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Abstract

Progress in biomedical Named Entity Recog-
nition (NER) and Entity Linking (EL) is cur-
rently hindered by a fragmented data landscape,
a lack of resources for building explainable
models, and the limitations of semantically-
blind evaluation metrics. To address these
challenges, we present MedPath, a large-scale
and multi-domain biomedical EL dataset that
builds upon nine existing expert-annotated EL
datasets. In MedPath, all entities are 1) nor-
malized using the latest version of the Unified
Medical Language System (UMLS), 2) aug-
mented with mappings to 62 other biomedical
vocabularies and, crucially, 3) enriched with
full ontological paths—i.e., from general to
specific—in up to 11 biomedical vocabular-
ies. MedPath directly enables new research
frontiers in biomedical NLP, facilitating train-
ing and evaluation of semantic-rich and inter-
pretable EL systems, and the development of
the next generation of interoperable and ex-
plainable clinical NLP models.

1 Introduction

Health-related textual narratives abound in the
healthcare domain and can be found for example
in a patient’s electronic health record (Johnson
et al., 2023), in scientific research papers (PubMed,
2025), or in social media posts (Basaldella et al.,
2020). Making sense of and integrating the medi-
cal concepts in these narratives is a complex task
that requires in-depth domain knowledge. Named
Entity Recognition (NER) and Entity Linking (EL)
are two foundational tasks in clinical NLP whose
main goal is structuring the unstructured (Roder
et al., 2018). In NER, we wish to identify all men-
tion spans of clinically relevant entities in some
input text (e.g., all drug mentions in a clinical
progress note; Nadeau and Sekine 2007). In EL,
we go a step further and wish to link these men-
tion spans against a biomedical knowledge graph
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(BioKG), where medical knowledge is structured
and systematised (Kartchner et al., 2023a).

While there are datasets available to train and
benchmark clinical and biomedical EL models,
e.g., SNOMED-CT EL challenge for clinical
notes (Davidson et al., 2025), BCSCDR for chemi-
cal-disease literature (Li et al., 2016), or COMETA
for social media posts (Basaldella et al., 2020), ex-
isting datasets suffer from three critical issues. Se-
mantic fragmentation: Datasets are anchored to
a single BioKG (e.g., SNOMED-CT) or include
texts from a single domain (e.g., clinical notes).
This creates information siloes leading to models
that will not generalise beyond their biomedical
vocabulary/domain. Explainability: “Black-box”
models increasingly face regulatory push-back in
safety-critical domains (Huang et al., 2024; Ullah
et al., 2024). There is a distinct lack of ground-
truth data to train and evaluate interpretable clinical
NLP models, especially for EL and similar tasks.
Superficial evaluation: The performance of EL
models is typically measured using “flat” metrics
like precision, recall, and F1-score. While useful
insofar, these metrics treat all errors as equal, e.g.,
incorrectly linking congestive heart failure to my-
ocardial infarction (both types of heart disease) is
penalized identically to linking it to influenza (a
completely unrelated viral disease). In other words,
such metrics fail to capture the semantic nuance of
prediction errors and do not distinguish models that
make more plausible mistakes (Falis et al., 2021;
Amig6 and Delgado, 2022; Plaud et al., 2024).

In this work, we introduce MedPath, a large-
scale Entity Linking dataset that addresses all the
above issues. MedPath’s main features include:

* Integration: We harmonise and integrate nine
expert-annotated, curated datasets covering
clinical notes (ShARe/CLEF 2013, Suomi-
nen et al. 2013a; SNOMED-CT EL Chal-
lenge, Davidson et al. 2025), biomedical lit-

2959

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 2959-2978
December 20-24, 2025 ©2025 Association for Computational Linguistics



NCBI-Disease (MESH)

"The major cause of hepatic copper
accumulation in man is a dysfunctional
ATP7B gene, causing Wilson disease"

D008107 D006527

UMLS Normalization

| feel a bit drowsy & have a little blurred
vision, so far no gastric problems.

271782001 246636008 162076009

....................

CADEC (SNOMED CT)

UMLS CUI:  C0013144
;‘”SNDMEDCT_US: 158122000 H
HPO: HP:0002329MDR i
> MDR: 10013649 :
Vocabulary : Parallel Vocabulary Codes
Mapping
C0016204
) ) UMLS CUI: C0013144
Gastrointestinal 1 |l
problem H "y

Finding (TO33)

C0023895 C€0019202 C0013144 C0344232

Diseases of Hepatoneurologic Drowsiness Dull vision NOS
liver Wilson Dis (situation)

‘ Path Extraction

Semantic Type (TUI)

SNOMED_CT US: SNOMED CT Concept (138875005) -~ Observable entity (363787002) » Function (246464006) - Nervous system function (18373002)

- Cerebral function (4605009) - Drowsiness (271782001)

HPO: All (HP:0000001) » Phenotypic abnormality (HP:0000118) - Abnormality of the nervous system (HP:0000707)
- Abnormal nervous system physiology (HP:0012638) » Abnormality of mental function (HP:0011446)
MDR: - Reduced consciousness (HP:0004372) - Drowsiness (HP:0002329)
Nervous system disorders (10029205) » Neurological disorders NEC (10029305) - Disturbances in consciousness NEC (10013509)

- Somnolence (10041349) - Drowsiness (10013649)

Figure 1: MedPath creation process. For illustration purposes, we show one example from two different datasets,
and vocabulary mappings and path annotations for only one of the concepts, e.g., C0013144 Drowsiness (situation).

erature (BC5CDR, Li et al. 2016; NCBI Dis-
ease, Dogan et al. 2014; MedMentions, Mo-
han and Li 2019), drug-label prose (TAC
2017 ADR, Roberts et al. 2017a), and so-
cial media (CADEC, Karimi et al. 2015;
COMETA, Basaldella et al. 2020), totalling
500,000+ mentions and 45,000 unique concepts.

* Vocabulary normalization: We normalise all
entities, grounded in different BioKGs, to a
canonical UMLS CUI (2025 AA; Bodenreider,
2004). We also map each code in one vocabu-
lary to corresponding codes in all other covered
vocabularies (up to 62 vocabularies in total).

* Hierarchical multi-vocabulary paths: We an-
notate each concept with full hierarchical paths
(i.e., from coarser to finer concepts) for the vo-
cabularies that expose a usable API or where the
full hierarchy is publicly available for download
(11 biomedical vocabularies in total).

In Figure 1, we show the step-by-step process
consisting of UMLS normalisation, vocabulary
mapping, and hierarchical annotation generation.
We show two running examples from the NCBI-
Disease and CADEC datasets, respectively, clearly
illustrating how our dataset addresses the semantic
fragmentation and hierarchical annotation gaps.

In Sections 5 and 6, we introduce hierarchy-

'We use the terms biomedical knowledge graph, controlled
clinical vocabulary, and vocabulary interchangeably.

aware evaluation metrics (exact, ancestor-based,
and hierarchy-based) and show initial experiments
using MedPath on vocabulary-agnostic EL.
Finally, we release the codebase to reproduce
MedPath under a permissive open-source licence
at https://github.com/mnishant2/MedPath.

2 Related work

NER and EL are among the most important tasks
in clinical NLP. NER helps us identify all mention
spans of clinically relevant entities in some input
text. In EL, the goal is to link these mention spans
against a specific structured biomedical knowledge
graph, e.g. SNOMED-CT.

Biomedical EL systems have evolved from lex-
ical matchers like MetaMap (Aronson and Lang,
2010) and TaggerOne (Leaman and Lu, 2016), to
embedding-based retrievers such as SapBERT (Liu
et al., 2020) and BioSyn (Sung et al., 2020), and
finally to generative architectures (De Cao et al.,
2020; Xiao et al., 2023; Yuan et al., 2022).

