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Abstract

Assessing scientific claims requires identifying,
extracting, and reasoning with multimodal data
expressed in information-rich figures in scien-
tific literature. Despite the large body of work
in scientific QA, figure captioning, and other
multimodal reasoning tasks over chart-based
data, there are no readily usable multimodal
benchmarks that directly test claim verification
abilities. To remedy this gap, we introduce
a new benchmark MUSCICLAIMS accom-
panied by diagnostics tasks. We automatically
extract supported claims from scientific articles,
which we manually perturb to produce contra-
dicted claims. The perturbations are designed
to test for a specific set of claim verification
capabilities. We also introduce a suite of diag-
nostic tasks that help understand model failures.
Our results show most vision-language mod-
els are poor (∼0.3-0.5 F1), with even the best
model only achieving 0.72 F1. They are also
biased towards judging claims as supported,
likely misunderstanding nuanced perturbations
within the claims. Our diagnostics show mod-
els are bad at localizing correct evidence within
figures, struggle with aggregating information
across modalities, and often fail to understand
basic components of the figure.1

1 Introduction

Scientific claim verification aims to assess the
validity and correctness of a claim with respect
to given scientific literature (Kotonya and Toni,
2020a; Saakyan et al., 2021; Mohr et al., 2022;
Wadden et al., 2020). Existing work on scientific
claim verification mainly focuses on textual data.
They pose verification tasks over a single article
or text snippet (Kotonya and Toni, 2020a; Saakyan
et al., 2021; Mohr et al., 2022), a corpus of full-text
articles (Wadden et al., 2020), or larger collections
of scientific abstracts (Wadden et al., 2022a).

1Data is available at https://huggingface.co/
datasets/StonyBrookNLP/MuSciClaims/

However, scientific evidence is often presented
as heterogeneous information-rich figures that sup-
port the important findings, claims and conclusions
of experiments. Therefore, scientific claim verifica-
tion requires both textual and visual understanding
capabilities. To assess a claim, one has to go over
the figure and its caption, find the panel(s) with in-
formation relevant to the claim, combine this visual
knowledge with textual information in the figure
caption, and finally judging whether the claim is
supported or not. While there is a large number
of benchmarks on scientific figures, they focus on
image captioning (Hsu et al., 2021), question an-
swering (Kahou et al., 2017), or other reasoning
tasks (Yue et al., 2024a). There are no readily us-
able multimodal benchmarks for scientific claim
verification. The closest work, ChartCheck (Akhtar
et al., 2024), poses a multimodal claim verification
task but is restricted to simple data charts crawled
from the web, which are substantially different
from complex figures found in scientific articles.

To address this gap, we introduce MUSCI-
CLAIMS2, a multimodal benchmark for claim ver-
ification over figures in scientific (physics, chem-
istry and biology) literature. We set two desider-
ata for our benchmark: the dataset needs carefully
constructed claims that are not supported or have
contradictory information in the figures; apart from
quantifying model performance, the dataset should
also be diagnostic in nature to identify specific
model weaknesses. Our dataset creation methodol-
ogy is designed to meet these desiderata.

We extract claims with inline references to fig-
ures from the results section of articles. We manu-
ally filter these to only retain claims that are clearly
and unambiguously supported by the figures. Then,
we create contradictory claims by perturbing these
supporting claims. We devise a diverse set of per-

2Code is available at https://github.com/
StonyBrookNLP/musciclaims
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turbations to test specific capabilities for claim ver-
ification including qualitative and quantitative rea-
soning, and observation-inference connections.

Last, we create a suite of diagnostic tasks asso-
ciated with each claim to better understand model
failures. Specifically, we design tasks that help
uncover errors across aspects of basic visual un-
derstanding, evidence localization, cross-modal ag-
gregation, and epistemic sensitivity. We ensure
the integrity of the dataset through manual analy-
sis. The resulting dataset consists of 1515 (claim,
figure) data points from PHYSICS, CHEMISTRY

and BIOLOGY, equally balanced across 3 class la-
bels (SUPPORT, NEUTRAL, CONTRADICT), each
accompanied by diagnostic questions.

