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Abstract

Language identification is a task that often finds
applications in NLP pipelines that serve mul-
tiple languages. The task is classically pre-
sented as a sentence classification problem and
models’ performance degrades quickly when
applying them to short phrases or individual
words. Although challenging, fine-grained lan-
guage identification is key to improve the per-
formance of downstream tasks. This work ex-
plores the performance of both Encoder-Only
and Decoder-Only Transformer Language mod-
els for the task of automatic word-level lan-
guage identification. The results show that for
this particular task, small Encoder-Only models
outperform larger Decoder-Only models.

1 Introduction

This paper explores Word-Level Language Identi-
fication (WLID) within the context of a cascaded
Speech-to-Speech (S2S) translation system with
human supervision as an example application. Al-
though there are several promising end-to-end ap-
proaches, the cascaded approach remains the pre-
ferred choice when human intervention is desired
at multiple steps of the process. For the Speech-
to-Speech or dubbing task, an additional problem
occurs when the text to be uttered automatically
contains words belonging to a language other than
the target language. These words are a source of
errors because the normal rules for pronunciation
of the target language cannot be applied. There
are many possible sources for these words, such as
named entities, slang and loanwords. Fine-grained
language labels can enhance various applications,
including Text-to-Speech (TTS) models, by gen-
erating more accurate phoneme sequences (Vesik
et al., 2020; Zhu et al., 2022) or using language-
specific embeddings (Yang et al., 2024).

The contributions of this paper are three-fold:
1) We annotate a novel dataset for the word-level
language identification task under the translation

setting, 2) we benchmark multiple automatic ap-
proaches to this problem, including both Encoder-
Only and Decoder-Only Large Language Models
(LLMs) and 3) we propose new techniques to al-
leviate LLMs hallucinations in the context of the
WLID task.

1.1 Related work

To the best of our knowledge, there are no works
that address the WLID task in the context of dub-
bing. The closest related task is code-switching
identification, which we take as a starting point
since it is the most similar. There are however
significant differences between the two. Code-
switching is a stylistic choice of the speaker, typi-
cally used in informal contexts, whereas this work
deals with the presence of foreign words within
text in the target language, which mainly occurs as
a result of the translation of foreign media. Code-
switching techniques and models can thus be used
for this task, but the difference in domains and
formality levels means that the techniques and find-
ings of the standard code-switching approaches
might not translate to this specific task. This moti-
vates the need for specific training and evaluation
data to assess and improve the performance of au-
tomatic systems.

Automatic approaches to code-switching can in-
clude both hand-crafted rules and statistical models,
as well as hybrid systems that combine the two. Ili-
escu et al. (2021) compare multiple approaches
using semi-supervised data, whereas Osmelak and
Wintner (2023) train a Conditional Random Field
system whose input is a sequence of word-level
features. Sterner and Teufel (2023) proposed a
rule-based system (TongueSwitcher) and compared
it with a BERT-like model trained on the data la-
beled with TongueSwitcher and human labels, and
observed similar performance for German-English.
Additionally, much work has been done to study the
effects of code-switched text on the performance



Table 1: Dataset statistics, including number of sentences (#sent), number of words (#words) and the number of

those words that have been tagged as English (#En words).

Spanish - TED Spanish - Media German - TED
#sent #words #En words #sent #words #En words #sent #words #En words
train 2048 39182 1849 - - - 1024 17719 1014
dev 1316 26076 310 - - - 1574 25269 300
test 2502 42294 454 1854 9959 139 2823 43197 575

of automatic models. Winata et al. (2021) com-
pare multiple techniques and finds that good results
are obtained with the XLLM-RoBERTa family of
models. Zhang et al. (2023) find that LLM’s perfor-
mance significantly decreases for code-switched
data across a variety of tasks (Sentiment Anal-
ysis, Machine Translation, Summarization and
Code-Switching Language Identification). Their
results show that it is competitive to finetune a
smaller model rather than using an LLM. In the
present work, we explore further the relative perfor-
mance of Encoder-Only models and larger LLMs
(Decoder-Only) using different approaches.

2 Methodology

2.1 Datasets

The main dataset used for the experiments reported
on this paper is the MuST-C dataset (Di Gangi
et al., 2019), a Speech Translation dataset that
contains the recordings of multiple English TED
talks as well as their translations into multiple lan-
guages. Specifically, we used the English-Spanish
and English-German translation sets. We also ex-
perimented with an in-house dataset of media con-
tent. This dataset consists of English media with
translations into Spanish.