Recent work has emphasized the critical need
for interoperable biomedical NLP systems that
are robust to vocabulary fragmentation. For in-
stance, Neumann et al. (2019) and Beltagy et al.
(2019) highlight the challenge of deploying mod-
els across datasets grounded in different BioKGs
and domains. Similarly, Wadden et al. (2019) and
Fries et al. (2022) underscore the brittleness of
vocabulary-specific pipelines, which limit general-
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Dataset / Benchmark Release NER EL #items Unit #datasets #tasks #vocabs Vocab I&S Path ann. TUI ann.
GERBIL platform 2015 X v — — 32 1 (EL eval) 5+ X X X
MedMentions 2019 v v 352k mentions 1 2 (NER, EL) 1 X X X
BLUE 2019 v X — — 10 5 (NER, RE, QA) 0 n/a X X
CrossNER 2020 v X 5,318  paragraphs 1 1 (NER) 0 n/a X X
Few-NERD 2021 4 X 491k entities 1 1 (NER) 0 n/a X X
BLURB 2021 v X — — 13 6 (LU tasks) 0 n/a X X
BigBio 2022 v v ~24M  examples 126+ 13 categories 5+ X X
BELB 2023 X v 347k  mentions 11 1 (EL) 7 X X
MedInst 2024 X X 7M  instructions 133 133 (instr.) 8+ n/a X X
BRIDGE 2025 v X 1.4M  samples 87 8 (clin. NLP) 0 n/a X X
MedPath (ours) 2025 v /  ~512K mentions 9 3t 621 4 4 v

Table 1: Comparison of multi-dataset / benchmark resources. Symbols: v = yes; X = no;

= partial/limited support.

#items counts gold-annotated units; “Unit” clarifies their type. Vocab I&S: cross-ontology vocabulary integration
& standardization. Path ann.: ancestor / hierarchy paths provided. TUI ann.: UMLS Semantic Type identifiers
attached. T: NER, EL and hierarchical EL. : flat codes, and 11 vocabularies with full hierarchy

ization across real-world settings. Zu et al. (2024)
proposes a collective entity linking method based
on relationship paths, Moussallem et al. (2017),
and Zwicklbauer et al. (2016) demonstrate a knowl-
edge base agnostic entity linking system, while
Jannet et al. (2014) introduced a novel metric for
evaluation of hierarchical NER.

2.1 Task-specific corpora for NER and EL

Early biomedical NER efforts relied on single-
vocabulary, single-domain corpora. Some notable
examples include i2b2/VA 2010 linked against
SNOMED CT (Uzuner et al., 2011), BC5SCDR
chemical—disease abstracts (Li et al., 2016) linked
against MeSH, ShARe/CLEF 2013 clinical notes
(Suominen et al., 2013b) linked against UMLS,
and MedMentions (Mohan and Li, 2019) densely
annotated PubMed abstracts against UMLS.

Later corpora widened the source spectrum,
e.g. TAC2017 (Roberts et al., 2017b) that in-
cluded drug-label prose (MedDRA) and COMETA
(Basaldella et al., 2020) that had social-media
posts (SNOMED CT). Individually, they cover a
diverse range of data sources and formats, annota-
tion guidelines, entity types, and native controlled
clinical vocabularies. However, since they are an-
chored to a single vocabulary and a bespoke span
guideline, it is difficult to harmonize model im-
plementation and/or benchmarking across them,
leading to a lack of interoperability.

2.2 Large-Scale Biomedical Benchmarks

Recently, efforts have been made to consolidate
individual datasets into larger task-based bench-
mark suites, which aim to homogenize fragmented
datasets in terms of volume and diversity (He
et al., 2023; Rouhizadeh et al., 2024). BLURB

(Gu et al., 2021a) is a composite dataset that
bundles 13 biomedical language understanding
tasks (sentence similarity, NER, QA, etc.), but
it does not target entity linking, provides no
unified concept identifiers, and focuses almost
exclusively on literature. BigBio (Fries et al.,
2022) is a wrapper that brings together over 120
different biomedical datasets, including NER and
NED based corpora, and streamlines them into a
common Huggingface schema, but keeps original
IDs and offers no cross-vocabulary mapping.
BELB (Garda et al., 2023) is another collated
large-scale dataset that is specifically concerned
with Entity Linking. It includes 11 different
EL datasets with 7 knowledge bases into one
shared leaderboard with thorough benchmarking,
still evaluating “flat” CUI accuracy within the
native KB of each corpus. MedInst (Han et al.,
2024), the newest, LLM-focused entrant among
large BioMedical benchmarks, repurposes 130+
datasets for LLM instruction-tuning, again without
normalising concept identifiers or exposing
vocabulary structure. GERBIL (Usbeck et al.,
2015), while not a dataset, deserves a mention
when talking about clinical NER and EL. It
is a web-based benchmarking framework that
provides a web API for EL evaluation but ships no
harmonised data or hierarchy metadata.

In Table 1, we compare MedPath to well-
known benchmarks across a breadth of capabilities.
No existing benchmark simultaneously provides:
(i) cross-vocabulary integration and standardiza-
tion (from UMLS CUIs to codes in up to 62 KBs)
and (ii) explicit hierarchical paths in up to 11
vocabularies for explainable model training and/or
evaluation beyond flat metrics such as F1 score.
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2.3 Hierarchy-aware Entity Linking

Entity linking and multi-label classification over
BioKG-based label spaces require evaluation met-
rics that provide partial credit for semantically sim-
ilar predictions rather than treating near-miss pre-
dictions as complete failures. The foundational
work by Kosmopoulos et al. (2015) provides a
comprehensive, unified framework for hierarchi-
cal evaluation, introducing LCA-based (Lowest
Common Ancestor) metrics that construct minimal
graphs connecting predicted and true labels via
their LCAs, thereby avoiding over-penalization at
deeper hierarchy levels. Earlier approaches (Kir-
itchenko et al., 2005, 2006) augment predictions
with all ancestor classes, while the CoPHE met-
ric (Falis et al., 2021) preserves count information
during ancestor propagation, enabling detection of
over- and under-prediction within label families.
The H-loss framework (Cesa-Bianchi et al., 2006)
charges loss only for the first classification mistake
along prediction paths, capturing the intuition that
coarse-grained errors subsume fine-grained mis-
takes, though limited to tree-structured hierarchies.

Despite the rich hierarchical structures in
biomedical terminologies such as UMLS (127
semantic types) and SNOMED-CT (364K con-
cepts in DAG structure), hierarchical evaluation
remains notably absent from entity linking assess-
ment. Kartchner et al. (2023b) demonstrates that
major biomedical entity linking datasets rely ex-
clusively on flat metrics, basic accuracy, relaxed
matching, and strict matching, with no use of hi-
erarchical partial credit, despite vocabularies pro-
viding is-a, part-of, and definitional relationships
that could inform evaluation. Pesquita et al. (2009)
survey content-based semantic similarity measures
extensively used in Gene Ontology applications,
yet these remain underutilized in entity linking
evaluation. Kosmopoulos et al. (2015) report that
metric selection can fundamentally alter system
rankings and reveal distinct error patterns such as
over-/under-specialization and sibling confusion,
which flat metrics treat identically but have vastly
different downstream consequences in clinical de-
cision support applications. MedPath addresses
this evaluation gap by providing hierarchical path
annotations for 11 vocabularies, in addition to flat
single-concept identifiers, explicitly capturing the
ancestor lineage from root to leaf concepts. This
design facilitates granular analysis of hierarchical
evaluation metrics and informed modeling choices.

In our initial experiments, we employ basic hierar-
chical metrics, including ancestor and descendant
accuracy, to illustrate the utility of MedPath for
path-based evaluation.