We benchmark a suite of visual language models
(VLMs) on MUSCICLAIMS. Most models are
poor at scientific claim verification out-of-the-box.
Prompting VLMs to explain their decisions helps
performance, but only slightly. Despite these gains,
there is still a large room for improvement. Our
diagnostics shows that models fail at evidence lo-
calization, introducing noise in their reasoning pro-
cess consequently performing worse. Their basic
visual understanding and cross-modal aggregation
capabilities also need improvement.

In summary, our contributions are:

1. We present MUSCICLAIMS, an evaluation
benchmark for multimodal scientific claim ver-
ification over information-rich figures.

2. We find that contemporary models are good,
but have significant room for improvement on
claim verification.

3. Our diagnostic tests pinpoint specific model
abilities to improve—localizing to the right
information and cross-modal information
aggregation—for better claim verification.

2 Related Work

Multimodal Scientific Benchmarks There has
been extensive work on evaluating multimodal
understanding abilities of contemporary models.
Some work focuses on image captioning tasks
where, given an image, the model is asked to gen-
erate a concise description for it (Hsu et al., 2021;
Tang et al., 2023). But the larger share belongs
to question answering benchmarks. These bench-
marks differ on types of image, questions, knowl-
edge required to answer questions, domains, scale,
and annotations. While FigureQA (Kahou et al.,
2017), DVQA (Kafle et al., 2018) and PlotQA

(Methani et al., 2020) provide large-scale resources,
they are limited to synthesized charts and template-
based questions. They do not fully capture the
complexity and diversity of real-world charts.

To create more complex QA benchmarks,
ChartQA (Masry et al., 2022) mixes 30k human
and machine-generated questions; however the im-
ages are still limited to line, bar and pie charts. To
cover more types, ArXivQA (Li et al., 2024) ex-
tracts images with LLM-generated QA pairs from
arXiv papers. SciGraphQA (Li and Tajbakhsh,
2023) extract graphs from Comp. Sci. ArXiv pa-
pers and use LLMs to create multi-turn question-
answering dialogues about them. MMC (Liu et al.,
2024) supports diverse tasks and chart types using
free-form questions and open-ended answers.

Previous benchmarks rely heavily on chart an-
notations or table metadata as textual prompts to
generate content, allowing models to easily obtain
candidate answers while ignoring the charts’ visual
logic. ChartBench (Xu et al., 2023) includes both
annotated and unannotated charts. While ChartX
(Xia et al., 2024) covers more chart types, its data
and charts are synthesized and limited to ones that
can be directly converted into a structural data for-
mat, e.g., CSV format. CharXiv (Wang et al., 2024)
consists of 2k real-world charts with manually cu-
rated questions by human experts and answers vali-
dated by hand, panning 8 major subjects published
on arXiv. The questions are either descriptive to un-
derstand basic chart data or reasoning-based to dig
deeper into charts. MultiChartQA (Zhu et al., 2025)
is designed to evaluate VLMs’ reasoning capabil-
ities across multiple charts. However, the charts
are not information-rich and no domain knowledge
beyond what is stated in the charts is required to
answer questions in these benchmarks.

To cover more image types, MMMU (Yue et al.,
2024a,b) collected multimodal questions from col-
lege exams, quizzes, and textbooks, covering six
disciplines, ranging from visual scenes like pho-
tos and paintings to diagrams and tables, testing
the perceptual capabilities of VLMs. CURIE (Cui
et al., 2025) covers diverse scientific disciplines,
but its multimodal tasks are limited to biodiver-
sity georeferencing and protein sequence recon-
struction tasks. EMMA (Hao et al., 2025) targets
organic multimodal reasoning across mathemat-
ics, physics, chemistry, and coding. While these
datasets require domain knowledge, it doesn’t re-
quire a high level of expertise.

Most existing multimodal benchmarks are de-
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signed such that reasoning over just the images
can result in the answer. But SPIQA (Pramanick
et al., 2024) is designed such that questions require
simultaneous reasoning over different modalities,
including figures, tables, and texts from articles
in the computer science domain. Even with the
diversity of multimodal benchmarks for scientific
literature, there is a dearth of datasets to test how
well models can verify claims made in such data.

