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Radosław Iżak, Kornel Jankowski, Sonia Janicka and Mateusz Zieliński
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Abstract

Punctuation prediction is a necessary part of
ASR models, usually accomplished in a cas-
caded framework, where a secondary text-
based model supplements an unpunctuated
ASR output with punctuation marks. However,
this approach results in ignoring acoustic con-
text, which makes it poorly suited to certain
languages. In this paper, we explore previously
proposed ideas on an alternative approach,
i.e. Speech-To-Punctuated-Text (STPT) mod-
els, and present a solution that allows adapt-
ing existing ASR models to output punctuated
text. Additionally, we propose utterance glu-
ing, a method of augmenting data to circum-
vent the lack of speech corpora with long ut-
terances and punctuated references. Our STPT
models trained on augmented data outperform
STPT models trained on regular data, as well
as traditional cascaded models, suggesting that
acoustic-based punctuation prediction may be
a good alternative to the more common text-
based punctuation prediction.

1 Introduction

With the advances in Automatic Speech Recogni-
tion (ASR), speech recognition models have be-
come useful in many contexts. Still, there are areas
in ASR research which, despite their influence on
practical usage, remain under-researched. One of
these is punctuation prediction – the task of giving
proper punctuation to the ASR output.

Appropriate punctuation in a text is important
both for its readability to humans (Ákos Tündik
et al., 2018), and for the success of downstream
tasks which use it as input, such as machine trans-
lation (Vandeghinste et al., 2018) or named entity
recognition (Nguyen et al., 2020). Long blocks of
text, if not separated into sentences, can be diffi-
cult for humans and machines to parse through and
understand; additionally, some sentences may be
ambiguous without appropriate punctuation. For
these reasons, no matter the use-case of an ASR

model, having a properly punctuated output is gen-
erally preferable.

Despite this, a still widely-used approach to ASR
models is to make them output unpunctuated, low-
ercase text. Such text is often subject to a sep-
arate process called punctuation prediction (Gra-
vano et al., 2009), which adds punctuation to it.
Many punctuation prediction models do not use
any acoustic features present in speech, relying
only on the text output of ASR as their input; this is
referred to as lexical punctuation prediction. How-
ever, this approach presents issues.

Firstly, if a text may be correctly punctuated in
multiple ways, it is impossible for the model to
distinguish between them without access to acous-
tic context. This is especially striking in languages
that rely more heavily on the acoustic context rather
than the grammatical structure of the sentence to
disambiguate between different meanings, such as
Spanish (Hualde, 2005) or French (Price, 2005),
wherein questions are often distinguished from
declarative statements exclusively through prosody.

Secondly, since the lexical punctuation predic-
tion relies on the text output of the ASR, any ASR
errors are likely to result in punctuation errors, as
the punctuation prediction model tries to punctuate
the incorrect sentence.

Thirdly, this approach adds the burden of main-
taining an additional model alongside the ASR
model itself. This is additionally problematic when
working with limited memory and computational
power, such as when running on mobile devices.

A practiced solution to the first and second is-
sue is creating hybrid punctuation prediction mod-
els which use acoustic features as input alongside
text (Klejch et al., 2017), and have access to addi-
tional acoustic context not present in the text itself.
These models are usually bigger and more complex
than purely lexical models, which makes the third
issue even more prevalent. A less common solu-
tion, which addresses all three issues, is creating



ASR models that directly output punctuated text,
and learn to place punctuation marks based solely
on the speaker’s prosody (Nozaki et al., 2022;
Kim et al., 2023). This is referred to as acoustic
punctuation prediction, and is the solution we are
developing.

The biggest roadblock in developing robust
Speech-To-Punctuated-Text (STPT) models is the
lack of appropriate speech corpora with both punc-
tuated references and long utterances. Discard-
ing corpora without punctuation marks (e.g., Lib-
riSpeech (Panayotov et al., 2015) and Multilingual
LibriSpeech(Pratap et al., 2020)) means severely
limiting training data, which unavoidably results
in worse recognition metrics, especially in low-
resource languages. Moreover, many widely-used
speech corpora used for ASR training contain
mostly one-sentence utterances (e.g., Common
Voice (Ardila et al., 2019)). An STPT model
trained on such a dataset is likely to learn to output
periods and question marks at the ends of utter-
ances only. This is usually not preferable, as most
ASR models are unlikely to process only one sen-
tence at a time.

