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Abstract

Currently Large Language Models (LLMs) are
mostly used through a chatbot interface with
the user manually deciding when the system
should respond. In multi-speaker conversations
(e.g., two humans and one robot) it is not clear
who speaks when. We therefore investigate
the ability of LLMs to predict the dialog struc-
ture. First, we frame the task as Next Speaker
Prediction (NSP) and create a multi-domain
test set. Secondly, we build dedicated systems
for the NSP task using LLMs and finally per-
formed automatic and human evaluation. Our
final system matches the human performance
when tested on unseen data and exceeds it on
data of the same domain as the training data.

1 Introduction

In multi-speaker dialogues, it is important for the
participants to know when to speak, as talking at
the wrong time may be irritating for the other speak-
ers and may even hinder the speakers to reach their
goals. It is crucial for dialogue systems to handle
this task well as speaking too often may be annoy-
ing to the user while speaking rarely may seem
unresponsive to the user and opposes the system’s
purpose.

Large Language Models (LLMs) are the core
of modern dialogue systems. Currently they are
mostly used through a chatbot interface where they
only respond after the user sends a chat message.
Here, there is no need for dedicated dialog struc-
ture modeling as the user always decides when
the model should respond. For spoken dialogue
with two speakers, the modeling is not as trivial
as it is not clear when one speaker ends their turn.
For multi-speaker scenarios it is significantly more
challenging when the LLM should respond as the
users could be chatting with each other directly
during the course of dialogue.

i used to live downtown san jose and every once in
a while i just get with garlic and i don’t know if it’s from
gilroy probably not nut i like to think it was so [laugh]
P09: yeah
P09: wow
P12: what are actually some nice places to go around here
cause i’ve moved here recently so [unintelligible]
P09: napa napa is nice
P10: oh
P10: napa is nice [unintelligible]
P12: oh yeah actually i went there last week and they had
uhhh i think sonoma had a hot air balloon festival there
[...] butit’s pretty nice seeing them at sunrise so yeah it
was really beautiful yeah

Annotators’ votes:
P09: 7, 2,P10: 2

Zero-shot LLM: P12
Fine-tuned LLM: P09

Next utterance:
P09: people like to go wine tasting

Figure 1: Example of a part of a dialogue from DiPCo
(Segbroeck et al., 2020). We show the previous utter-
ances, which next speaker our human annotators pre-
dicted, what the LLMs in different setting predicted,
and what the actual next speaker and utterance are.

We model this ability as the Next Speaker Pre-
diction (NSP) task like Wei et al. (2023). We think
it is a suitable proxy task as good performance on
predicting the next speaker should indicate the qual-
ity of the system’s ability to decide the correct time
to actively contribute to the conversation.

We want to investigate multi-speaker dialogue
from multiple domains to test generalization, esti-
mate the performance of LLMs, and find out how
well they have to perform. Therefore, our research
on the NSP task covers the following aspects:

* We create a multi-domain benchmark for the
NSP task utilizing multiple existing dialogue
datasets.

* We run a user study with eleven annotators
to gather a human baseline. This evaluation
gives insights on the ambiguity of the task.
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* We analyze the ability of various size LLMs
to perform the NSP task and build dedicated
models that reach or exceed our estimate of
human performance.

2 Next Speaker Prediction Benchmark

To evaluate how well our approaches perform on
the NSP task, we compile a benchmark consisting
of multiple datasets. Using datasets from multiple
domains enable us to estimate the generalization of
the evaluated systems. Additionally, we collect a
human baseline on subsamples of the datasets to
get an estimate of the human performance on NSP.
While the dialogue structure from the datasets of-
fers a ground truth for the next speaker, we want to
find out if human annotators would consider other
options as equally possible. Also, we obtain an
overview how ambiguous the task is for human
annotators.

2.1 Datasets

For the NSP task, we need datasets of dialogues
where the speaker is denoted for every utterance.
As the following utterance then always determines
which speaker will be the next after the current one,
we can easily model the NSP task. For dialogues
with only two speakers, the NSP task is fairly triv-
ial. Therefore, we only investigated multi-speaker
dialogue datasets.