Scientific Claim Verification Claim verification
as the task of establishing the truthfulness of a
given claim has gained a lot of attention given ever-
increasing amounts of data (Thorne et al., 2018;
Kotonya and Toni, 2020b; Wadden et al., 2020).
Scientific claim verification requires significant do-
main knowledge as well as understanding the ev-
idence to reason about the claim. SciFact-Open
(Wadden et al., 2022b) expand on previous work
(Wadden et al., 2020) to provide a more realis-
tic testbed of claim verification systems. Recent
work has also focused on testing how well models
can verify claims over tabular data on real-world
public health claims and scientific papers (Akhtar
et al., 2022; Wang et al., 2021) or charts and im-
ages (Akhtar et al., 2024) or a mix of all (Singh
et al., 2024). Akhtar et al. (2023, 2024) focus on
claim verification over plots and charts. However,
the associated plots are often simple and do not
adequately test domain knowledge or how to find
evidence within larger amounts of data. Our dataset
tests domain-specific claim verification abilities
over heterogeneous, information-rich figures.

3 Creating MUSCICLAIMS

Verifying whether a claim is supported by scientific
evidence requires understanding different parts of
the claim, locating and extracting information from
multimodal sources, reasoning with it, and finally
making a judgment. In scientific articles, such evi-
dence is often presented graphically, in panels of
information-rich figures along with a descriptive
caption. To test whether models can verify claims
over scientific figures, we need claims that are sup-
ported, as well as ones that are not. The former
can be extracted from papers but manual interven-
tion is required to create the latter. To go beyond
standard quantitative benchmarking and better un-
derstand model failures, we also need tests that
are diagnostic in nature. To this end, we introduce

MUSCICLAIMS, a dataset created from scien-
tific articles across physics, chemistry and biology.

We use open-access, peer-reviewed articles pub-
lished in Nature Physics, Journal of the American
Chemical Society, and Cell, as the source for claims
in physics, chemistry and biology respectively.

3.1 Automatic Extraction
We extract figures and associated claims from the
results section of the articles, where key findings
and takeaways are described along with supporting
evidence, often expressed within heterogeneous fig-
ures containing charts, microscopy images, chemi-
cal reaction schemes, or other diagrams.

Figures in these articles are quite diverse–they
vary in size, resolution, placement, and caption
style. We make use of both the HTML and PDF
versions of the articles to obtain a uniform organi-
zation and representation of all figures. We ensure
that only high-resolution images (300ppi) are re-
tained and preprocess the captions to remove irrel-
evant information such as structural prefixes.

To extract claims associated with the figures, we
process the Results section text. We use simple reg-
ular expressions to identify sentences which either
contain explicit references to figures (e.g. “Fig.”)
or some form of inline references (e.g., “Author et
al.”). We discard sentences referring to multiple
figures or supplementary figures. Full details of the
extraction process are provided in Appendix C.

3.2 Systematic Claim Perturbation
The claims extracted from the articles are grounded
in the associated figures—i.e., the figures support3

the claims. To create an effective test bed, we
also need claims that are not supported and have
contradictory evidence in the figures. Further, we
want to ensure that we test for a variety of reasons
that could make a claim unsupported or contradic-
tory with respect to the given evidence. To this
end, we use a manual claim perturbation process to
ensure meaningful perturbations, and ensure their
quality through a second annotation process. Anno-
tators produce free-form contradicting claims over
a range of perturbations.

We manually analyzed the original claims to
identify the main capabilities needed for checking
a claim against the corresponding figures. Based
on this, we create four categories of perturbations:
(i) Qualitative Inference—Directional terms are
replaced with their opposites (e.g., “high concen-
tration" to “low concentration"). This tests whether

3We rely on the scientific integrity of the published articles
and assume that evidence support the asserted claims.
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Q: Identify the relevant panel(s) to judge the claim.

Original Claim: Atg-9 mutation suppresses PTLA but don’t fully 
restore it indicating that other processes also influence PTLA.

SUPPORT

Perturbed Claim: Atg-9 mutation enhances PTLA but don’t fully 
restore it indicating that other processes also influence PTLA.

CONTRADICT

Evidence
Localization

A: Panel D

Basic Visual 
Understanding

Q: How many days does the data span?

A: 20days

Cross-Modal 
Aggregation

Causal 
Robustness

1) Given: (claim, figure, caption), assess the claim.

2) Given: (claim, caption), assess the claim.

3) Given: (claim, figure), assess the claim.