In this paper, we propose a method of training
an STPT model aimed at tackling both these is-
sues without compromising on the Word Error Rate
(WER) of the model.

2 Related Work

Creating an end-to-end ASR model that takes
speech as input and outputs punctuated text
has been previously undertaken for English and
Japanese (Nozaki et al., 2022) and for English (Kim
et al., 2023).

Mimura et al. (2021) tackled a close topic; how-
ever, their goals were much broader, including re-
moval of filler words and changing the speech to
be more formal, so their findings are largely inap-
plicable to our research.

Recently, STPT models have become much more
popular, with models such as NVIDIA’s Parakeet1

and Canary2 being published. These projects did
not focus on punctuation; they used punctuated and
capitalized transcripts as the training data, so the
models learned to produce punctuation in the out-
put, but the creators do not claim to have used any
specific methods to improve punctuation results,

1https://huggingface.co/nvidia/parakeet-tdt-0.
6b-v2

2https://huggingface.co/nvidia/canary-qwen-2.
5b

and they do not share any metrics showing their
punctuation performance. We will be focusing on
the punctuation-oriented research of Nozaki et al.
(2022) and Kim et al. (2023) in our analysis.

2.1 Architecture changes

The main innovation suggested by Nozaki et al.
(2022) on creating an STPT model is the addition
of an auxiliary loss in an intermediate layer. In
their experiments, this addition improved the per-
formance of the model in multiple metrics; how-
ever, in the experiments conducted by Kim et al.
(2023), the auxiliary loss did not seem to improve
the performance of the model significantly.

Kim et al. (2023) focused on streaming, chunk-
based ASR, in which their model was only pro-
vided with fragments of sentences at a time. This,
as explored in more detail in Section 2.2, seems to
make punctuation detection much more difficult.

2.2 Punctuation in long utterances

Nozaki et al. (2022) acknowledge that the English
training corpus they use, MuST-C (Di Gangi et al.,
2019), contains only single-sentence utterances, but
they do not attempt to solve this issue. Their model
achieves good results on single-sentence test cases,
but they do not test it on longer utterances. Their
Japanese test utterances are single-sentence only,
while only one-sixth of the training ones contain
more than one sentence.

Kim et al. (2023) also used MuST-C, but ad-
dressed the problem in two ways. Firstly, they con-
catenated random pairs of training utterances, so
that every new utterance consisted of two sentences.
Additionally, they also tested the model on long-
form speech. The results on long-form test cases
were worse than those achieved by Nozaki et al.
(2022) on single-sentence test cases, particularly on
periods and question marks. However, the model
presented by Kim et al. (2023) achieved worse re-
sults on periods in single-sentence test cases than
it did on periods in long-form test cases, which
counter-intuitively suggests that it was actually bet-
ter at predicting mid-utterance periods than it was
at predicting utterance-ending ones. This is likely
caused by the fact that its streaming ASR had ac-
cess to less context, which made it difficult for the
model to detect ends of utterances.

https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2
https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2
https://huggingface.co/nvidia/canary-qwen-2.5b
https://huggingface.co/nvidia/canary-qwen-2.5b


3 Proposed Method

Broadly speaking, we wanted our method to be as
easy to adapt and use as possible. Because of that,
the ideas we propose are focused on data process-
ing, and could be implemented to add punctuation
prediction to any ASR model; although, as men-
tioned before in relation to (Kim et al., 2023), some
architectures seem better suited to the task of punc-
tuation prediction than others.

3.1 Punctuation adaptation

In our research, we decided to adapt regular ASR
models on punctuated data, rather than training
STPT models from scratch. This has many ad-
vantages; namely, adapting a model for punctua-
tion prediction is much faster and less resource-
intensive than training an STPT model, which
is practical for production contexts where time
needed to deploy a new model is a factor. Ad-
ditionally, with this method, training corpora with-
out proper punctuation can still be used in the
early phases of training to improve the final ASR
model. Finally, with punctuation adaptation, any-
one can add punctuation prediction to their existing
ASR model, without restarting the training process,
which makes the method easier to test and use.