The original MuST-C dataset does not include
WLID labels, so we asked 2 native speakers of the
target language to annotate each set. Table 1 reports
a summary of the dataset statistics. The majority
of the words are in Spanish, with around 1% of
the words being in English. However, 10% of the
sentences contain at least 1 English word, so even
if the amount of words is low, it is common enough
that the user-perceived quality is affected if this is-
sue is neglected. The manually annotated training
set was constructed so that there is a 1:1 proportion
between sentences with and without English words.
The remaining MuST-C train sentences were au-
tomatically annotated with Llama 3.1 70B, to be

used for semi-supervised experiments. !

2.2 Models

Both Encoder-Only and Decoder-Only models are
tested based on previous results from the litera-
ture. For the first case, XLM-RoBERTa (Conneau
et al., 2020) was used, in both base (270M) and
large (550M) configurations. We take the pre-
trained model and fine-tune it for the WLID task
following a token classification approach, similarly
to what is done for Named Entity Recognition
(NER). Additionally, the existing Encoder-Only
TongueSwitcher (Sterner and Teufel, 2023) model
is also tested, which is a multilingual BERT model
(Devlin et al., 2019) (172M) German-English code-
switching model. The TongueSwitcher model has
two versions: a pre-trained version that has been
trained for the language modeling task with 24.6M
Tweets that contain mixed German and English,
and a code-switch detection model that has been
further fine-tuned with supervised code-switching
annotations. For the second case, we used Decoder-
Only LLM from the Llama family. The recently
released Llama3.1 (Dubey et al., 2024) 8B and 70B
models were selected. After iterating through mul-
tiple prompts, we ended up with the prompt format
shown in Table 2. Making the model output a la-
bel for every word in the sentence rather than only
those on a different language, as well as forcing the
output to be generated in a CSV-like format were
significantly helpful to improve the accuracy of the
model and to ensure that the model copies the input
sentence.

Even after iterating multiple times to find the op-
timal prompt, we still observe many occurrences of
hallucinations, that is, the generation of a sequence
of words that differs from the original sentence to
be annotated. This is not acceptable because the
WLID system should add language annotations if

'The labels to reproduce the dataset are made available at
https://github.com/mattiadg/wlid-annotations.


https://github.com/mattiadg/wlid-annotations

Table 2: Prompt format used for LLM inference.

Instruction

The input is a {default_language} sentence. Your task is to output the language for each word
in the sentence. Write one line for each word in the original sentence. Each output line will

contain the word and the language, separated by a comma and a space. If a word exists in
{default_language} and other languages, write {default_language}. Only answer to the last
question and do not write additional questions.

Input He comprado un ordenador ThinkPad.
He, Spanish
comprado, Spanish

Response un, Spanish

ordenador, Spanish
ThinkPad., English.

necessary, but leave the input text unchanged other-
wise. We propose two techniques to post-process
LLM hypothesis for which hallucinations are de-
tected. The first is to replace the LLM hypothesis
by the default hypothesis, which is the one where
no words are labelled as a foreign language. As
a second technique, we propose a post-processing
algorithm called AutoMap to match the generated
text against the original sentence. Specifically, we
initially assign the default target language label to
every word on the original sentence. Then, we
take each generated word and compare it with the
words in the original sentence. If there is a match,
we assign the label of the generated word. Figure 1
provides an example of AutoMap in action.

3 Experiments

All development decisions are made based on the
results on the MuST-C dev set. XLM-RoBERTa
models are trained with Adam (Kingma and Ba,
2015) using le-5 learning rate and batch size 16,
for a total of 8k steps with early-stopping every 500
steps. The learning rate is linearly scaled during
the first 10% steps. Table 3 reports the results for
the XLM-RoBERTa model based on the number of
available training samples. Additionally, we also
test wheter using the semi-supervised data anno-
tated with Llama 3.1 is helpful, by adding 2048
sentences to the largest configuration, for a total
of 4096 sentences (+SSup). Results are reported
using the F1 score of the English class, as all of the
tested configurations achieve 1.00 F1 score for the
non-English class after rounding-up. The model
is able to obtain acceptable results starting from
128 training samples, with increases in quality each
time the available data doubles in size, starting to
plateau when reaching 2048. Adding additional
semi-supervised data degrades the performance
rather than helping.

Table 3: XLM-RoBERTa results on the MuST-C Span-
ish dev set, using either the Base or the Large config-
uration. +SSup includes an additional 2048 examples
automatically annotated with Llama. F1 scores for the
English class.