3 Dataset Construction

3.1 Curation rationale and source datasets

We first conducted a comprehensive survey of
biomedical and clinical corpora available from in-
stitutional, shared task, and open-source reposi-
tories. Our primary selection criterion was the
presence of high-quality, expert-validated ground-
truth annotations suitable for EL. To ensure the
final resource would be a challenging testbed for
model generalization, we also prioritized datasets
that collectively offered maximum diversity in tex-
tual domains and semantic types.

The nine corpora selected through this cura-
tion process are detailed in Table 2. While not
an exhaustive representation of the ever-evolving
biomedical field, this collection constitutes a large-
scale and domain-diverse resource. It spans a wide
spectrum, from formal scientific literature and clin-
ical notes to product labels and informal social me-
dia content. Overall, the unified corpus comprises
over 5 million tokens, more than 500,000 entity
mentions, and 45,000 unique concepts, all drawn
from source datasets with permissive licenses for
research use.

3.2 Annotation

MedPath was created with a four-stage automated
pipeline. This process integrates the individual
datasets with fragmented annotations into a single,
cohesive, and multi-vocabulary benchmark.

Stage 1: Unification and Standardization The
nine source corpora are published in disparate
formats, including BRAT, PubTator, XML, and
TSV. Our first step was to develop dataset-specific
parsers to ingest these formats and convert them
into a standardized JSON schema. This process
also involved light text cleaning to remove artifacts
(e.g., de-identification remnants, stray characters)
while preserving the original annotations.

Stage 2: Canonicalization via UMLS Mapping
To resolve semantic fragmentation, we normalized
all concept IDs from their native BioKG to the
latest Unified Medical Language System (UMLS
2025AA) release. For each mention, we first at-
tempt to map from its vocabulary native ID directly
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Dataset Year  Domain / Source (docs) Entity types Ontology Licence
SNOMED CT EL Challenge 2023  MIMIC-IV ICU dis- Disorder, Procedure, SNOMED CT PhysioNet-R-A
(Davidson et al., 2025) charge notes (300) Drug, Device

ShARe/CLEF 2013 2013 Hospital discharge notes ~ Disorder, Procedure, UMLS PhysioNet DUA
(Suominen et al., 2013a) (199) Medication, Device

Mantra GSC (English) 2015  Patents, drug labels, 16 UMLS semantic UMLS subset CC-BY-SA 4.0
(Kors et al., 2015) abstracts (1 050) groups

BC5CDR 2016 PubMed abstracts (1 Chemical, Disease MeSH CC-BY 3.0

(Li et al., 2016) 500)

NCBI Disease 2014 PubMed abstracts (793) Disease MeSH, OMIM CC-BY 4.0
(Dogan et al., 2014)

MedMentions 2019  PubMed abstracts (4 Any UMLS concept UMLS CC-BY 4.0
(Mohan and Li, 2019) 392)

TAC ADR 2017 2017 FDA Structured-Product ADR, Drug MedDRA, RxNorm Public domain
(Roberts et al., 2017a) Labels (200)

CADEC 2015  Patient forum posts (1 ADE, Drug MedDRA, SNOMED Ask-A-Patient T&C
(Karimi et al., 2015) 250) CT

COMETA 2020  Reddit + Twitter posts Symptom SNOMED CT CC-BY-NC

(Basaldella et al., 2020) (20 000)

Table 2: MedPath core datasets. Detailed statistics (mentions, CUISs, path depth) appear in Table 3.

to a UMLS Concept Unique Identifier (CUI) us-
ing a dictionary created from the UMLS database.
If this fails, we fallback first to an exact match
and then to a semantic containment heuristics.”
This fallback strategy could introduce noise in the
annotations, but the information loss from discard-
ing these examples is a decrease in 2.5% in the
number of unique mentions (2.13% from exact
match, 0.37% from semantic containment) and
1.15% in the number of unique concepts (0.81%
exact match, 0.35% semantic containment). In
absolute numbers, we have 513,218 mentions /
44,259 unique concepts (CUIs) including examples
mapped via exact match and semantic containment,
and 500,384 mentions / 43,396 unique concepts
after excluding these examples.

Stage 3: Multi-level Semantic Enrichment
With a canonical CUI for each mention, we added
two further layers of semantic information. First,
we extracted the corresponding Semantic Type
(TUI) for each unique CUI, providing a high-level
categorization for every entity that was used in our
initial experiments (see Section 5). Second, to en-
able interoperable, vocabulary-agnostic research,
we mapped each CUI to its parallel concept identi-
fiers in other major biomedical vocabularies, lever-
aging the atom-level information within UMLS.

Stage 4: Hierarchical Path Extraction The
final and arguably most important stage of our
pipeline was the extraction of full hierarchical

Exact match: we string match between the mention text
against each concept name in the UMLS term dictionary. If
no exact match is found, we check for bidirectional substring
containment (i.e., X in YorY in X). We use all concept
names and synonyms available for each CUI, and choose the
closest match based on token overlap and length similarity.

paths, whereby we provide a data structure encod-
ing rich hierarchical information to enable novel
applications. This was a multi-step process. First,
we identified the top 25 most frequently repre-
sented vocabularies in the datasets we use (Table 3)
and determined which of them possessed both a
formal hierarchical structure and an accessible na-
tive taxonomy (via public API or downloadable
files). This process yielded 11 target vocabular-
ies for path extraction. All the vocabularies we
surveyed are listed in the Appendix D.

Next, we developed a custom path extraction
method for each of these 11 vocabularies. This
involved creating bespoke extractor modules that
respect the unique structure of each vocabulary
(e.g., interpreting different relationship types such
as is-a relations in SNOMED CT or tree numbers
in MeSH). For each concept, the extractor itera-
tively traverses the hierarchy from the entity to its
more general/parent terms until either a root node
is reached or no parent node can be found. The
process was designed to be exhaustive, capturing
and storing all possible paths for concepts that ex-
ist in multiple inheritance structures, i.e., when a
vocabulary allows for more than one parent per
node. Wherever presented with a choice, the latest
version of the vocabulary was selected during this
step. To ensure scalability and robustness, the im-
plementation included several technical optimiza-
tions, such as result caching, filtering of inactive or
obsolete codes, and robust API callback handling.
This final stage produced a total of 573,786 distinct
hierarchical paths for the 44,259 unique concepts.

3.3 Data Schema

An illustrative example of our multi-layered anno-
tation schema is presented in Figure 1, with the
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full JSON specifications detailed in Appendix A.2.

3.4 Data Quality Validation

We had a strict requirement to select only datasets
with clinical expert oversight involved in the data
curation. Moreover, we implemented multiple lay-
ers of checks and validations at each stage of the
automated workflow to ensure data quality. The
only stage where automatic heuristics may intro-
duce noise is in mapping from source vocabulary
codes to UMLS CUISs, and only when no mapping
of native ID-to-CUI exists. We explain how we
address this in Section 3.2, Stage 2. In short: pos-
sibly noisy examples mapped via exact match and
semantic containment are clearly labelled in Med-
Path, meaning that users can either filter them out
and have a noise-free dataset, or use them in case
their use-case allows.

3.5 Availability and Update Strategy

In the interest of reproducibility, we release our
complete annotation pipeline, data processing
scripts, and evaluation code under a permissive
open-source license. However, several of the con-
stituent datasets and source vocabularies that form
MedPath are protected by their own licenses or
data usage agreements (DUAs) and cannot be redis-
tributed directly. In such cases we provide detailed
instructions and scripts that allow researchers who
have obtained the necessary permissions from the
original data providers to apply our pipeline and
fully reconstruct MedPath. Keeping in mind that
controlled clinical vocabularies are living resources
which undergo frequent updates, we implemented
the data preprocessing and annotation in a way that
MedPath’s scripts are easily compatible with any
version of the various resources used (e.g., UMLS,
SNOMED, MedDRA, etc). For example, we cur-
rently use UMLS 2025 AA, SNOMED CT May
2025, and MedDRA 27.1. However, one can easily
adjust these versions by changing a single parame-
ter/argument in the code to generate MedPath with
future versions of these vocabularies.