3.2 Utterance gluing

As previously described, since many ASR corpora
contain only one sentence in each utterance, STPT
models trained on them struggle with placing pe-
riods and question marks in places other than the
ends of utterances. Concatenating pairs of utter-
ances has been proposed as a solution (Kim et al.,
2023); however, an STPT model trained on con-
catenated utterances could learn to recognize ar-
tifacts generated by concatenation (e.g., changes
of speakers, loudness, or in the background noise),
and place punctuation there. We expanded on the
idea of concatenation to make the final utterances
resemble natural long-form speech in the following
ways:

• Only utterances recorded by the same speaker
are concatenated.

• Utterances shorter than 1 second and very
quiet utterances (with RMS amplitude lower
than 0.01) are discarded.

• Every speaker’s utterances are sorted by RMS
amplitude, and concatenated with the ones

next to them on the sorted list, so that the
concatenated utterances have similar volumes.

• Groups of variable numbers of utterances are
concatenated, so that the model does not learn
to rely on the number of sentences in an utter-
ance.

• A short cross-fade (randomly chosen between
8, 10 and 12 ms) is added between the utter-
ances.

• Long periods of silence from the resulting
utterance are cut out, by randomly choosing
duration between 0.6, 0.7, 0.8 and 0.9 sec-
onds, and cutting out all parts of the recording
that are quieter than 0.2% of the maximum am-
plitude of a given recording and longer than
duration. A fragment of silence n seconds
long (where n is a random length shorter than
duration) is left behind, so that some silence
remains.

We call this method utterance gluing, as it is more
complex than simple concatenation. The script
used can be found online3.

3.3 Data processing

We decided to support recognizing periods, com-
mas, question marks, inverted question marks
(¿), exclamation marks, and inverted exclamation
marks (¡). Our data processing pipeline for punctu-
ation data was as follows:

1. All punctuation marks other than those sup-
ported were removed from the reference text.
Additionally, all periods used in abbreviations
and initials were removed.

2. Every occurrence of a supported punctuation
mark was replaced by a tag, written as a sepa-
rate word; those tags were also placed in the
token vocabulary of the model.

4 Models

4.1 ASR

The ASR model used in this work is a conformer-
transducer, a sequence-to-sequence model, which
is a variation of an architecture derived from the
RNN-transducer (Graves, 2012). Specifically, we

3https://github.com/SamsungLabs/
adapting-asr-models-for-stpt-with-utterance-gluing

https://github.com/SamsungLabs/adapting-asr-models-for-stpt-with-utterance-gluing
https://github.com/SamsungLabs/adapting-asr-models-for-stpt-with-utterance-gluing


employ the first-pass model architecture as de-
scribed in section 2 in (Park et al., 2023) without a
feedback path from the joiner to the predictor. We
refrained from using the second-pass portion of the
architecture, focusing on the applicability of the
proposed method to a single-pass streaming model.
We release the code used for training on GitHub3.

The concept relies on employing transcriber and
predictor networks: the former operating on the
acoustic features X ∈ Rd derived from the audio
signal, the latter on the utterance transcription en-
coding Y , representing wordpieces.

The transcriber takes an input sequence of acous-
tic features and outputs a transcription vector. In
this work, the transcriber is a stack of 16 conformer
layers (Gulati et al., 2020) capturing the global,
as well as local patterns by utilizing attention and
convolution layers. To ensure optimal resources uti-
lization, we used striding as a reduction technique
applied to the acoustic features, prior to processing
by the transcriber.

The predictor consists of two layers of an LSTM
network. Its purpose is to learn to model an out-
put sequence g = (g0, g1, ..., gU ), where U corre-
sponds to the tokens’ sequence length.

It is worth noting that the input sequence is the
original tokens’ sequence y = (y1, ..., yU ) with
an encoded null output ∅, prepended to it. There-
fore, at the input, we process an extended input
vector ŷ = (∅, y1, ..., yU ), as proposed by previous
work (Graves, 2012). Utilization of a blank token
enables teaching the model how to align speech,
i.e. account for silent parts in utterances without
malforming the transcribed speech sequence in tem-
poral context.

These networks are jointly trained using a Joiner,
integrating the information from both networks,
with an objective function (commonly known as
RNN-T Loss) defined as log posterior probabil-
ity: L = −ln(y|x). Joiner adds the outputs of
transcriber and predictor, which are further passed
through activation layer and linear layers.

The ASR we trained had 30 million parameters.
An overview of the architecture used for the ASR
model used in this work is shown in Figure 1.