We use three dialogue datasets for our bench-
mark (Table 1) to cover multiple domains. We
chose these three datasets to cover multiple do-
mains. Also, there is an existing baseline for the
NSP task for MultiLIGHT (ML, Wei et al. (2023)).
The other two datasets both include the type of
noise that a dialogue system would also encounter
in a real-life setting. Additionally, the conversation
domains are realistic settings than ML’s (Table 1).
We use two of these similar datasets as this allows
us to compare how well our approaches generalize
an unseen domain and different noise as DiPCo
includes no training data. The datasets differ in the
numbers of participating speakers in one conversa-
tion, the domain of the conversation (topic, setting),
and the amount of noise in the sense of very short
utterances that introduce no or almost no substance
to the conversation.

ML is a text-only dataset created specifically
for dialogue research. The authors also performed
experiments on the NSP task with at time of publi-
cation current Transformer-based language models

Dataset AMI  DiPCo ML
# Speakers 4 4 3

. . dinner  fantasy
Domain meeting

party  role-play

Noisy yes yes no
# Utterance 12627 3400 9164
# Dialogues 16 5 323
Avg. utts. 789.19  680.00  28.37

Table 1: Properties of the investigated datasets (specific
numbers from the test splits). We list the number of
speakers per dialogue, the topics of the conversations,
if they contain some form of noise (short / interrupting
utterances), and the number of utterances in total, the
number of dialogues, and the average number of con-
secutive utterances per dialogue.

Dataset AMI DiPCo
Speaker 0 32.18 23.93
Speaker 1 26.88  25.75
Speaker 2 23.36 28.04
Speaker 3 18.75 22.28

Table 2: Contributed utterances (in percentage) from
each speaker across all dialogues. For AMI, the speaker
that speaks earlier in the dialogue, seems to have more
dialogue utterances while there seems to be now such
accumulation for DiPCo.

that they fine-tuned on this task. The AMI meet-
ing corpus (Carletta et al., 2005) and the Dinner
Party Corpus (DiPCo) (Segbroeck et al., 2020) are
primarily audio (and video for AMI) datasets from
recorded conversations.

The type of conversations in AMI are meetings
and in DiPCo dinner party talk. Both contain noise
like “Umm”, “Hmm”, and “Yeah” that introduce no
or almost no substance to the conversation in some
cases. While these appear to happen at random
times, these kinds of utterances are also present
in a setting where an LLM gets its input via an
Automatic Speech Recognition system. Also, for
utterances like “Yeah” it is hard to determine if
“Yeah” is just noise or an import acknowledgment
of a previous utterance. So, we only filter out obvi-
ous irrelevant utterances for the DiPCo dataset like
“[Noise]” to reduce the noisiness while keeping
potentially important utterances.

Datasets Statistics In a first step, we investigated
the dataset statistics in order to identify the various
challenges of the datasets.

For example, we analyzed the percentage of con-



Dataset AMI DiPCo ML

4 91.51 89.66 29.32
8 66.79 4933 14.04
16 40.53 2042 13.48
32 20.71 6.04 1348
64 8.60 0.84 1348

Table 3: Percentage of contexts where at least one
speaker is missing depending on the number of recent
utterances included in the prompt.

tributed utterances per speaker within each dia-
logue to see if one specific speaker speaks signif-
icantly more often which could lead to a bias to
predict that speaker more often as the next one. We
number the speakers ascending by their order of
appearance. For AMI, the speakers that appear ear-
lier in the conversation seem to speak more often.
After qualitative analysis, we concluded that this
is the case because in AMI the person opening the
meeting is also the organizer of the meeting itself.
We saw no such clear trend for DiPCo.

We want to only include the recent dialogue ut-
terances in our benchmark as the dialogues in the
datasets are up to several hundred utterances long
(Table 1) which could overwhelm both human an-
notators and NLP systems. We therefore examined
the number of times where at least one speaker is
missing from our dialogue excerpt to find out in
how many cases the context is missing information
about some speakers. We start with four included
recent utterances and iteratively double the amount
up to 64. For ML, the number does not continue
to decrease after 16 included utterances (Table 3).
This is a result of the fact that in the beginning of
the dialogue, not all speakers have spoken yet. As
the dialogues in ML are short, this situation is quite
common. For the other two, including quadrati-
cally more recent utterances linearly reduces the
number of excerpts with missing speakers. This
shows that very often in a small enough context
window only a subset of the speakers interact with
each other.