4 Analysis

To characterize the properties of MedPath, we con-
ducted a detailed statistical analysis. The following
sections quantify the dataset’s scale, its conceptual
breadth, and the richness of its semantic and hier-
archical annotations. More detailed analysis can
be found in Appendix A.

Table 3: Biomedical entity linking datasets. Domain

codes: =Scientific Abstracts; =Clinical Notes;
=Social Media; =Drug Patents; =Mixed.
Dataset Docs Mentions CUIs TUIs Domain
MedMentions 4392 352496 34631 126
MIMIC-IV-EL 204 51574 5258 52
TAC 2017 ADR 200 32585 3098 94
BC5CDR 1500 29076 2487 69
COMETA 20015 20015 3864 82
CADEC 1186 9842 1256 68
ShaRe/CLEF 291 8676 1372 34
NCBI-Disease 792 7026 741 35
Mantra-GSC 526 1928 1276 92
Overall 29,106 513,218 44,259 126 4
Objects, Occupations, Geography,
Organizations, Devices etc.
Disorders & Concepts
Diseases
25.5% 21.2%
(130,592) (108,556)
5.8% Living
(29,573) ' organisms
Activities &
e Behaviors
(110,860) o)
Drugs. & a
Chemicals *g ?—_ﬁ- Procedures
RO &<
G ©
~ Genes & Molecular

Sequences
Phenomena

Anatomical Physiology

Structures

Figure 2: Semantic type distribution in MedPath.

4.1 Size and Genre Balance

The final harmonized corpus comprises over 5 mil-
lion tokens and 513k expert-annotated mentions
(Table 3). While MedMentions easily dominates
the mentions count, the fact that it is itself a great
mix of biomedical text is crucial for the diver-
sity of our dataset. Social media posts add 20%
of documents but only 6% of mentions, illustrat-
ing their short-form nature and motivating cross-
length generalisation. For a more granular analysis,
we categorized the source corpora into four pri-
mary domains based on their source as detailed
in Table 2. Scientific literature (MedMentions,
BC5CDR, NCBI-Disease) constitutes the largest
portion, a reflection of its relative accessibility and
textual density. The other three domains—clinical
notes (MIMIC-IV-EL, ShARe/CLEF), social me-
dia (COMETA, CADEC), and drug labels and
patents (ADR)—are well-balanced and contribute
significant domain-specific richness. The Mantra-
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GSC corpus, which contains text from Medline
abstracts, drug labels, and patent claims, was clas-
sified as a mixed-domain dataset.

4.2 Concept Breadth and Semantic Diversity

Across datasets we observe a rich mix of concepts.
Whereas all datasets combined have a mapped
UMLS concept count of ~54,000, the unique
mapped CUIs are 44, 259. This indicates a con-
cept overlap of only about 20% across the datasets,
underscoring the value of harmonization for cre-
ating a comprehensive benchmark that moves be-
yond the semantic scope of any single source. The
semantic diversity of the corpus is equally broad.
The annotated mentions span 126 of the 127 possi-
ble high-level UMLS Semantic Types (STYs). The
most prominent semantic groups are Disorders and
Diseases (25.5%), Drugs and Chemicals (21.6%),
and concepts (21.2%). See Figure 2 for details.

4.3 Vocabulary Coverage and Hierarchy
Insights

Figure 3 illustrates the extensive cross-vocabulary
coverage of the resource, displaying the distribu-
tion of mentions from each source dataset across
the 15 most frequent vocabularies. This visu-
alization highlights the degree of interoperabil-
ity achieved through our normalization pipeline.
A key finding is the centrality of SNOMED-CT;
seven of the nine datasets map over 80% of their
mentions to SNOMED-CT concepts, even those
with different native knowledge bases, demonstrat-
ing its comprehensive integration within UMLS.
Beyond simple coverage, we analyzed the struc-
tural properties of the 11 vocabularies for which
we extracted full hierarchical paths. SNOMED-
CT is the most information dense and structurally
complex; 84% of its mapped concepts feature mul-
tiple inheritance paths, with an average of over
20 distinct paths per concept. The distribution of
path depths, shown in Figure 4, reveals signifi-
cant diversity across ontologies. SNOMED-CT
exhibits a wide spread of path lengths, NCBI con-
tains the deepest hierarchies on average, while oth-
ers like ICD-9, ICD-10, and MedDRA have more
concentrated path lengths of 3-5 levels, consistent
with their defined structures. This variety in granu-
larity, from complex directed acyclic graphs, like
SNOMED CT, to simpler tree structures, confirms
that MedPath is well-suited for developing and
evaluating coarse-to-fine, hierarchy-aware models.

:

TAC2017ADR- 732 727 681 636 548 5.4

Datasets

Mantra-GSC- 838 | 814 686 558 533 5.4
MIMIC-IV-EL 686 ses 623 6L0 | 319
ShaRe/CLEF 89 73 w08

N

Figure 3: Vocabulary overlap heat map. Datasets’ anno-
tations using UMLS are not shown.

Vocabulary Sources

Path Length Distribution (Density)

Vocabulary
SNOMEDCT _US
MSH

LNC

NCI

MDR
NCBI

LCH NW
08 ICDICM
ICD10CM
HPO

0.6 GO

0.0 25 5.0 75 100 125 150 175 200
Path Length (concepts)

Figure 4: Histogram of lengths of entity hierarchical
paths across different vocabularies.

S Preliminary Experiments

We now provide initial experiments showcasing
performance gains obtained using MedPath com-
pared to training models on individual datasets and
on datasets from a single domain. While MedPath
can also be used for NER, our primary focus is on
biomedical EL. We thus present EL experiments
in this section and, for completeness, report on
preliminary NER experiments in Appendix C.

5.1 Biomedical Entity Linking

We implement and benchmark a two-stage EL
model adapted from the X-MEN library (Borchert
etal., 2024).3

Retrieval We adopt two lightweight, dictionary-
based retrieval methods implemented using: (i) TF-
IDF-vectorizer operating over character 3-grams
based retrieval, and (ii) embedding-based retrieval

3https: //github.com/hpi-dhc/xmen/tree/main
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with SapBERT (Liu et al., 2021). Both methods
index a unified dictionary built from UMLS CUIs
and their associated names, synonyms, and lexical
variants. We include UMLS CUIs linked to any
example from any source dataset in MedPath. Each
test mention is treated as a query to retrieve the top-
k most similar CUIs from this index.

Reranking The retrieved candidates from both
TF-IDF and SapBERT are then passed to a cross-
encoder model that performs reranking to iden-
tify the most relevant entity. Cross-encoders
were trained on the top-32 generated candidates
plus the gold entity (in case the gold entity is
not in the top-32). We use a categorical cross-
entropy loss function with regularization to opti-
mize for ranking performance. The model can
be initialized from various pretrained BERT en-
coders; we used cambridgeltl/SapBERT-from-
PubMedBERT-fulltext. The model is trained to
maximize top-1 accuracy, with the checkpoint that
achieves the highest validation accuracy being se-
lected for final inference.