4.2 Lexical restoration

To evaluate our approach against lexical methods,
we also trained and tested transformer-based token
classification models. This was done due to the lack
of appropriate open-source models for this study;

Figure 1: Transducer architecture used in this work.

the most appropriate being KREDOR’s punctuate-
all model4, based on (Guhr et al., 2021), which does
not support exclamation marks and inverted punc-
tuation marks. For each language, an instance of
XLM-RoBERTa-large (Conneau et al., 2019) was
first fine-tuned on a mix of long- and short-form
utterances with a 1:4 ratio, and then further trained
on the former only. The needed datasets were ac-
cessed through the OPUS (Tiedemann, 2012) web-
site and included ParaCrawl (Bañón et al., 2020),
OpenSubtitles (Lison and Tiedemann, 2016), and
EuroParl (Koehn, 2005) to balance formal and in-
formal writing styles. For each dataset, short-form
sentences were retrieved and cleaned (e.g., abbrevi-
ations were removed). Then, a random subsample
was concatenated to form utterances 2-6 sentences
long. In total, each model was trained on more than
16M utterances per epoch, with training ending af-
ter 15 epochs, or if the average of all punctuation
mark metrics plateaued for more than two epochs.

5 Experiments

5.1 Datasets used

We decided to run our experiments on German,
Polish, and Spanish, as those languages represent
three different language subgroups (Eberhard et al.,
2024), and we suspected that different approaches
to punctuation prediction might work best for dif-
ferent kinds of languages. Unfortunately, we could
not train an English model with MuST-C and com-
pare it to previous works on this subject, (Nozaki

4https://huggingface.co/kredor/punctuate-all

https://huggingface.co/kredor/punctuate-all


et al., 2022) and (Kim et al., 2023), since the dataset
is not currently available5.

5.1.1 Training and validation datasets

For punctuation training purposes, we searched
for open-source datasets with well-punctuated ref-
erences. We decided to use Common Voice
16.1 (Ardila et al., 2019) for Spanish and
German, and Common Voice 13.0 with Par-
laSpeech (Ljubešić et al., 2025) for Polish. 1%
of the data was selected for validation. The number
of utterances and punctuation marks in each dataset
can be seen in Table 1.

For the purposes of our experiments, we cre-
ated four versions of each training and validation
dataset:

1. A non-glued, non-punctuated version, used to
train a regular ASR model.

2. A non-glued, punctuated version, with most of
the utterances only containing one sentence,
later referred to as “single-sentence punctu-
ated data" (single).

3. A concatenated, punctuated version, where
utterances were randomly concatenated into
groups of 2-3, resulting in 361k utterances in
German, 230k in Polish and 591k in Spanish,
and their references concatenated accordingly
(concat).

4. A glued, punctuated version, where utterances
were glued together into groups of 2-3, using
the methodology described in section 3.2, re-
sulting in 339k utterances in German, 199k
in Polish and 549k in Spanish, and their refer-
ences concatenated accordingly (glued).

Table 1: Number of utterances and punctuation marks
in original non-augmented datasets.

Language Utts . , ¿ ? ¡ !
German 867k 801k 218k 0 47k 0 22k
Polish 556k 446k 578k 0 51k 0 69k

Spanish 1418k 1418k 508k 5.7k 5.7k 4.5k 8.8k6

5https://mt.fbk.eu/resources/ accessed 2025-01-21
6Although Spanish Common Voice has an unequal num-

ber of opening and closing exclamation marks, and very few
question marks, it was still the best dataset available for our
purpose.

5.1.2 Evaluation datasets

We needed to use real multi-sentence utterances to
evaluate the models on actual mid-utterance peri-
ods, question marks and exclamation marks. We
decided to use Multilingual LibriSpeech (MLS),
which contains many long utterances from audio-
books (Pratap et al., 2020). The released version
of this dataset does not contain punctuation in its
references, but we restored the punctuation using
the original books’ text. Then, for each language,
we selected 1024 utterances which contained at
least one question mark from the training subset
of the corpus, and we manually modified the ref-
erences to only contain the punctuation marks we
were using (e.g., replacing semicolons with peri-
ods). We did not simply remove the unsupported
punctuation marks, as we did in training data, be-
cause MLS contained much more of them than our
training datasets. However, we removed a few ut-
terances which contained punctuation that could
not be straightforwardly replaced. The dataset de-
tails can be seen in Table 2. The evaluation datasets
were released on GitHub3.