2.2 Human Baselines

In a first step, we analyze the difficulty of the task
through a human evaluation. While the dialogues
from the datasets were generated by humans, like
many other Natural Language Processing (NLP)
tasks, the NSP task is also ambiguous. We therefore
collect human data on the NSP task for samples of
consecutive utterances of the test splits of all three

datasets. Our sample size is 63 dialogue utterances
for AMI (0.50% of the full test set), 55 for DiPCo
(2.00%), and 91 for ML (0.96%). As the dialogues
in ML are fairly short, our sample includes three
full dialogues. These sample sizes should in our
opinion capture the natures of the datasets while
also keeping the annotation work at a reasonable
level. The user study involved eleven participants
for each dataset. We average each’s accuracy to get
the human baseline (Table 6).

We included the last 32 utterances and did not
rename the speakers in the prompts. We chose
32 as this number is higher than the number of
utterances in full dialogues for the ML dataset and
is not overwhelmingly large for human annotators.
For the names, we assumed that the annotators
should be able to distinguish the names more easily
with the original ones from the dataset.

Dataset Fleiss’ kappa
AMI 0.17
DiPCo 0.14
ML 1 0.49
ML 2 0.43
ML 3 0.32

Table 4: Fleiss’ kappa for multi-rater agreement on the
samples used for the gathering the human baseline.

We provide the Fleiss’ kappa multi-rater agree-
ment measure (Fleiss, 1971) for each dataset sam-
ple (Table 4). For ML, we show the score for each
of three dialogues that are included in our sam-
ple. The scores low showing the ambiguity of the
task. The difference between ML and the other
two datasets are in our opinion a result of it hav-
ing fewer speakers per dialogue and having less
noisy utterances. Manual inspection and anecdo-
tal evidence from the annotators showed that the
annotators agreed or were sure in their prediction
respectively for some turns (most annotators picked
one speaker) but disagreed or were unsure in their
prediction respectively in other cases (annotators
picked different speakers, no clear “favorite”).

3 Next Speaker Prediction with LLLMs

We want to use state-of-the-art technology to build
a next speaker predictor. This leads to LLMs as
they excel on other NLP tasks. Additionally, their
task during the pre-training phase is predicting the
next token which corresponds to predicting the next
speaker when the prompt is a dialogue transcript



with annotated speakers. This implies that the NSP
task is “natural” for LLMs given their training.

While the authors of ML perform similar experi-
ments, they were with the smaller encoder-decoder
language models R2C2 (Shuster et al., 2022), T5
(Raffel et al., 2020), and BART (Lewis et al., 2020)
which are smaller than today’s models and were
trained on less data and did not receive the exten-
sive post-training of current LLMs. Furthermore,
the authors of ML had to fine-tune these models to
perform this task while current LLMs can be used
with zero-shot prompts.

To model the NSP task as an LLM task, we
prompt the LLMs to predict the next speaker by
utilizing the information we provide (Appendix A):
An instruction for the task and the most recent ut-
terances of the current dialogue as context. Each ut-
terance starts with the corresponding speaker. Each
dataset already contains identifiers for the speakers.
For ML, each speaker has a descriptive name like
“jester””. The other two datasets use string identi-
fiers like “P12” or “MTDO11UID”.

For every dialogue turn we include the last eight
utterances as context for the LLMs and rename
the speakers to the same generic identifier across
all datasets to increase the similarity of the task
across the datasets. We replace them with renam-
ings where each speaker has a pseudonym in the
format of “speaker <number>". ML also includes
descriptions of the character of each speaker and
the location of the dialogue. We did not include
this information to keep the task comparable.

Although LLMs are able to perform on zero-
shot, often specialized models perform better. We
therefore train LLMs supervised on the NSP task
on multi-domain data by mixing the training splits
from the AMI and the ML dataset. We use a bal-
anced mixture (similar number of training data
points) to ensure generalization across domains.
We train with pairs of the prompt used in the zero-
shot setting and the expected speaker from the
datasets, so that the model learns how to map the
recent dialogue turns to the next speaker.

4 Experiments

We evaluate the LLMs on the test splits of the
datasets, compare them to random and human base-
lines, and perform ablation studies on our modeling
decisions.

We chose next speaker accuracy as our main eval-
uation metrics as this is the most straightforward

metric with the given data. As the distributions of
utterances per speaker are fairly balanced (Table 2),
we did not employ metrics like F;. While accu-
racy is a “hard” metric and does not account for
ambiguity, we assume that the fairly large dataset
size and direct comparison against baselines still
gives a good estimate how well the LLMs (and
especially our fine-tuned one) do for NSP. Nev-
ertheless, we analyze the agreement of the LLMs
with the annotators (section 4.3).