(1) ≈ (2) + (3)

Original Claim

Perturbed Claim

L1

L2

L1 != L2

Caption: Forward genetic screen for suppressors of PTLA phenotype … (D) Animals of 
the indicated genotypes were subjected to L1 arrest and periodically assessed for 
viability and development according to STAR Methods.

Claim Verification Task

Diagnostic Tasks

What’s in the Data?

Figure 1: Each data point from MUSCICLAIMS contains a claim, its associated figure and caption and annota-
tions about its relevant panels. Each claim, both original and perturbed, is also labeled with its relationship to the
figure (SUPPORT, NEUTRAL, CONTRADICT). It also enables performing diagnostic tests. Models must identify
the relevant panel as part of EVIDENCELOCALIZATION and answer a question about the figure for BASICVISU-
ALUNDERSTANDING. To perform CROSS-MODALAGGREGATION, model performance should drop when given
either just the figure or the caption. For EPISTEMICSENSITIVITY, model predictions must change across a pair of
(original, perturbed) claims.

models can check if the asserted qualitative state-
ments are supported via visual relationships be-
tween data points in a figure. (ii) Qualitative Rela-
tionship Inference—Comparisons are edited (e.g.,
“X is stronger than Y" into “Y is stronger than
X") to create the opposite conclusion from a fig-
ure. This checks for assessing qualitative rela-
tionships between variables via visual inference
of similar relationships, (iii) Quantitative reason-
ing—Numerical values, primarily associated with
experiment details such as statistical significance
or experiment size, are modified to test for rea-
soning about the key quantities of interest. (iv)
Epistemic Mismatch—This represents a disconnect
between different forms of knowledge. We add per-
turbations that introduce inconsistencies between
an observation that is visually true (i.e., supported
by the figure) and its inference (which requires
domain knowledge). This tests for the ability to
carefully connect visually verified information with
the textually asserted effect.

Our perturbations ensure that the modified claim
is a contradiction of the supported claim. This
means that the figure which supports the original
claim will, by extension, not support the modi-
fied claim. We verify the quality of the resulting
perturbations through a second round of manual

annotation. For a subset of data, three annotators
were provided a supported claim as well as its per-
turbation. They are required to judge whether the
perturbation contradicts the supported claim. We
find that all three annotators agree that all perturbed
claims are indeed contradictions of the correspond-
ing supported claims (100% agreement).

3.3 Diagnostics

MUSCICLAIMS is also designed to be a diag-
nostic dataset to support deeper understanding of
model capabilities. We introduce four kinds of di-
agnostic tests that relate to different aspects of the
claim verification problem.

(i) BASICVISUALUNDERSTANDING—For each
claim, we identify a data point that is integral to
it, and then introduce questions that test for model
ability to read or extract it from the figure. (ii)
EVIDENCELOCALIZATION—The dataset contains
automatically extracted annotations about the pan-
els of a figure which should be perused to judge
a claim. Using this, we can test a model’s EVI-
DENCELOCALIZATION ability in the visual modal-
ity. (iii) CROSS-MODALAGGREGATION—Often,
information (such as that about statistical signifi-
cance) in the caption is also important to correctly
assess a claim. Textual reasoning over the caption
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must be combined with visual reasoning over the
figure. We test models’ multimodal reasoning abil-
ities through CROSS-MODALAGGREGATION. (iv)
EPISTEMICSENSITIVITY—Claims often contain
an observation from a figure, as well as an inference
that also requires domain knowledge to understand.
Relationships between observations and inferences
are systematically perturbed by annotators as part
of §3.2. We collect annotations about whether it
is the observation, the inference, or both, that are
perturbed. Through EPISTEMICSENSITIVITY, we
establish how models change their judgments for
such perturbations, indicating their understanding
of epistemic relationships within claims. Examples
of these diagnostics are provided in Figure 1.

3.4 Dataset Statistics

Through the process described above, we ob-
tain 505 claims that are supported by a fig-
ure (SUPPORT), and 505 corresponding per-
turbed claims in contradiction to a given figure
(CONTRADICT). Further, we pair each claim with
an unassociated figure from the same paper to ob-
tain data where there is no connection between
them (NEUTRAL). Therefore, MUSCICLAIMS

contains 1515 data points balanced equally across
3 class labels. Out of this, 918 data points are from
biology, 309 from chemistry and 288 from physics.
Each data point is also annotated with figure pan-
els most relevant to a claim, a question about the
figure and information about perturbation types to
support our diagnostic tests4.