Table 2: Number of punctuation marks in evaluation
datasets.

Language Utts . , ¿ ? ¡ !
German 1020 1825 3210 0 1421 0 429
Polish 1014 2958 4051 0 1364 0 351

Spanish 1022 2525 3134 1338 1338 323 323

5.2 Experiment methodology

In our experiment, we wanted to compare the ef-
fectiveness of the following approaches: lexical
restoration and three variants of acoustic recogni-
tion: trained on single, concat, and glued punctu-
ated data.

5.2.1 Acoustic model training

To that end, firstly, we trained a multilingual ASR
model from scratch for 925k steps on the non-
punctuated version of all three training datasets.
Then, we adapted it on the non-punctuated train-
ing dataset for every language, resulting in three
regular, non-punctuated ASR models. Then we
adapted each of them on the single, concat, and
glued punctuated data, resulting in three different
STPT models for every language. Table 3 shows
the numbers of training steps for each checkpoint
chosen for evaluation.

https://mt.fbk.eu/resources/


5.2.2 Vocabulary
The token vocabulary of all of the models was
the same. Tags used for punctuation prediction
were present in the vocabulary from the start, and
went unused by the earlier, non-punctuated models.
Therefore, adaptations consisted simply of running
training from a previously trained checkpoint, with
entirely new training and validation data, and no
other changes. When adapting a previously trained
ASR model with no punctuation tags in the vocab-
ulary, one could accomplish the same outcome by
replacing the least used tokens in the vocabulary
with punctuation tags. This would allow the model
to adapt for punctuation prediction without the size
of the vocabulary being changed, and without the
need to retrain the model from scratch.

5.2.3 Lexical models
Additionally, for every language, we used our lexi-
cal punctuation prediction model (as described in
Section 4.2) and KREDOR’s punctuate-all model
to create two cascaded, lexical STPT models out of
the non-punctuated ASR models created in 5.2.1,
in order to compare the acoustic models with state-
of-the-art lexical punctuation prediction. It is worth
mentioning that our lexical models are more than
18 times larger, and KREDOR is about 9 times
larger, than our STPT models.

5.2.4 Performance metrics
To compare these approaches, we treated them as if
the models were binary classifiers deciding whether
or not the given punctuation mark should be placed
at a given position in the recognized text and com-
pared their precision, recall, and F1 scores. Addi-
tionally, we compared WERs of the models with
punctuation marks excluded.

Table 3: Number of training steps for chosen check-
points.

Language non-punct single concat glued
German 1891k 2143k 2000k 1980k
Polish 1569k 1703k 1600k 1654k

Spanish 1960k 2420k 2140k 2155k

5.3 Results and discussion
The evaluation results of the five previously de-
scribed approaches for each language can be seen
in Table 4. Since the lexical models used the out-
puts of non-punctuated ASR models, the WERs
listed in the lexical models’ rows are the WERs
of acoustic models before punctuation adaptations.

They can be also used to see how punctuation adap-
tations affected WERs.

5.3.1 Exclamation marks
In our experiments, exclamation marks could not
be reliably recognized by any model (best F1 score
was 0.21, and most were far worse). In acoustic
models, this does not seem to stem from them be-
ing underrepresented in training data (see Table 1).
It is likely they are close enough to periods, both in
their pronunciation and their usage, that neither lex-
ical nor acoustic model can tell them apart. Since
mistaking exclamation marks for periods does not
usually impact the meaning of the text, we decided
to treat exclamation marks as equivalent to periods
in our results, and disregard inverted exclamation
marks.

5.3.2 Lexical models
Our lexical models achieved similar results to KRE-
DOR’s state-of-the-art model, with the notable
exception of question marks, where their results
were better. For that reason, going forward, we
will be using them as the lexical state-of-the-art
benchmark. Although our models were trained on
very similar data to each other, some metrics differ
strongly between languages. This suggests that lex-
ical punctuation prediction may be better suited for
some languages than for others.

5.3.3 Acoustic models
In general, the single acoustic models performed
very poorly, achieving the lowest F1 scores out of
the acoustic models on all languages and punctu-
ation marks, except for Spanish utterance-ending
periods. As predicted, they were almost unable
to produce mid-utterance periods and question
marks, with the notable exception of Spanish mid-
utterance periods.