4.1 Setup

We perform all our experiments with models from
the Llama 3 family (Dubey et al., 2024). We use the
3B (3.2. 3B) and 8B (3.1 8B) parameter version for
zero-shot and fine-tuning experiments while we use
the bigger version (3.3 70B) only in a zero-shot set-
ting as fine-tuning this model requires significantly
more compute and the smaller models responded
already very well to fine-tuning.

The fine-tuning data mixture consists of all the
available training data from the AMI meeting cor-
pus and 33% from ML. We use only 33% to bal-
ance the number of data points from each dataset.
DiPCo has no train split. We conduct ablation stud-
ies on all mentioned modeling decisions including
the preprocessing (subsection 4.4). We made these
decisions that impacted our main results during de-
velopment on the basis of the validation sets which
all utilized datasets provide.

4.2 Random Baselines

To compare our results to another baseline, we
present three random baselines. Each is designed to
model two very distinct types of dialogue flow and
a combination of both. These baselines are: One
where the speaker is picked randomly but always
switches after each dialogue utterance (denoted as
always). Then, we assume that the speaker never
switches, so we predict the last speaker to also be
the next speaker (denoted as never). At last, we
model a combination of both where we pick the
speaker completely randomly without excluding
the last speaker (denoted as usually). We run each
method five times and average the results.

4.3 Main Experiments
We differentiate between the results on the full test

sets and the samples for the human baseline.

Results on the full Tests Sets The accuracy
scores (Table 5) for the random baselines illustrate



Dataset AMI DiPCo ML
Random Baselines

Always 22.10 26.62 45091
Usually 25.17 2521 33.36
Never 3341 19.32 8.91
Zero-shot

Llama 3.23B 2528 25.66 28.10
Llama 3.1 8B  34.88 30.94 4041
Llama 3.3 70B 35.81 3298 52.06
Fine-tuned

Llama3.23B 4591 3691 59.40
Llama 3.1 8B  47.85 38.48 59.85

Table 5: NSP accuracy on the full test splits. We com-
pare the accuracy of the random baselines and the Llama
3 models in a zero-shot and fine-tuned setting. Fine-
tuning improves performance beyond the 70B model’s
performance. Even the dataset we did not train on
(DiPCo) benefits from fine-tuning on the NSP task.

what we already saw during qualitative analysis
of the datasets: In the AMI meeting corpus, the
speakers often deliver multiple utterances after an-
other while in the ML dataset the speaker almost
always switches. Llama 3.1 8B performs a bit or
clearly better than the random baselines on AMI
and DiPCo, which highlights the importance of a
multi-domain benchmark. On ML however, sim-
ply randomly picking one of the other two speaker
as the next performs better. The smallest model
we tested (3.2 3B) only manages to predict next
speaker as well as completely randomly picking
one. The bigger 70B model outperforms the ran-
dom baselines clearly on DiPCo and ML. We see
a clear trend that scaling the model size increases
the ability to predict the next speaker.

When fine-tuning 3.1 8B on the task, it signif-
icantly outperforms itself in the zero-shot setting,
the random baselines, and the bigger version. The
performance even improves beyond the 70B model
on the DiPCo dataset, which has no training split
meaning that this dataset is out-of-domain for the
fine-tuned models, and we see generalization for
different domains. The case for 3.2 3B is similar
but with slightly lower scores than 3.1 8B.

Results on the Samples of Tests Sets for Human
Baselines On DiPCo and ML, our collected hu-
man baseline outperforms the random baselines
albeit not all of them by a big margin (Table 6).
For AMLI, it is even slightly below the best tech-
nique (“never”) that assumes the last speaker will

Dataset AMI DiPCo ML
Human 30.88 33.22 48.65
Random Baselines

Always 20.63 27.64 4549
Usually 17.78 2691 35.16
Never 3206 1455 11.87
Zero-shot

Llama 3.2 3B 15.87 21.82 25.27
Llama 3.1 8B 3492 23.64 32.97
Llama 3.3 70B 30.16 34.55 51.65
Fine-tuned

Llama3.23B 47.62 40.00 61.54
Llama 3.1 8B  58.73 34.55 59.34

Table 6: NSP accuracy on the samples of the test splits
for the human baseline. We compare the accuracy
of the human annotators, random baselines, and the
Llama 3 models in a zero-shot and fine-tuned setting.
Fine-tuning beats human accuracy on the datasets with
training data but also on DiPCo.

always be the next speaker. In the zero-shot set-
ting, the smallest Llama model shows the same
pattern as on the full test sets. The medium LLM
however achieves a higher accuracy on AMI as
the human baseline, while struggling to reach the
random baseline on the other two datasets which
may be specific to these samples. The 70B ver-
sion roughly matches the human performance on
all datasets. The scaling trends we observed on the
full test sets is also present on the samples except
for AMI, where the 70B model underperforms the
8B model.

