@inproceedings{yan-etal-2025-recitation,
title = "Recitation over Reasoning: How Cutting-Edge Language Models Can Fail on Elementary School-Level Reasoning Problems?",
author = "Yan, Kai and
Xu, Yufei and
Du, Zhengyin and
Yao, Xuesong and
Wang, Zheyu and
Guo, Xiaowen and
Chen, Jiecao",
editor = "Inui, Kentaro and
Sakti, Sakriani and
Wang, Haofen and
Wong, Derek F. and
Bhattacharyya, Pushpak and
Banerjee, Biplab and
Ekbal, Asif and
Chakraborty, Tanmoy and
Singh, Dhirendra Pratap",
booktitle = "Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "The Asian Federation of Natural Language Processing and The Association for Computational Linguistics",
url = "https://aclanthology.org/2025.ijcnlp-long.17/",
pages = "272--291",
ISBN = "979-8-89176-298-5",
abstract = "The rapid escalation from elementary school-level to frontier problems of the difficulty for LLM benchmarks in recent years seems to bring us close enough to the ``last exam'' for LLMs to surpass humanity. However, is the LLMs' remarkable reasoning ability indeed coming from true intelligence by human standards, or are they actually reciting solutions witnessed during training at an Internet level? To study this problem, we propose RoR-Bench, a novel, multi-modal benchmark for detecting LLM{'}s recitation behavior when asked simple reasoning problems but with conditions subtly shifted, and conduct empirical analysis on our benchmark. Surprisingly, we found existing cutting-edge LLMs unanimously exhibits extremely severe recitation behavior; by changing one phrase in the condition, top models such as OpenAI-o1 and DeepSeek-R1 can suffer 60 percent performance loss on elementary school-level arithmetic and reasoning problems. Such findings are a wake-up call to the LLM community that compels us to reevaluate the true intelligence level of cutting-edge LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yan-etal-2025-recitation">
<titleInfo>
<title>Recitation over Reasoning: How Cutting-Edge Language Models Can Fail on Elementary School-Level Reasoning Problems?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhengyin</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuesong</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaowen</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiecao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haofen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biplab</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhirendra</namePart>
<namePart type="given">Pratap</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Asian Federation of Natural Language Processing and The Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-298-5</identifier>
</relatedItem>
<abstract>The rapid escalation from elementary school-level to frontier problems of the difficulty for LLM benchmarks in recent years seems to bring us close enough to the “last exam” for LLMs to surpass humanity. However, is the LLMs’ remarkable reasoning ability indeed coming from true intelligence by human standards, or are they actually reciting solutions witnessed during training at an Internet level? To study this problem, we propose RoR-Bench, a novel, multi-modal benchmark for detecting LLM’s recitation behavior when asked simple reasoning problems but with conditions subtly shifted, and conduct empirical analysis on our benchmark. Surprisingly, we found existing cutting-edge LLMs unanimously exhibits extremely severe recitation behavior; by changing one phrase in the condition, top models such as OpenAI-o1 and DeepSeek-R1 can suffer 60 percent performance loss on elementary school-level arithmetic and reasoning problems. Such findings are a wake-up call to the LLM community that compels us to reevaluate the true intelligence level of cutting-edge LLMs.</abstract>
<identifier type="citekey">yan-etal-2025-recitation</identifier>
<location>
<url>https://aclanthology.org/2025.ijcnlp-long.17/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>272</start>
<end>291</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recitation over Reasoning: How Cutting-Edge Language Models Can Fail on Elementary School-Level Reasoning Problems?
%A Yan, Kai
%A Xu, Yufei
%A Du, Zhengyin
%A Yao, Xuesong
%A Wang, Zheyu
%A Guo, Xiaowen
%A Chen, Jiecao
%Y Inui, Kentaro
%Y Sakti, Sakriani
%Y Wang, Haofen
%Y Wong, Derek F.
%Y Bhattacharyya, Pushpak
%Y Banerjee, Biplab
%Y Ekbal, Asif
%Y Chakraborty, Tanmoy
%Y Singh, Dhirendra Pratap
%S Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
%D 2025
%8 December
%I The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-298-5
%F yan-etal-2025-recitation
%X The rapid escalation from elementary school-level to frontier problems of the difficulty for LLM benchmarks in recent years seems to bring us close enough to the “last exam” for LLMs to surpass humanity. However, is the LLMs’ remarkable reasoning ability indeed coming from true intelligence by human standards, or are they actually reciting solutions witnessed during training at an Internet level? To study this problem, we propose RoR-Bench, a novel, multi-modal benchmark for detecting LLM’s recitation behavior when asked simple reasoning problems but with conditions subtly shifted, and conduct empirical analysis on our benchmark. Surprisingly, we found existing cutting-edge LLMs unanimously exhibits extremely severe recitation behavior; by changing one phrase in the condition, top models such as OpenAI-o1 and DeepSeek-R1 can suffer 60 percent performance loss on elementary school-level arithmetic and reasoning problems. Such findings are a wake-up call to the LLM community that compels us to reevaluate the true intelligence level of cutting-edge LLMs.
%U https://aclanthology.org/2025.ijcnlp-long.17/
%P 272-291
Markdown (Informal)
[Recitation over Reasoning: How Cutting-Edge Language Models Can Fail on Elementary School-Level Reasoning Problems?](https://aclanthology.org/2025.ijcnlp-long.17/) (Yan et al., IJCNLP-AACL 2025)
ACL