In Polish and German, the glued models
achieved the highest F1 scores on all punctua-
tion marks, outperforming all other models, both
acoustic and lexical. The most notable differ-
ence between lexical and glued models was in
mid-utterance periods and mid-utterance question
marks, though in Polish the difference on utterance-
ending question marks was also large.

In Spanish, there is no clear best-performing
model. Our Spanish acoustic models were by far
the worst of the three languages at recognizing
question marks, and they were outperformed by
the lexical model. This is likely caused by question



Table 4: Comparison of recalls, precisions and F1 scores of punctuation marks’ recognition between models. For
sentence-ending punctuation marks, results are split into mid-utterance and utterance-ending marks. Exclamation
marks have been treated as periods, and inverted exclamation marks have been deleted. WER values are calculated
with punctuation marks excluded.

Language Model WER mid . end . , mid ? end ? ¿
Rec Pre F1 Rec Pre F1 Rec Pre F1 Rec Pre F1 Rec Pre F1 Rec Pre F1

German

KREDOR 0.24 0.49 0.59 0.53 0.91 0.69 0.79 0.65 0.65 0.65 0.32 0.67 0.44 0.48 0.83 0.61 - - -
lexical 0.24 0.50 0.53 0.52 0.88 0.72 0.79 0.64 0.67 0.65 0.41 0.62 0.49 0.53 0.88 0.66 - - -
single 0.21 0.02 0.90 0.03 0.90 0.64 0.75 0.64 0.51 0.57 0.01 0.73 0.02 0.37 0.76 0.49 - - -
concat 0.19 0.57 0.72 0.63 0.93 0.69 0.80 0.63 0.66 0.64 0.34 0.77 0.47 0.48 0.86 0.61 - - -
glued 0.19 0.70 0.67 0.68 0.93 0.71 0.81 0.62 0.68 0.65 0.49 0.76 0.59 0.53 0.86 0.66 - - -

Polish

KREDOR 0.28 0.46 0.59 0.52 0.95 0.78 0.86 0.63 0.63 0.63 0.28 0.66 0.39 0.46 0.83 0.60 - - -
lexical 0.28 0.46 0.57 0.51 0.94 0.78 0.85 0.61 0.62 0.62 0.39 0.61 0.47 0.48 0.85 0.61 - - -
single 0.24 0.00 0.32 0.01 0.92 0.73 0.81 0.67 0.49 0.56 0.05 0.89 0.09 0.32 0.67 0.44 - - -
concat 0.22 0.32 0.78 0.45 0.94 0.79 0.86 0.68 0.57 0.62 0.46 0.85 0.60 0.50 0.81 0.62 - - -
glued 0.21 0.50 0.78 0.61 0.96 0.85 0.90 0.61 0.67 0.64 0.67 0.82 0.74 0.66 0.88 0.76 - - -

Spanish

KREDOR 0.24 0.39 0.55 0.45 0.99 0.54 0.70 0.52 0.47 0.50 0.06 0.59 0.11 0.07 0.88 0.14 - - -
lexical 0.24 0.45 0.54 0.49 0.91 0.63 0.74 0.44 0.52 0.48 0.24 0.54 0.33 0.34 0.87 0.49 0.31 0.73 0.43
single 0.33 0.27 0.68 0.39 0.99 0.64 0.78 0.36 0.50 0.42 0.02 0.41 0.03 0.01 0.75 0.02 0.03 0.62 0.05
concat 0.17 0.52 0.76 0.62 0.97 0.58 0.72 0.51 0.54 0.53 0.20 0.44 0.28 0.21 0.87 0.34 0.25 0.62 0.36
glued 0.16 0.74 0.63 0.68 0.98 0.56 0.71 0.40 0.60 0.48 0.22 0.55 0.32 0.14 0.88 0.24 0.24 0.75 0.36

marks being underrepresented in the Spanish train-
ing corpus. In internal experiments which utilized
glued non-public data of better balance, higher re-
sults were achieved (0.39 recall and 0.88 precision
for mid-utterance question marks, 0.38 recall and
0.94 precision for utterance-ending question marks,
0.35 recall and 0.88 precision for inverted ques-
tion marks; for other punctuation marks, the results
were comparable to the glued model).

5.3.4 Effects on WER

The WER seems positively affected by concatena-
tion and gluing, although all acoustic models had
access to the same training data, just processed dif-
ferently. We think this is linked to the fact that
the evaluation data consists of long utterances; it
seems that training ASR models on long utterances
improves their performance in recognizing long
utterances.