Evaluation We use a test set consisting of all
unique mentions with ground-truth CUIs across
datasets. We report accuracy@k (k = 1,5,32)
and mean reciprocal rank (MRR). To show the
importance of semantically aware metrics for en-
tity linking, we compute hierarchically-aware met-
rics that help assess both coarse and fine-grained
performance of the models. For each mention
whose gold CUI maps to one of 11 vocabular-
ies with extracted hierarchies, which approxi-
mately covered all the mentions (98.7%), we eval-
uate whether any of the top-k predicted CUIs
are (i) ancestors (Ancestor @k), (ii) descendants
(Descendant@Kk), or (iii) part of a hierarchy in
any way (Hierarchy @k) within the same BioKG,
which could mean entities having common ances-
tors, or any hierarchy overlap with the test gold
CUI, skipping top-3 levels from the root node of
the vocabulary so we don’t consider too general
hierarchy match.

Vocabulary-Agnostic Entity Linking In our
first experiment, we benchmark TF-IDF and
SapBERT-based retrievers across the full test set us-
ing only surface form matching against the UMLS-
derived CUI dictionary. This vocabulary-agnostic
retrieval simulates realistic scenarios where the
mention surface form may originate from different
vocabularies or domains.

Table 4: Overall Entity linking performance. “CG” =
candidate generator, “+RR” = with reranker. Per row:
best score in CG underlined; best score in CG+RR
bolded.

CG CG+RR
Metric TF-IDF SapBERT TF-IDF SapBERT
Standard Metrics
Acc@1 51.46% 48.12% 80.84%  79.02%
Acc@5 64.85% 65.44% 91.22%  92.60%
Acc@32 72.01% 73.68% 96.36% 98.76 %
MRR @32 0.5756 0.5594 0.857 0.861
Hierarchical Metrics
Hierarchy@1 68.60% 61.39% 85.40% 86.24%
Hierarchy@5  82.56% 80.66% 95.31% 96.30%
Ancestor@ 1 20.73% 18.74% 24.80% 24.68%
Ancestor@5 27.58% 25.16% 32.38% 34.02%
Descendant@1 20.10%  18.46% 23.45% 23.74%
Descendant@5 29.42%  25.39% 32.98% 32.75%
Ablations In our ablation, we systematically

compare training strategies for EL and NER rerank-
ing under three regimes: in-dataset, whereby
train/test come from disjoint splits from a same
dataset; in-domain, whereby we train on all but
one dataset within a domain and test on that held-
out dataset; and overall whereby we train on the
union of all datasets across all domains, i.e. Med-
Path. The unified UMLS mapping enables consis-
tent label semantics across datasets, letting us 1)
pool supervision in the overall setting, 2) measure
generalization across datasets within a domain, and
3) compute comparable per-type macro summaries.

6 Preliminary Results and Discussion

6.1 EL Experiment Results

Table 4 shows the performance of the two EL can-
didate generation methods using both standard and
hierarchical metrics. Overall, TF-IDF outperforms
SapBERT in accuracy (Acc@1 =51.5% vs. 48.1%)
and MRR. This suggests that lexical overlap re-
mains a strong signal in biomedical entity linking,
and high coverage of the dictionary built for link-
ing. SapBERT surpasses TF-IDF at k = 5 and k
=32 (Acc@5 = 65.4%, Acc@32 = T73.7%), indi-
cating its strength in retrieving semantically simi-
lar or morphologically varied candidates not cap-
tured by character n-grams. Adding a reranker on
top drastically improves all metrics for both candi-
date generators, with the SapBERT generator plus
the SapBERT reranker outperforming TF-IDF plus
SapBERT reranker on most metrics.
Hierarchy-aware evaluation shows that our
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Figure 5: Figure showing EL performance in the three
data settings

dataset enables a much richer analysis than exact
CUI accuracy. While TF-IDF attains Acc@1 =
51%, its Hierarchy @1 jumps to 68.6%, indicating
that an additional ~17% of mentions retrieve a
concept that is semantically related (i.e., a sibling,
cousin, or ancestor). SapBERT exhibits a similar
13% gain (48—61%). Roughly 20% of errors are
over-general (ancestor) and 20% are over-specific
(descendant), highlighting granularity ambiguity
rather than synonym mismatch.

In Figure 5, we see the reranker models per-
formance when trained on a single dataset (in-
dataset), on a single domain (in-domain), or on all
datasets in MedPath (overall), in terms of macro-
averaged acc@ 16 per semantic class. We observe
that the model trained on MedPath consistently
outperforms the other two settings, and sometimes
by a large margin, thus validating the utility and in-
formation gain from collation and canonicalization
in MedPath.

7 Conclusions and Future Work

In this work, we introduced MedPath, a large-scale
resource for training and evaluating biomedical EL
models that addresses three main limitations: se-
mantic fragmentation, lack of explainability, and
use of semantically-blind evaluation metrics. We
integrate and harmonise nine diverse and expert-
curated datasets across 4 domains with 513k men-
tions and 45, 000 unique entities. We normalize all
entity mentions to an up-to-date, canonical UMLS
backbone, which means MedPath directly tackles

the problem of data siloes.

MedPath includes mappings across up to 62
controlled clinical vocabularies and ~ 575k hi-
erarchical path annotations in 11 prominent clini-
cal and biomedical knowledge graphs. It enables
the training and evaluation of inherently explain-
able NER and EL models, and facilitates the de-
velopment of truly diverse systems in terms of
BioKG, a vital step towards achieving the inter-
operability required for real-world clinical deploy-
ment compatible with state-of-the-art generative
Al methods. We release MedPath publicly at
https://github.com/mnishant2/MedPath and
hope to accelerate the development of biomedical
NER and EL models that are more robust, trust-
worthy, and semantically aware.

Future work We believe MedPath opens re-
search avenues in many directions. 1) We can go
beyond post-hoc explanation techniques and build
inherently explainable models. We envision using
MedPath’s hierarchical paths for training genera-
tive models that predict not only an entity’s 1D,
but a mention’s entire hierarchical path as a means
to shed light on the model prediction process. 2)
MedPath’s vocabulary mapping across BioKGs al-
lows for the construction of unified models that
are fluent in several medical vocabularies. Future
work may investigate multi-task learning setups
where a single model is trained to make predic-
tions across all 11 vocabularies. An EL system
like this would be able to map a mention to its
equivalent concepts in SNOMED-CT, MeSH, and
ICD-10 all at once and would be a big step for-
ward for model interoperability. 3) The hierarchi-
cal path annotations across 11 controlled clinical
vocabularies provide a test-bed for the community
to design and validate more sophisticated hierar-
chical evaluation metrics that can measure errors
that encode domain-specific semantics within and
across BioKGs. 4) Furthermore, hierarchical paths
allow for fine-grained error analysis including an-
swering questions like ‘Do models more frequently
confuse sibling concepts more than distant ones?’
or ‘At what depth of the hierarchy do models begin
to fail?’ 5) Additional applications of MedPath
could include knowledge graph generation, and
pre-training and fine-tuning LLMs so that LLMs
are more factually grounded in established medical
knowledge.
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Limitations

While MedPath represents a significant step to-
wards more diverse resources for biomedical NLP,
we highlight a few limitations that users and re-
searchers should be aware of.

Diversity Although we merged nine corpora to
achieve broad domain diversity, this collection is
not exhaustive and does not represent the universe
of biomedical and clinical text. Models trained
on MedPath may not generalize well to text from
under-represent sources, e.g., clinical notes from
other Electronic Health Record (EHR) systems or
from specialized sub-disciplines. MedPath also
only covers English datasets and does not address
the needs of multilingual research in this domain.

Annotation issues MedPath’s scale necessitated
a largely automated pipeline for path extraction and
entity normalization. While we employed state-of-
the-art tools and devised a stringent methodology,
with validation and statistical analysis, we did not
perform expert, clinical validation of the new lay-
ers of annotation and mappings added. Moreover,
there may be errors inherited from the original
datasets, e.g., incorrect entity links for highly am-
biguous mentions, missing nested mentions, miss-
ing or misaligned mappings, incorrect/outdated
codes. Manual verification of mentions was not
feasible. While we make the script with the an-
notation pipeline available to ensure transparency,
users must be aware that the annotations reflect
these limitations.