4 Experimental Setup

We benchmark the performance of several state-of-
the-art vision-language models (VLMs) on evalua-
tion tasks supported by MUSCICLAIMS.

4.1 Evaluation Tasks

MUSCICLAIMS is designed as a CLAIMVERI-
FICATION task. Each data point contains a claim,
an associated (multi-panel) figure (and caption)
and a label (SUPPORT, NEUTRAL, CONTRADICT).
Given the figure (and caption) and a claim, models
must generate a prediction about whether the claim
is supported. We evaluate models on this task using
standard metrics of precision, recall and F1 score.

MUSCICLAIMS also supports four diagnos-
tic tasks designed to assess a diverse set of capa-

4We release the data in accordance with the papers’ CC
BY 4.0 license.

bilities required to effectively verify claims. Per-
formance on these diagnostics highlight limitations
of contemporary models, thereby opening up av-
enues for future research. (1) EVIDENCELOCAL-
IZATION tests whether models can localize to the
correct panel(s) in the figure. Given the figure (and
caption) and a claim, models must generate the
relevant panel names as well as generate a predic-
tion (CLAIMVERIFICATION). We use precision,
recall and F1 to measure how well models iden-
tify the correct panels. (2) BASICVISUALUNDER-
STANDING aims to test whether models can read
scientific figures by how models answer a question
about the figure. Each claim in MUSCICLAIMS

is accompanied by a basic question and its (one-
word) answer about the associated figure. We use
Exact Match to judge whether a model answer is
correct. (3) CROSS-MODALAGGREGATION are ex-
periments designed to analyze how models use the
figure and its caption to come up with their judg-
ment. Models need to aggregate information from
the figure (visual information) as well as caption
(textual information) for claim verification. First,
models are given a claim, the associated figure, its
caption and required to perform CLAIMVERIFICA-
TION. Then, for the same task, they are prompted
to reason over just the figure and just the caption,
testing its visual and textual abilities respectively.
(4) EPISTEMICSENSITIVITY tests whether models
consistently (and correctly) change their prediction
across epistemic perturbations of the same claim;
they should predict support for the original and
contradict for the perturbed claim. Claims often
encode epistemic information—observations from
the figure and related inferences made with domain
knowledge. As part of §3.2, annotators also mark
whether they perturb the observation, the inference
or both. We perform a sensitivity test for the same
across (original, perturbed) claim pairs.

4.2 Models

We conduct the aforementioned evaluation on
a set of 12 different vision-language models
(VLMs): gpt-4o-mini-2024-07-18 (4o-mini), gpt-
4o-2024-11-20 (4o), claude-3-5-sonnet-20241022
(Sonnet), o3-2025-04-16 (o3), o4-mini-2025-04-
16 (o4-mini), Phi-4 Multimodal Instruct (Phi-4),
llava-v1.6-mistral-7b-hf (Llava-Next), Llama-3.2-
11B Vision Instruct (Llama-3.2), Molmo-7B-D
(Molmo), InternVL3-38B (InternVL3), Qwen2.5-
VL-32B (Qwen2.5) and deepseek-VL2-small
(DeepSeek). This set represents both open and
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SUPPORT NEUTRAL CONTRADICT OVERALL