Number of training samples

128 256 512 1024 2048 +SSup
B 073 075 078 081 0.82 0.62
L 077 080 0.80 0.82 0.83 0.67

LLM models were tested both using the in-
context learning (ICL) approach as well as fine-
tuning (FT) with LoRA (Hu et al., 2022). Sampling
is disabled when generating the LLM hypothesis,
as we found that this helped to slightly increase
quality and reduce hallucinations. Table 4 shows
the performance of the LLM ICL approach on the
MuST-C dev set. The train subset was shuftled
once and then the first n samples were selected to
be used in the prompt. That is, the example se-
lected for n = 1 is also used for n = 2 and so
on. We observe no performance improvements for
increasing the number of examples beyond 1.

Table 4: LLM evaluation results for MuST-C Span-
ish dev set, using n in-context samples. Results show
English-class F1 score.

n
Model 1 2 4 8 16 32

L-8B 054 052 049 047 0.50 0.50
L-70B 0.71 0.71 0.70 0.70 0.70 0.69

For fine-tuning with LoRA, the best results were
obtained with learning rate le-4, rank 16, o =32,
dropout 0.05 and 8 epochs of fine-tuning. Table 5
compares the results of both ICL and FT depending
on the post-processing technique. The results high-
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Figure 1: Example of AutoMap post-processing for LLM hallucination. The labels of the LLM hypothesis (bottom)
are mapped to the original text (top) by looking for exact matches (ignoring casing and punctuation) between the
hypothesis and the original text. The text is in Spanish and the shaded box represents a word detected as English.
The LLM hallucinated and failed to generate a label for "un browser, prueba con"”, which also includes the English
word browser, so it retains the default labels for those words.

Table 5: LLM performance on the MuST-C Spanish
dev set. We compare scoring the raw output ((}), using
AutoMap with exact matches (Ams) and using AutoMap
but ignoring casing and punctuation (Am). F1 scores
for the English class.

8B 70B
0 Ams Am () Ams Am
ICL 001 045 054 023 060 0.71
FT 0.01 045 059 0.01 056 072

light the importance of the AutoMap technique
in mitigating hallucinations. It can be observed
how results are very poor without AutoMap, as the
model struggles to reproduce the input sentence.
However, the introduction of AutoMap (Ams) sig-
nificantly boosts the performance of the system.
Results are improved further if punctuation and
casing are not taken into account when looking for
word matches (Am), which indicates that casing
and punctuation account for a significant portion of
the mistakes. When using AutoMap, the finetuned
models improve the ICL results by 0.05 F1 for the
8B model, and 0.01 F1 for the 70B model. Once
again, this highlights the importance of AutoMap,
as it allows to extract better performance from the
fine-tuned models. The results also suggest that
fine-tuning is able to increase the linguistic knowl-
edge of the model, which helps to better detect
foreign words, but it is not helpful for the model to
learn to copy the input.

Table 6 shows the evaluation of the final mod-
els on the selected test sets. The English-German
models are also compared with two versions of
TongueSwitcher: the code-switch detection BERT-
based model (TS) pre-trained on ample English-
German code-switching data, as well as the base-
line TS model fine-tuned with our WLID data (FT-

Table 6: Final evaluation results on the test sets, for
XLM-RoBERTa (R-Base, R-Large) and Llama3.1 (L-
8B, L-70B) models. Precision/Recall for the English
class.

Spanish German
Ted Media Ted
Model P R P R P R
R-Base 0.68 094 0.69 091 0.62 0.92
R-Large 0.69 098 0.73 094 0.68 0.92
L-8B 0.40 093 0.60 0.86 0.42 0.95
L-70B 048 097 0.68 0.86 0.45 0.96
TS - - - - 0.64 0.49
FT-TS - - - - 0.73 0.86

TS). Similarly to what was observed on the dev set,
RoBERTa-based models outperform the Llama 3
models on the TED talks evaluation set, both for
the Spanish and the German case. The TS code-
switching system underperforms the other systems,
and its performance only recovers when it has been
trained with our WLID data (FT-TS). This high-
lights the need for specific data for WLID, as the
existing code-switching systems cannot be directly
applied to this task.

4 Conclusions

This work has introduced a new setting for word-
level language identification, and provided a set of
in-depth experiments to assess the performance of
automatic models. Two interesting findings arise
out of this research. First, there is still room for im-
provement on this task, on both the in-domain talks
and out-of-domain media settings. Secondly, un-
like current trends that tend to favor Decoder-Only
LLMs, Encoder-Only models are a competitive,
cost-efficient alternative for this task.

In terms of future work, Encoder-Only models



can be extended to the multilingual setting in or-
der to simplify deployment, reduce costs and to
improve quality and robustness. Additionally, the
performance of both Encoder-Only and Decoder-
Only models should be tested on a zero-shot set-
ting, to assess their capabilities on language pairs
for which little or no training data exists.
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