Versioning and updates Another potential area
of concern and a well-known challenge is the ever-
evolving nature of medical knowledge bases. Our
annotations—UMLS CUIs, semantic types, and
especially hierarchical paths—are tied to partic-
ular versions of the underlying ontologies, e.g.,
UMLS 2025 AA, MedDRA 27.0, SNOMED CT
US March 2025. Biomedical knowledge is, how-
ever, not static; these terminologies are continu-
ally updated, with concepts being added, depre-
cated, or redefined. To this end, MedPath should
be considered a high-fidelity snapshot at a partic-
ular point in time. As time passes, some paths
will become outdated, and new concepts will not
be represented, which may affect the resource’s
utility in the long term without periodic updates.
Although MedPath’s codebase makes it very easy
to use a future version of a BioKG already in our

pipeline, changes that break backward compatibil-
ity can still be an issue. Moreover, adding novel
BioKGs would require researchers and other users
to contribute to MedPath’s codebase.

Ethical Considerations

Data Licensing and Access Some datasets (like
MIMIC-IV EL Challenge and ShARe/CLEF) have
protective DUAs that do not allow redistribution.
For these datasets, we provide annotation and map-
ping scripts, which can be run locally, under the
assumption that the user has lawfully obtained the
requisite raw data.

Privacy and De-identification Discharge sum-
maries, clinical notes as well as social media
posts were the only patient-facing corpora utilized
in this study. They were released publicly in a
de-identified format and cannot be re-identified
through our processing methods.

Ontology licensing and distribution Controlled
vocabularies subject to license restrictions are not
redistributed, and thus scripts are provided which
extract relevant paths and metadata, provided there
exists a local install or relevant ontology sources.

Potential Biases The corpus inherits biases from
constituent datasets, including geographic bias
from US-centric hospital systems and linguistic
bias from the predominantly English corpus. These
factors should be taken under consideration when
interpreting model performance and deploying sys-
tems built from derived models.
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A Source Corpora and Schema

A.1 Source Corpora Details

Below, we provide details about the nine expert-
annotated corpora that constitute MedPath.

MIMIC-IV SNOMED EL Challenge 2023
(Davidson et al.,, 2025) Includes 300 de-
identified ICU discharge summaries richly anno-
tated by two clinical experts with SNOMED CT
disorder, procedure, drug, and device codes. Pro-
vides the largest publicly available gold-standard
clinical EL dataset.

ShAReCLEF 2013 (Suominen et al., 2013b)
Part of an eHealth evaluation shared task, con-
tains 199 hospital notes from Beth Israel hospital,
double-annotated by clinical trainees and adjudi-
cated by a senior MD for disorders, procedures,
medications, and devices with UMLS CUIs.

Mantra GSC English (Kors et al., 2015) A mul-
tilingual dataset with 1,050 snippets drawn from
patents, EU drug labels, and PubMed abstracts,
covering 16 UMLS semantic groups annotated by
three biomedical linguists.

BC5CDR (Li et al., 2016) A popular BioNLP
benchmark dataset, it contains 1,500 PubMed
abstracts with exhaustive Chemical and Disease
spans normalised to MeSH, manually annotated by
a team of 3 biocurators.

NCBI Disease (Dogan et al., 2014) A relatively
smaller dataset with 793 abstracts focusing exclu-
sively on diseases, mapped to MeSH 2012 tree
numbers. It was annotated by three biology gradu-
ate students.

MedMentions (Mohan and Li, 2019) The
biggest dataset in MedPath in terms of scale, con-
tains 4,392 PubMed abstracts with mentions linked
to any of 3.2 million UMLS 2017AB concepts with
no type restrictions. As the broadest coverage lit-
erature corpus, it provides scalability and long-tail
concept retrieval. It was triple-annotated by seven
life science graduate students.

TAC 2017 ADR (Roberts et al., 2017b) One
of the most mention-dense and token-rich datasets
in MedPath, it has 200 FDA Structured-Product
Labels annotated for adverse-reaction spans (Med-
DRA linked) and drug names (RxNorm linked). It
was also manually annotated by two pharma-safety
scientists and reviewed by NIST.
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documents/cadec.jsonl

{ vig": "ARTHROTEC.1",
“text": "I feel a bit drowsy & have a little blurred vision, so far no gastric problems",
“mentions": [{

mappings/combined_cui_to_tuis.json

{ "C0013144"
"C0048038"
"C0031154"

2 "C0586325"

T033 = Finding

T109 = Organic Chemical

T121 = Pharmacologic Substance
T046 = Pathologic Function

"T033"],
'T109", "T121"],
"T046"],

-
-
-
["T047"]

mappings/combined_cui_to_vocab_codes_with_tty.json

{
"C0013144": {
"D013144": {"tty": "MH", "term": "Drowsiness"}
“SNOMEDCT US": {
"79519003": {"tty": "PT", "term": "Drowsy"},
"271782001": {" ", "term": "Drowsiness"}
b
"10013649": {"tty": "PT", "term": "Drowsiness"}
+
"HPO": {
“HP:0002329": {"tty": "PT", "term": "Drowsiness"}

+
T}

hierarchical_paths/mesh/results/MSH_paths.json

{
"C0013144"; {

"vocabulary": "MSH",

“paths": [
“F", "name": "Psychiatry and Psychology"},
"D001520", “name": “Behavior and Behavior Mechanisms"},
"D019954", “name": “Neurobehavioral Manifestations"},
{"code": "D003221", "name": "Confusion"},
{"code": "D003693", "name": "Delirium"},
{"code": “D013144", “name": "Drowsiness"}

1
“total_paths": 1

Figure 6: An example showing the schema of the proposed dataset, which shows the four components (clockwise):
(i) the preprocessed document data with annotations and CUI mappings, (ii) the semantic type mapping, (iii) the
cross-vocabulary mappings, and (iv) the hierarchical ontological paths.

CADEC (Karimi et al., 2015) One of the
datasets from the social media/free text domain.
It contains 1,250 Ask-a-Patient forum posts, la-
belled for patient-reported ADEs and drugs, and
normalised to MedDRA, annotated in two steps by
nurses and a biomedical ontologist.

COMETA (Basaldella et al.,, 2020) Social
media-based dataset with 20,000 Reddit/Twitter
posts with symptom spans mapped to SNOMED
CT 2019 version. It was annotated by five trained
crowdsourced annotators and adjudicated by an
MD.

A.2 Dataset Schema

To ensure both ease of use and computational effi-
ciency, MedPath is distributed across several files,
each with a distinct purpose. The primary data is
provided in a standardized JSON format, contain-
ing the source documents and a list of all anno-
tated mentions with their character offsets, original
concept IDs, and canonical UMLS CUIs. Sup-
plementary annotations are provided in separate,
optimized formats. Mappings from each unique
CUI to its corresponding Semantic Type (TUI) and
its parallel codes in other vocabularies are stored in
simple key-value files. The core hierarchical anno-
tations are structured as per-vocabulary lists of lin-
ear Root — Leaf chains, each containing the codes
and names for each concept along the path. Figure
6 demonstrates the final schema of the dataset.

Average Document Length Across Datasets

Figure 7: The mean and median document length for
each dataset, shown in terms of BERT tokens.

B Additional Data Analysis

In this section, we present further analyses.

B.1 Document length

As illustrated in Figure 7, the document lengths
vary considerably across the source corpora. Clini-
cal notes (MIMIC-IV) and drug labels (ADR) fea-
ture the longest documents, whereas snippets from
patents and abstracts (Mantra-GSC) and social me-
dia posts (COMETA) are significantly shorter.

