
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Figure 2: Average Edit distance for First and Last
segment of mask and gap audio segments. (Model=
Wav2Vec-BERT-2.0, Dataset = OpenSLR) (Baseline =
Prediction without mask/gap)
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Figure 3: Average Edit distances for First segment and
Last Segment. (Model = Wav2Vec-BERT-2.0, dataset =
Bloom)
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Figure 4: Edit Distance distribution of Fleurs dataset.
(Model: Wav2Vec-BERT-2.0)
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Figure 5: Average Edit distances for First segment and
Last Segment. (Model = Wav2Vec-BERT-2.0, dataset =
Fleurs)
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Figure 6: Edit Distance distribution of Bloom dataset.
(model = Wav2Vec-BERT-2.0)
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Figure 7: CER Trend for all datasets for different gap and mask duration for both models.

Table 3: Detailed WER (%) and CER (%) Results by Duration for Masking vs. Gapping Across Datasets and
Models. Models were fine-tuned (FT) on OpenSLR.

Masking Gapping

Dataset Model Duration of mask/gap WER (%) CER (%) WER (%) CER (%)

OpenSLR

Wav2Vec-BERT-
2.0 (FT)

0s 37.35 6.79 37.35 6.79
0.25s 40.85 8.60 41.39 9.06
0.50s 44.75 12.70 41.29 9.28
0.75s 47.69 16.82 41.53 9.09
1s 50.46 21.02 41.12 8.89

MMS-Zeroshot-
300M (FT)

0s 56.37 12.03 56.37 12.03
0.25s 59.94 14.50 59.78 14.40
0.50s 61.74 18.33 61.29 17.86
0.75s 63.81 22.26 63.00 21.17
1s 65.58 26.10 64.38 24.31

Fleurs

Wav2Vec-BERT-
2.0 (FT)

0s 181.00 21.26 181.00 21.26
0.25s 182.60 22.13 184.00 22.34
0.50s 180.10 23.18 184.00 22.39
0.75s 177.00 24.24 184.00 22.34
1s 174.40 25.35 184.00 22.29

MMS-Zeroshot-
300M (FT)

0s 179.24 28.49 179.24 28.49
0.25s 178.50 29.51 180.29 29.38
0.50s 175.42 30.48 179.90 29.36
0.75s 172.34 31.50 179.48 29.41
1s 169.05 32.59 178.95 29.50

Bloom

Wav2Vec-BERT-
2.0 (FT)

0s 182.45 66.90 182.45 66.90
0.25s 183.66 66.65 186.10 66.98
0.50s 180.94 66.75 185.32 66.98
0.75s 178.19 67.09 185.22 67.13
1s 175.10 67.47 186.24 67.08

MMS-Zeroshot-
300M (FT)

0s 159.27 67.99 159.27 67.99
0.25s 157.45 67.76 159.27 68.01
0.50s 154.67 67.93 159.21 67.85
0.75s 151.84 68.28 159.01 67.60
1s 148.55 68.66 158.13 67.87
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Figure 8: WER Trend for all datasets for different gap and mask durations for both models.

Table 4: Total Processed Samples and Percentage of Samples with Errors/Prediction Changes Across Datasets,
Models, and Conditions. Models were fine-tuned (FT) on OpenSLR.

Masking Gapping

Dataset Model Duration of mask/gap Total Samples Error (%) Total Samples Error (%)

OpenSLR

Wav2Vec-BERT-
2.0 (FT)

0.25s 9144 69.14 9546 77.92
0.50s 4458 84.28 4860 77.72
0.75s 2924 88.68 3326 78.35
1s 2134 91.38 2536 74.80

MMS-Zeroshot-
300M (FT)

0.25s 9144 79.01 9546 76.79
0.50s 4458 87.01 4860 82.88
0.75s 2924 90.94 3326 84.97
1s 2134 92.83 2536 86.24

Fleurs

Wav2Vec-BERT-
2.0 (FT)

0.25s 54 515 88.93 55 395 94.00
0.50s 27 037 94.02 27 917 94.63
0.75s 17 882 95.76 18 762 95.81
1s 13 293 96.83 14 173 93.69

MMS-Zeroshot-
300M (FT)

0.25s 54 515 82.24 55 395 91.27
0.50s 27 037 88.77 27 917 87.45
0.75s 17 882 91.98 18 762 94.89
1s 13 293 94.21 14 173 92.85

Bloom

Wav2Vec-BERT-
2.0 (FT)

0.25s 3108 99.81 3208 99.75
0.50s 1524 99.93 1625 99.75
0.75s 1008 99.90 1108 99.55
1s 737 100.00 838 99.40

MMS-Zeroshot-
300M (FT)

0.25s 3108 97.52 3208 99.13
0.50s 1524 99.61 1625 98.58
0.75s 1008 99.90 1108 99.46
1s 737 100.00 838 99.52