Fine-tuning the two smaller models shows sim-
ilar effects as we saw on the full test split: The
NSP accuracy is increased greatly compared to the
zero-shot setting and even sightly outperforms the
70B model on the datasets where training data ex-
ists. For DiPCo, the performance of Llama 3.1 8B
is the same as the one of 3.3 70B. The fine-tuned
3B model manages to outperform both the 8B and
70B model on DiPCo. As it showed reduced per-
formance compared to the 8B model on the full
test sets and as this sample set is small, we assume
that these differences between the models are partly
noise while still showing the effectiveness of our
fine-tuning in general for the NSP task.

Agreement of Annotators and LLMs As men-
tioned before, this task is a highly ambiguous task.
However, there are also situations where only a
small set of possible next speakers are correct. We



wanted to investigate this and therefore use the hu-
man annotations as additional references.

We analyze the agreement of the LLMs with
the human annotators. To do this, we remove one
annotator at a time from the pool of annotators. We
then compare their agreement with the rest of the
annotators and with the LLMs by measuring the
accuracy of their predictions. We then average the
results for all annotators.

Additionally, we show how many of the predic-
tions can be counted as correct with these condi-
tions which decreases with the number of required
agreeing annotators increasing (row "Correct an-
swers", column "all").

In this setup, we counted a prediction as cor-
rect if at least n annotators propose this prediction.
This allows for situations where then no answer
is correct and therefore it does not matter what
the model predicts and for situation where multi-
ple solutions are correct. Additionally, we show
how many of the predictions can be counted as cor-
rect with these conditions which decreases with the
number of required agreeing annotators increasing
(row "Correct answers", column "all").

Also, we show how many choices a predictor has
with the given threshold as for example only three
possible next speakers can be counted as correct
if the number of annotators is ten and the thresh-
old for the number of agreeing annotator is three.
Therefore, the number of possible correct answers
also decreases with a higher threshold. The re-
ported numbers for the annotators and the models
display the percentage of correct predictions (given
a threshold) out of the possible correct answers.
We then also list the distribution of choices within
this set — how many predictions are possibly cor-
rect. Per bin of possibly correct prediction, we also
report the accuracy of each predictor.

For the AMI dataset, we see mixed results: From
a threshold of three and more, the larger model has
lower agreement than the 8B model. The fine-tuned
model shows a similar regression for a threshold of
three and five. For seven agreeing annotators, the
fine-tuned model has a slightly higher agreement,
yet the 70B model is lower than Llama 3.1 8B in
zero-shot. We think that these results come from
the fact that fine-tuning on the AMI training data
pushed the 8B LLM towards the distribution by
the dataset increasing the NSP accuracy, which
disagrees with our human annotators. That the 70B
model also has a lower agreement could be a sign
of its training data containing part of AMI and it

memorizing it better than the 8B model.

For DiPCo, we see that the 8B model in the
fine-tuned setting has a clearly higher (threshold of
one and three) or slightly higher (threshold of five)
agreement than in the zero-shot setting (Table 8).
Here, we also see that the 70B version has higher
agreement than the 8B model in zero-shot. This
matches our observations from the accuracy scores
before that increased model sizes correlates with
an improved NSP ability. Fine-tuning Llama 8B
therefore improves for most tested thresholds the
agreement with the human annotators on DiPCo
and moves it closer to that of the 70B model. As
we did not fine-tune the 8B model on data from
DiPCo, we think that these results together with the
increase in NSP accuracy show that training on the
NSP task with dialogue datasets does generalize to
better NSP performance — matching or exceeding
human performance in NSP accuracy.

4.4 Ablation Studies

We also examine our modeling decisions when fine-
tuning Llama 3.1 8B.