B.2 Semantic type distribution

To visualize the contribution of each source dataset
to the overall semantic diversity, we present a
Sankey diagram in Figure 8. This plot depicts
the flow of mentions from each source dataset to
the 15 most frequent semantic type categories, con-
firming that MedMentions provides the broadest
coverage across all categories.
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Figure 8: Contribution of each source dataset to concepts belonging to 15 major semantic type categories.
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Figure 9: Number of paths per CUI in each vocabulary.

B.3 Ontology Path Statistics

Number of Paths The number of hierarchical
paths per concept differs significantly across vo-
cabularies, as shown in the boxplots in Figure 9.
SNOMED CT and LCH_NW exhibit the largest
variance, whereas vocabularies such as NCBI and
ICD are largely monohierarchical.

Path Length Distribution The violin plot in Fig-
ure 10 illustrates the distribution of path lengths.
On average, NCBI has the deepest paths, while
MedDRA shows the least variance, consistent with
its well-defined five-level hierarchy.
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Figure 10: Path length distribution per vocabulary.

C Benchmark and Baseline Experiments

This section provides additional details on our ex-
perimental setup and preliminary results.

C.1 Named Entity Recognition (NER) Setup

We cast NER as token-level sequence labeling with
a BIO scheme over chunks of our documents. Men-
tions are judged correct only if span boundaries and
types match exactly.

Metrics We calculate strict and lenient micro-F1
scores per class and overall. We also calculate span-
detection performance regardless of the predicted
entity type.
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Data Preprocessing First, a document was seg-
mented into chunks of 512 characters with a 128-
character sliding window. Mention offsets were
recalculated relative to each chunk. Source domain
and dataset information were preserved to facili-
tate ablation studies. An example of the final JSON
format is shown below:

{
"chunk_id": "227508_0",

"source_dataset”: "cdr”,

"source_domain”: "abstracts”,

"text": "Naloxone reverses the
antihypertensive effect of clonidine...”,
"entities"”: [

{
"start": 0,
"end": 8,
"label”: "CHEM",
"text”: "Naloxone”,

"cui": "C0027358",
"original_start”: 0,
"original_end"”: 8
1

]7

"entity_types”: ["CHEM", "DIS0", "MISC"],

"chunk_start": 0,

"chunk_end": 512,

"doc_length”: 1135

}

Data Split and Labels For datasets with pre-
defined splits, we retained them. For those without,
we created a 50/10/40 train/dev/test split. If only
a train/test split existed, a 10% dev set was carved
out from the training data. Models were trained on
11 high-level semantic type classes derived from
UMLS Semantic Groups (see Figure 2).

Experiment Paradigms To demonstrate robust-

ness, get insights into the dataset composition, and

highlight the value of cross-domain unification, we

run four types of experiments.

* Full-Mix: Train on the union of all training
splits; evaluate on the union of all test splits.

* In-Domain: Build train/dev/test splits per single
dataset.

¢ Leave-One-Dataset-Out (LODatO): Hold out
one dataset for testing, and train on all other
datasets.

¢ Leave-One-Domain-Out (LODomO): Hold
out all datasets from one domain for testing (clin-
ical / literature / social / label), training on all
datasets from the remaining domains.

Models For the Full-Mix setting, we fine-tune
and evaluate five biomedical PLMs pretrained on
different domains. These models are listed below:

* GatorTron-base: An encoder-only transformer
model pre-trained on a large corpus of over 82
billion words from de-identified clinical notes
and clinical trial publications, developed by the
University of Florida (Yang et al., 2022).
ClinicalBERT: A BERT model pre-trained
on the MIMIC-III dataset, which contains de-
identified health records, making it highly spe-
cialized for tasks on clinical notes (Huang et al.,
2019).

PubMedBERT: A BERT model pre-trained
from scratch exclusively on biomedical litera-
ture, specifically 21GB of text from PubMed
abstracts and full-text articles (Gu et al., 2021Db).
BioBERT: One of the first domain-specific
BERT models, initialized from Google’s BERT
and continually pre-trained on a large-scale
biomedical corpus including PubMed abstracts
and PMC full-text articles (Lee et al., 2019).
BlueBERT: BERT model pre-trained on a com-
bination of biomedical (PubMed abstracts) and
clinical data (MIMIC-III notes), designed to per-
form well on a diverse range of biomedical and
clinical NLP tasks (Peng et al., 2019).
GIliINER-BioMed We also evaluated GliNER-
BioMed (Yazdani et al., 2025), a task-specific
NER model in a zero-shot setting. GIiNER is
a generative encoder-decoder model that takes
natural-language class labels, along with the in-
put sentence, and outputs spans of mentions be-
longing to those classes. For our evaluation, we
used all variations of our semantic classes in nat-
ural language as potential class names to pass to
GIliNER. E.g., for Disorder (DISO), we passed
{“disease’, ‘disorder’, ‘condition’, ‘syndrome’,
‘pathology’, ‘findings’} along with sentences,
and then mapped the extracted entities to our
class names for consistent comparison.

For all ablation studies (LODatO, LODomO),
we use PubMedBERT because it is consistently
strong across domains and classes, yet faster and
lighter than GatorTron. This keeps computation
manageable and isolates the effect of the data splits
from that of the model size.

Hyperparameter Tuning For all the experi-
ments that involved fine-tuning models: full mix,
and the various ablations as described in C.1, we
implemented a thorough hyperparameter tuning
across a range of hyperparams (focal loss, crf layer,
batch size, learning rate, weight decay, warmup ra-
tio, early stopping) through randomized trials. The
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Model Strict /4 Lenient 7 EA I
Finetuned Models

GatorTron-base 0.663 0.746 0.760
PubMedBERT 0.642 0.728 0.743
ClinicalBERT 0.615 0.713 0.726
BioBERT 0.623 0.717 0.730
BlueBERT 0.606 0.705 0.720
Zero-shot

GLiNER-BioMed 0.365 0.482 0.524

Table 5: Micro-averaged NER test performance across
all 11 semantic groups. EA F7: Entity-agnostic F}.
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Figure 11: Performance of fine-tuned models in full
mix setting across the 11 classes, shown using lenient
FI.

best model in a full-mix setting, i.e., GatorTron-
base, achieved the best performance with a linear-
CRF layer, a base learning rate of 5e-5 with a CRF
layer learning rate of 1e-5, a batch size of 32, 0.01
weight decay, and 0.1 warmup. Additionally, we
used a 3x random oversampling to balance under-
represented classes, along with a class-weighted
loss function.

C.1.1 Preliminary NER Experiment Results
and Discussion

Table 5 shows the overall performance of the
NER models on our unified dataset. GatorTron
performed best across all metrics, with Pubmed-
BERT a close second. GIiNER zero-shot per-
formed poorly across most categories, except Dis-
orders and Chemicals/Drugs. Comprehensive re-
sults across classes, domains, and datasets, along
with observations from the ablation studies, are
presented below.

Full Mix Figure 11 shows the per-class F1 per-
formance for the five fine-tuned models in the Full-
Mix setting.

Figure 12 breaks down the strict F1 performance

Model Performance Across Domains

= PubMedBERT
= BioBERT

= BlueBERT

= ClinicalBERT
08 = GatorTron
GLINER-bi-large

Strict F1 Score

2

Abstracts Clinical Drug Patents Social Media

Domains

Figure 12: Performance of models across the four main
domains, shown using strict F1.

Macro F1 Score (strict)

Living Organisms.

Figure 13: Figure showing the macro average per-
formance over semantic types of the NER model in-
domain, in-dataset, and a full mix setting

by domain for all models, including the zero-shot
GliNER-BioMed.