P R F P R F P R F P R F

4o-mini
D 0.41 0.88 0.56 0.64 0.48 0.55 0.75 0.10 0.17 0.60 0.48 0.43

R→D 0.43 0.83 0.56 0.64 0.47 0.54 0.62 0.20 0.30 0.56 0.50 0.47

4o
D 0.43 0.93 0.59 0.86 0.46 0.60 0.75 0.23 0.35 0.68 0.54 0.51

R→D 0.47 0.86 0.61 0.71 0.61 0.65 0.76 0.25 0.38 0.65 0.57 0.55

Sonnet
D 0.52 0.87 0.65 0.83 0.64 0.72 0.79 0.43 0.56 0.71 0.65 0.64

R→D 0.53 0.89 0.66 0.84 0.64 0.73 0.81 0.47 0.59 0.73 0.66 0.66

o3 R→D 0.67 0.74 0.71 0.69 0.79 0.74 0.82 0.61 0.70 0.73 0.72 0.72

o4-mini R→D 0.62 0.84 0.71 0.76 0.76 0.76 0.88 0.57 0.69 0.75 0.72 0.72

Phi-4
D 0.43 0.70 0.53 0.74 0.19 0.30 0.44 0.50 0.47 0.54 0.46 0.43

R→D 0.36 0.81 0.51 0.81 0.10 0.17 0.58 0.26 0.36 0.58 0.41 0.34

Llava-Next
D 0.37 0.92 0.53 0.68 0.33 0.44 1.00 0.00 0.01 0.68 0.42 0.33

R→D 0.38 0.80 0.52 0.54 0.42 0.47 0.61 0.09 0.15 0.51 0.43 0.38

Llama-3.2
D 0.41 0.86 0.56 0.68 0.42 0.52 0.60 0.17 0.27 0.57 0.49 0.45

R→D 0.37 0.93 0.53 0.72 0.15 0.25 0.61 0.17 0.27 0.56 0.42 0.35

Molmo
D 0.41 0.91 0.57 0.77 0.29 0.42 0.54 0.22 0.32 0.57 0.47 0.43

R→D 0.39 0.75 0.51 0.56 0.28 0.37 0.43 0.23 0.30 0.46 0.42 0.39

InternVL3
D 0.62 0.79 0.70 0.83 0.68 0.75 0.70 0.64 0.67 0.72 0.70 0.70

R→D 0.45 0.91 0.60 0.83 0.49 0.61 0.80 0.30 0.44 0.69 0.57 0.55

Qwen2.5
D 0.55 0.80 0.65 0.70 0.80 0.75 0.85 0.34 0.48 0.70 0.65 0.63

R→D 0.42 0.91 0.57 0.79 0.41 0.54 0.85 0.25 0.39 0.68 0.53 0.50

DeepSeek
D 0.55 0.43 0.48 0.50 0.67 0.58 0.44 0.40 0.42 0.50 0.67 0.58

R→D 0.41 0.65 0.51 0.51 0.51 0.51 0.51 0.21 0.30 0.48 0.46 0.44

Table 1: Model performance on the claim verification task of MUSCICLAIMS when prompted to simply generate
the decision (D), and when asked to reason and then generating the decision (R→D). InternVL3 achieves best
performance when prompted to just give the answer, while o3 and o4-mini are the best overall, using their inbuilt
reasoning capabilities. Closed-source models are slightly better with reasoning whereas open-source models do
worse in most cases, represent a significant gap in their reasoning capabilities.

closed-sourced models of differing capabilities for
a comprehensive evaluation of MUSCICLAIMS.
We evaluate models primarily in two zero-shot set-
tings: (i) generating only a judgment (D), and (ii)
reasoning about the claim before judging it (R→D).
More details are in Appendix A, G and D.

5 Results

Table 1 presents the performance of all the mod-
els in different settings for the multimodal scien-
tific claim verification task. We present per-class
(SUPPORT, NEUTRAL and CONTRADICT) preci-
sion, recall and F1 score as well as macro average
metrics on the class balanced MUSCICLAIMS5.
We make two main observations.

Most VLMs perform poorly on MUSCICLAIMS.
We observe that most models perform poorly on
the task (D rows in Table 1), with overall F1 scores

5Results for each domain are presented in Table 8, 9 and
10

only ranging from ∼0.3-0.5. Only two models (out
of ten) stand out: Sonnet (0.66 F1) and InternVL3
(0.70 F1). Models attain high recall and low pre-
cision on SUPPORT. In contrast for the NEUTRAL

and CONTRADICT claims, models have low re-
call and high precision. This implies two findings:
First, models have a strong bias towards recogniz-
ing most of the claims as supported. Second, the
models can reliably identify some of the NEUTRAL

and CONTRADICT claims. Our manual analysis
shows that models only identify the most obviously
wrong claims as the NEUTRAL and CONTRADICT

claims. This can be done reliably but they struggle
on ones that are more difficult, which require care-
ful reasoning. These suggest challenges for claim
verification methods.

Reasoning before judging helps models slightly.
The R→D rows in Table 1 show results where mod-
els, given the figure and caption, first perform step-
by-step reasoning on the claim and then generate
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their decision on the category of the claim. Results
show that reasoning leads to improvements (∼0.02-
0.04) for closed-source models and Llava-Next,
but the gains are rather small. o3 and o4-mini,
models trained to analyze and do reasoning over
images, achieve the highest performance (0.72 F1).