Dataset AMI DiPCo ML
Speaker Renaming

Original 42.04 3935 5458
Renamed 47.85 3848 59.85
Context Length

4 46.32  34.66 59.47
8 47.85 3848 59.85
16 4792 3946 60.13
32 4758 37.86 60.21
64 46.72 3629 59.73
Training Data Mixture

Zero-shot 3488 3094 4041
AMI 47.84 3735 4275
ML 24.08 28.25 60.07
AMI +33% ML 47.85 38.48 59.85

Table 9: Comparison of the accuracy results from the
ablation studies. Renaming the speakers to a dataset-
across scheme increases performance in general. Includ-
ing more previous utterances in the prompt only helps
until 16 utterances. Training only on one of the two
available datasets is worse than using both.

Speaker Renaming We compare the unmodified
versions of the datasets with our renamed versions.
Renaming improves performance on all datasets
except for DiPCo (Table 9). This is probably the
case as the speaker names in DiPCo (e.g., “P12”)
are already fairly generic but distinct. This also



# choices all

2 3 4

At least one out of ten agreeing annotator

Correct answers  100.00  2.31 21.07 43.00 33.62
Annotators 92.06 68.75 8699 89.60 100.00
Zero-shot 8B 88.46  75.00 63.70 92.28 100.00
Fine-tuned 8B 88.74  81.25 87.67 80.87 100.00
Zero-shot 70B 89.32  75.00 69.18 91.61 100.00
At least three of ten agreeing annotator

Correct answers  100.00  42.14  54.98 2.89 0.00
Annotators 68.40 56.51 76.12  95.00 0.00
Zero-shot 8B 66.67 4349  82.68 100.00  0.00
Fine-tuned 8B 5483 4486 6142 75.00 0.00
Zero-shot 70B 61.18 3493 79.27 100.00 0.00
At least five of ten agreeing annotator

Correct answers  82.40  98.42 1.58 0.00 0.00
Annotators 5639 56.23  66.67 0.00 0.00
Zero-shot 8B 45.01 44.13 100.00 0.00 0.00
Fine-tuned 8B 3993  39.15  88.89 0.00 0.00
Zero-shot 70B 39.23 39.32 3333 0.00 0.00
At least seven of ten agreeing annotator

Correct answers  29.29  100.00  0.00 0.00 0.00
Annotators 59.61  59.61 0.00 0.00 0.00
Zero-shot 8B 4433 4433 0.00 0.00 0.00
Fine-tuned 8B 4581  45.81 0.00 0.00 0.00
Zero-shot 70B 4236  42.36 0.00 0.00 0.00

Table 7: Agreement between annotators and LLMs (AMI): We show the NSP accuracy for each annotator (results
averaged) and the LLMs when the other annotators serve as the ground truth. We show different thresholds for
agreeing annotators that an answer counts as correct. We also display the accuracy grouped by the number of
choices a predictor has (if too many annotators have to agree, the number of possible correct answers shrink).

means that not renaming the speakers for the user
study should not skew our comparison.

Context Length We also compare how the num-
ber of included most recent dialogue utterances
influences the accuracy of the predictions: We vary
the number of included utterances in the prompt
as context for the models in steps of the power of
two from four to 64. There seems to be a limit on
how much context in the form of previous dialogue
utterances helps the model in its decision even with
the number of not included speakers decreasing
(Table 3). We picked eight recent utterances for our
experiments as it showed the best performance on
the validation sets, and it enables faster inference
than for 16 utterances. As the accuracies differ
only sightly across the context lengths we tried, it
seems that the model mostly relies on the last few
utterances for its decision while also being able
to focus on them even if the included dialogue is
longer.

Training Data Mixture As we have two datasets
from our benchmark with training data, we want
to find out how the specific selection of training
data impacts the generalization ability of the fine-
tuned models. Only training on the AMI data al-
ready shows large improvements for the two sim-
ilar datasets (AMi and DiPCo) but only small im-
provements for ML. Only training on this dataset
however reduces the performance on the other two
datasets. A weighted combination of both datasets
(roughly equal amount of datapoints from both)
resulted in performance similar like training on
the “corresponding” dataset. We even saw slight
transfer learning for DiPCo.

5 Related Work

Previous research on dialogue turns is different
from our approach as we assume both the setting
of a multi-speaker dialogue either in text form or as
a transcript and a text-only LLLM as the predictor.