Ablations The radar chart in Figure 13 com-
pares the average performance of models trained
on the full mix versus those trained in-domain or
in-dataset, demonstrating the clear benefit of Med-
Path. Figure 14 quantifies the performance impact
of holding out each dataset and domain, with Med-
Mentions and the abstracts domain showing the
most significant impact due to their scale.

C.2 Additional Entity Linking Results

Here, we present the performance of the TF-IDF
and SapBERT-based entity linkers across vari-
ous verticals. Figure 15 shows the candidate-
generation-based EL metrics for mentions across
the nine datasets using the Acc@32 metric. We see
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Ablation Impact Comparison: Dataset vs Domain

Dataset Ablation Impact
(Leave-One-Out)

Domain Ablation Impact
(Leave-One-Out)
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Figure 15: Performance of TF-IDF and SapBERT Can-
didate Generation across datasets

Dataset Performance Comparison - R@32

(@32 Performance (%)

that SapBERT consistently outperforms TF-IDF by
small margins. Mantra-GSC, ShaRE/CLEF, and
MedMentions show the best performance, which
follows logically from the fact that their original
ground truth annotations were in UMLS (Table 2),
and the dictionary we created utilized UMLS con-
cepts.

Similarly, in Figure 16, we visualize the EL per-
formance across the four domains in our dataset.
The major takeaway is the underwhelming perfor-
mance on clinical notes, suggesting these terms
have multiple surface forms or lack vocabulary
integration.

Table 6 details the performance of these two
linkers over the various semantic groups. Living
Beings and Activity mentions show the highest
performance, while Procedure and MISC classes,
including devices, occupation, and organization,
show weak performance.

Figure 17 shows the final performance of the
reranker trained on the candidate generators across
three different ablation scenarios—In Dataset, In

Domain Performance Comparison - R@32

—TF-IDF
= SapBERT

R@32 Performance (%)

Text Domains

Figure 16: Performance of TF-IDF and SapBERT Can-
didate Generation across domains

Table 6: Candidate Generation performance per Entity
Type by SapBERT and TF-IDF, boldface denotes high-
est R@32 and underline denotes highest R@1 per type

Entity Type Count TF-IDF SapBERT
R@]1 R@32 R@1 R@32
Disorder 61,054 559% 743% 529% 76.5%
Concept 32,094 54.9% 76.6% 51.9% 77.7%
Procedure 20,528 27.0% 582% 28.9% 60.3%
Chemical 19,216 554% 69.5% 49.2% 70.2%
Living Being 8,653 62.6% 81.0% 56.6% 82.5%
Anatomy 7,502 53.6% 73.8% 42.77% 75.6%
Physiology 7,175 51.9% 752% 44.6% 175.7%
Miscellaneous 5,045 41.3% 59.7% 383% 62.3%
Activity 3,751 56.4% 789% 59.1% 79.4%
Phenomenon 2,009 40.6% 63.3% 38.9% 64.9%
Gene 1,523 42.5% 64.5% 34.9% 66.6%

Domain, and Overall—is presented here. Perfor-
mance was measured by calculating the macro-
average of all metrics (Accuracy @k and MRR)
for each semantic category’s mentions. We con-
sistently observe that the Overall performance sur-
passes both in-domain and in-dataset performance
across various metrics and semantic types. These
results provide strong evidence for the advantages
of using a consolidated, canonicalized, uniform
resource, such as MedPath, to enhance semantic
richness and retrieval performance in Biomedical
NER and EL.

D Vocabularies Glossary

Table 7 presents the top 25 most frequent BioKGs
in MedPath, based on the unique CUIs that map
to them. The table provides information on which
of these BioKGs possess a hierarchical structure
and whether their native hierarchy can be accessed
through an API or download. As indicated by the
highlighted rows, only 11 of these biokgs meet our
criteria for extracting full hierarchical paths.
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Figure 17: Entity linking performance across metrics (rows: Acc@1, Acc@5, Acc@32, MRR@32), averaged over
all semantic-type , for all three training strategies. Left: TF-IDF+Reranker; Right: SapBERT+Reranker
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Table 7: A comparative overview of biomedical and clinical vocabularies with full names. Counts and percentages
are based on the final provided distribution across 41,619 unique CUIs. Vocabularies highlighted in green (prefixed
with T) were used to extract hierarchical paths. H. = vocabulary has an internal Hierarchy; H.A. = Hierarchy
Available/Accessible for path extraction..

Vocabulary Unique CUIs % H. H.A. Notes

t SNOMED CT (Systematized 23261 55.89 v v Intl. clinical terminology. Requires

Nomenclature of Medicine Clinical free license for full use.

Terms)

CHYV (Consumer Health Vocabulary) 18 856 4531 X X Maps consumer terms to professional
terms. No standalone API.

T NCI (National Cancer Institute The- 16 668 40.05 v v Comprehensive cancer ontology. Ac-

saurus) cessible via NCI’s EVS and BioPortal.

+ MESH (Medical Subject Headings) 13812 33.19 v v Thesaurus for indexing literature. API
and bulk data from NLM.

RCD (Read Codes) 13435 3228 v X UK primary care codes. Replaced by
SNOMED CT.

SNMI (SNOMED International) 11200 2691 v X SNOMED Intl. v3.5. Superseded by
SNOMED CT.

+ MDR (Medical Dictionary for Regu- 7699 18.50 v X For adverse events reporting. Requires

latory Activities) license.

T LOINC (Logical Observation Iden- 6968 16.74 v Laboratory/observation codes. Free

tifiers Names and Codes) with registration.

SNM (Systematized Nomenclature of 5926 14.24 v/ X Obsolete SNOMED edition. Replaced

Medicine 1982) by SNOMED CT.

t LCH_NW (Library of Congress 5809 13.96 v v Northwestern Univ. subset for biomed-

Headings, NW Subset) ical topics.

MEDCIN 5653 — 4 X Proprietary  clinical terminology
(Medicomp Systems).

CSP (CRISP Thesaurus) 4 868 11.70 v/ X Former NIH thesaurus. Now historical;
available in UMLS.

OMIM (Online Mendelian Inheritance 3694 8.88 X v No inherent taxonomy. API requires

in Man) free registration.

LCH (Library of Congress Headings) 3685 8.85 V v Broad multidisciplinary subject head-
ings.

CCPSS (Canonical Clinical Problem 3662 8.80 v X Vanderbilt, 1999. Standard problem

Statement System) names; available via UMLS.

PSY (Thesaurus of Psychological In- 3137 754 X APA’s thesaurus for PsycINFO index-

dex Terms) ing.

+ HPO (Human Phenotype Ontology) 2272 5.46 v Open ontology for genetic phenotype
annotation.

FMA (Foundational Model of 2192 527 v v Extensive anatomy ontology with part-

Anatomy) of hierarchy.

T ICD-10-CM (Intl. Classification of 2092 5.03 v v Clinical mod. of WHO’s ICD-10.

Diseases, 10th Rev, Clin. Mod.) Maintained by CDC/NCHS.

RXNORM 2042 491 v X Normalized drug nomenclature.

1 ICD-9-CM (Intl. Classification of 1796 432 / v Legacy system, replaced by ICD-10-

Diseases, 9th Rev, Clin. Mod.) CM.

ICPC2ICD10ENG (ICPC-2 to ICD- 1726 3.96 X X Links primary care codes (ICPC-2) to

10 Mapping) ICD-10.

UWDA (Univ. of Washington Digital 1608 3.86 v X Early anatomical ontology; superseded

Anatomist) by FMA.

T GO (Gene Ontology) 1378 331 v v Biological ontology (MF, BP, CC).
Open access.

¥ NCBI (National Center for Biotech- 1354 3.25 V/ v Suite of databases and tools via E-

nology Information)

utilities API.
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