5.3.5 Checkpoint instability

It is important to mention that during our training
runs, the punctuation results between even close
checkpoints varied strongly; it seemed difficult
for an STPT model to find a local minimum for
a punctuation task, as the model was trained for
minimizing WER in general, without any special
optimization for punctuation. It is likely that a
training method with two loss functions, one aimed
at minimizing WER and the other at optimizing
the punctuation performance, could be used to im-
proved the results further. That being said, we have
trained our models for a significant time, and the

checkpoints we are presenting are the best of many,
so we are reasonably sure that these are the best
punctuation results possible with this method, de-
spite the variability.

5.4 Possible new issues

We have found that acoustic punctuation prediction
addresses issues inherent to lexical punctuation pre-
diction, namely lexical ambiguity and dependence
on good ASR output for good results. In our hands-
on experiments, for example, a strong questioning
tone of voice was enough to produce a question
mark, regardless of whether the phrase spoken was
grammatically a question, a statement, or even in-
coherent babble.

However, this approach creates new issues that
need to be discussed. Some speakers may have a
flat tone of voice that does not indicate a question
when they are asking one. Some may pause while
speaking, without intending for a comma or a pe-
riod to be placed. In general, the performance of
acoustic punctuation prediction is more dependent
on the speaker, and how clearly they are speaking,
and less dependent on whether the phrases they
are using are grammatically correct, and have been
recognized correctly.

Since we have proven that acoustic models can
outperform lexical models, it seems that these is-
sues are less prevalent than the ones present in
lexical models, at least in our test cases.



6 Conclusions

In this paper, we postulate that acoustic punctuation
prediction is a strong alternative to lexical punc-
tuation prediction. We show that multi-sentence
training utterances are necessary for training well-
functioning STPT models, and that punctuated
training corpora with single-sentence utterances
can be augmented to be used for STPT model train-
ing. We theorize about the problems caused by
concatenation, and we address them by develop-
ing our gluing technique. We show that gluing
improves the results over concatenation (weighted
avg F1 equal 0.5725 and 0.5371, respectively), and
that both methods are superior to training acous-
tic models on single-sentence utterances. We also
show that acoustic models can outperform lexical
punctuation prediction models (with weighted avg
F1 equal 0.4857), despite being much smaller.

7 Future work

The biggest challenge of end-to-end STPT models
is the lack of well-punctuated corpora with multi-
sentence utterances. This work was an attempt
to circumvent that, and could be developed by im-
proving the gluing methods further; however, if real
long-utterance corpora were developed, the models
trained on them would likely outperform the ones
presented here, and possibly any model trained on
glued data. Additionally, as we showed that lan-
guages can be better or worse suited for different
approaches to punctuation prediction, we hope that
more research on the topic will be conducted with
non-English languages in mind.

Since the acoustic punctuation prediction is gain-
ing popularity, as seen in models such as NVIDIA’s
Parakeet1 and Canary2, we believe it is important to
measure and share the punctuation results of STPT
models and work to improve these results, instead
of treating punctuation as an afterthought. Judg-
ing by the high-quality outputs of these models,
even though the authors did not share punctuation
metrics, it seems that English STPT models can
be trained on non-augmented punctuated data from
scratch, since there is quite a large amount of such
English data. For other languages, methods pre-
sented in this paper may be needed.

Lastly, we suggest that future efforts in devel-
oping speech corpora include punctuation in their
references if possible, to enable further develop-
ments in this field.

8 Limitations

In our work, we have shown the advantage of acous-
tic models over lexical models when it comes to
small ASR models trained on relatively small cor-
pora, with relatively high WER. However, high
WER negatively impacts the performance of lexi-
cal models, as the input they receive is unreliable.
It would be useful to test these methods on larger,
better-performing ASR models, and find if acoustic
models continue to outperform lexical ones when
the WER is lower.

Additionally, we have focused on one specific ar-
chitecture – the sequence transducer – in our work.
We hope the methods shown here are transferrable
to different architectures, as none of our methods
were reliant on the features of the sequence trans-
ducer. However, it is possible that different archi-
tectures differ in their suitability for use for STPT,
and we do not know if the results shown here are
representative of how every architecture would per-
form. This has to be investigated further to reach
any definite conclusions.
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