# choices all 2 3 4
At least one of ten agreeing annotator

Correct answers  100.00  0.00 595 50.58 43.47
Annotators 92.07 0.00 61.11 88.89 100.00
Zero-shot 8B 92.56 0.00 88.89 86.60 100.00
Fine-tuned 8B 98.18 0.00 9444 97.06 100.00
Zero-shot 70B 96.53 0.00 61.11 97.71 100.00
At least three of ten agreeing annotator

Correct answers  100.00 4430 51.74 397 0.00
Annotators 61.98 5485 6773 66.67 0.00
Zero-shot 8B 5521 37.69 6741 91.67 0.00
Fine-tuned 8B 61.98 50.00 7093 79.17 0.00
Zero-shot 70B 6198 48.13 7252 79.17 0.00
At least five of ten agreeing annotator

Correct answers ~ 70.74  100.00 0.00  0.00 0.00
Annotators 55.61 55.61 0.00 0.00 0.00
Zero-shot 8B 46.26 4626  0.00  0.00 0.00
Fine-tuned 8B 46.73 4673  0.00 0.00 0.00
Zero-shot 70B 53.04 53.04 0.00 0.00 0.00
At least seven of ten agreeing annotator

Correct answers ~ 25.12  100.00 0.00  0.00 0.00
Annotators 4342 4342 0.00 0.00 0.00
Zero-shot 8B 4539 4539 0.00 0.00 0.00
Fine-tuned 8B 42776 42776  0.00 0.00 0.00
Zero-shot 70B 50.66  50.66 0.00 0.00 0.00

Table 8: Agreement between annotators and LLMs (DiPCo): We show the NSP accuracy for each annotator (results
averaged) and the LLMs when the other annotators serve as the ground truth. We show different thresholds for
agreeing annotators that an answer counts as correct. We also display the accuracy grouped by the number of
choices a predictor has (if too many annotators have to agree, the number of possible correct answers shrink).

Transition Relevance Places Methods for turn-
taking use LLMs to predict transition-relevant
places within a stream of words. Transition-
relevant places are points in a dialogue where a turn-
shift can happen. Ekstedt and Skantze (2020) fine-
tuned GPT-2 to predict these spots in written and
spoken dialogues. Later work (Umair et al., 2024)
investigated if more recent LLMs (e.g., Llama 3.1
8B) can do the same.

Audio / Visual Cues Multimodal approaches for
NSP use visual cues like gaze and hand gestures
(Ishii et al., 2016; Malik et al., 2020). This research
incorporates gaze transition patterns and eye con-
tact timing structure (Ishii et al., 2016) or head
movement (Ishii et al., 2015) to predict the next
speaker using support vector machines. Malik et al.
(2020) utilized focus of attention among others to
train classic machine learning classifiers for NSP.
Other systems rely on voice activity projection for
turn-taking prediction (Inoue et al., 2024a,b) which

predicts future voice activity based on the current
audio signal.

6 Conclusion

Our research goal was to investigate the ability
of LLMs to predict the next speaker in a multi-
speaker dialogue setting. We also compared their
performance with humans and fine-tuned LLMs to
improve them on NSP. The experiments on our
compiled benchmark show that LLMs like Llama
3.3 70B can match the human performance on the
NSP task in accuracy and it also shows very high
agreement with human predictors. Smaller LLMs
can achieve this performance or even exceed it by
fine-tuning on dialogue datasets when the dialogue
flow (e.g., with some short noisy utterances) is sim-
ilar. We think that these results imply an ability of
LLMs to “know” when to talk at transition-relevant
places in a multi-speaker dialogue — either through
large model size or fine-tuning on dialogues. Fu-



ture work will investigate how multimodal LLMs
handle the NSP task as this work did not investi-
gate the impact of additional auditory and visual
information about the dialogue.

Limitations

Our investigation is limited to text-only dialogues
and does not cover the use of audio or visual cues.
We do not predict the next speaker on a per-token
or per-word basis but rather after a full utterance.
This assume that the system only receives full ut-
terances as input which is the case if the dialogue
participants interact via text or through an audio
transcript.
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A Prompt

Here, we present the prompt that both the tested
LLMs and the human participants received to
complete the NSP task:

Your task is to predict the next
speaker given the full conversation
history. Do not provide any explanation.
Do not complete the conversation.

This is the conversation history:
<conversation history>

Predict the next speaker by outputting
the name and only the name of the
next speaker. Carefully consider the
motives of the participating speakers
in the conversation. Do not provide
any explanation. Do not complete the
conversation.

B Inference and Training Details

* Hugging Face Transformers library (Wolf
et al., 2020) for loading and running the mod-
els.!

¢ Inference

— All models were loaded in 8-bit precision
via bitsandbytes. 2

— Temperature: 0.0 (no sampling)
* Training

— Supervised Fine-tuning Trainer script
from Hugging Face Transformer Rein-
forcement Learning library. 3

— LoRA (Hu et al., 2022) with rank r» = 8.

* Hardware equipment: Up to two NVIDIA
RTX 6000 Ada Generation GPUs at the same
time.

C Data Collection for Human Baseline

We describe our process of collecting data for the
human baseline in detail.

"https://github.com/huggingface/transformers

Zhttps://github.com/bitsandbytes-foundation/
bitsandbytes

Shttps://github.com/huggingface/trl/

C.1 Sample Selection

We targeted a sample of 1% of each test sets to keep
the amount of work for the voluntary annotators
small while still capturing the nature of the datasets.
However, the different natures added additional
constraints. For ML, we only selected three full
dialogues leading to approximately 1% of the data.
For AMI, a sample of 1% would have been outside
of our annotator budget. Therefore, we selected a
sample of 0.5%. For DiPCo, 1% was not enough
to capture the dataset’s nature, so we doubled the
sample size here.

To decide which samples of the test sets to use
during data collection, we performed several ran-
dom samples of consecutive dialogue utterances
and selected the one showing the most similar ac-
curacy in a zero-shot setting to the full dataset.

C.2 Annotation Acquisition

We asked colleagues working in the field of NLP
and Computer Vision to fill out the forms for our
user study to acquire a human baseline. The par-
ticipation was not mandatory, and we offered no
compensation. We informed the participants that
the data created by them during this user study will
be incorporated into a scientific publication.

We presented the participants of our data collec-
tion for the human baseline the following introduc-
tion texts:

* Human Baseline for Next Speaker Predic-
tion on the AMI Meeting Corpus Dataset
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of)
the AMI Meeting Corpus Dataset (https://
groups.inf.ed.ac.uk/ami/corpus/). You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please read the instructions in the first prompt
carefully. The following questions (63 in to-
tal) will have the same prompt and will only
change the newest (and oldest) conversation
step.

* Human Baseline for Next Speaker Predic-
tion on the Dinner Party Corpus (DiPCo)
Dataset
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
Dinner Party Corpus (DiPCo) Dataset (https:
//arxiv.org/abs/1909.13447). You will
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be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please read the instructions in the first prompt
carefully. The following questions (55 in to-
tal) will have the same prompt and will only
change the newest (and oldest) conversation
step.

Human Baseline for Next Speaker Predic-
tion on the MultiLIGHT Dataset 1/3

I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
MultiLIGHT dataset (https://arxiv.org/
abs/2304.13835). This is the first of three
full conversations I want your help for. You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (26 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

Human Baseline for Next Speaker Predic-
tion on the MultiLIGHT Dataset 2/3

I want to acquire a human baseline for the
task of next speaker prediction on (a sample
of) the MultiLIGHT dataset (https://arxiv.
org/abs/2304.13835). This is the second of
three full conversations I want your help for.
You will be presented the same prompt as the
models [ am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (31 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

* Human Baseline for Next Speaker Predic-
tion on the MultiLIGHT Dataset 3/3
I want to acquire a human baseline for the task
of next speaker prediction on (a sample of) the
MultiLIGHT dataset (https://arxiv.org/
abs/2304.13835). This is the third of three
full conversations I want your help for. You
will be presented the same prompt as the mod-
els I am testing. You will then be asked to
select the next speaker out of the given ones.
Please only enter your choice after your pre-
diction is final (as picking a choice will show
the next conversation state). Please read the in-
structions in the first prompt carefully (whose
conversation history will be empty). The fol-
lowing questions (34 in total) will only show
the newest conversation step. You can use the
conversation steps of the previous questions
for your decision for the current question (as
the models also get the full conversation his-
tory for the current conversation state).

The introduction text for ML differs from the
other datasets as we used a different setup for the
online form. This switch from the setup for ML
to the one used for AMI and DiPCo was mostly
done out of convenience during the creation of the
online form and should not impact the results of
the data collection.

After this introduction text, the participants were
shown the exact same prompt template as they were
presented to the LLMs (subsection 2.2). To select
the next speaker, they could choose from all appear-
ing speakers in that dialogue with a radio button
control element.
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