There is a notable drop in performance for open-
source models (∼0.04-0.16) indicating a weakness
in CoT abilities of open-source models for claim
verification. We hypothesize that this is due to the
limitations of instruction tuning in vision-language
modeling where models are mainly finetuned to
describe or analyze images, not reasoning chains.

Table 7 presents model performance for different
domains in MUSCICLAIMS. On average, models
are worst at verifying PHYSICS claims and best at
judging CHEMISTRY claims. However, the highest
performance is achieved on BIOLOGY claims.

6 Diagnostics Results

We use our diagnostic tests to better understand
the failure modes of 4o-mini, 4o, Sonnet and
InternVL3. Going forward, we run these diag-
nostic tests (§3.3) on the BIOLOGY subset of

MUSCICLAIMS and discuss them.

P R F

4o-mini
R→D 0.57 0.50 0.46

I→R→D 0.59 0.45 0.40

4o
R→D 0.69 0.59 0.56

I→R→D 0.73 0.51 0.47

Sonnet
R→D 0.78 0.70 0.70

I→R→D 0.79 0.69 0.70

InternVL3
R→D 0.75 0.59 0.58

I→R→D 0.75 0.59 0.58

Table 2: Model performance on claim verification wors-
ens when also prompted to localize to the relevant panels
(I→R→D) as compared to reasoning over the entire fig-
ure and assessing a claim (R→D).

VLMs localize poorly to relevant information.
Finding the most relevant panels of figures is impor-
tant to assess claims from information-rich figures.
Table 2 shows how well models perform when
prompted to first identify the associated panels,
reason over them and make a decision (I→R→D),
thereby testing EVIDENCELOCALIZATION. Model
performance deteriorates when localizing before
reasoning (I→R→D) as compared to reasoning

P R F

4o-mini 0.37 0.77 0.50

4o 0.53 0.70 0.61

Sonnet 0.62 0.80 0.70

InternVL3 0.46 0.68 0.55

Table 3: EVIDENCELOCALIZATION—We use precision,
recall and F1 score to characterize how well models can
localize to relevant panels. Low precision indicates that
they are bad at identifying only the correct panels.

over the entire figure (R→D). We also explicitly
test their ability to locate relevant panels. Table 3
presents precision, recall and F1 to measure how
well models can localize to the correct visual evi-
dence. Their low precision and high recall indicates
they do identify the relevant panel(s), but also deem
a lot of irrelevant panels to be important. Clearly,
evidence localization is difficult for models.
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Figure 2: Model performance on CLAIMVERIFICATION
when prompted for (or provided) localization. Providing
models with hints about the relevant panels of figures im-
proves their claim verification. Textual hints (TH) guide
models to focus on the correct part of the full figure,
showing higher performance than R→D and I→R→D.
Models using visual hints (VH; relevant panel as visual
input instead of full figure) perform even better. This
indicates that localizing to the relevant knowledge has
the potential to improve models.

Better localization can improve performance.
We perform a series of experiments to establish
how well models can perform if they have correct
localization information. First, we provide models
gold information about which panels are associated
with the claim as a textual hint (TH→R→D). Next,
for each claim, instead of the full figure, we only
provide the relevant panel to the model as a visual
hint (VH→R→D), instead of the full figure. These
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experiments are performed over a randomly sam-
pled subset (n=101) of class-balanced data points.

Figure 2 compares the performance of models
with and without these hints. As stated earlier,
models are better at reasoning over the full fig-
ure (R→D) rather than over panels it has identi-
fied as relevant (I→R→D). However, when given
the relevant panels as a textual hint (TH→R→D),
they fare much better. They improve even further
when only given the relevant panel(s) of the figure
(VH→R→D) as input, thus removing panel local-
ization errors. The poor localization performance
coupled with the gains seen with localization hints
suggest that improving the localization abilities of
models is valuable. But even with perfect localiza-
tion (i.e., through hints here), there is significant
room for improvement, indicating challenges in
other aspects of multimodal reasoning.
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Figure 3: Model performance on BASICVISUALUN-
DERSTANDING. Models fail to answer basic questions
about components of figures associated with claims.

Models need to improve on basic visual reading.
Each claim in MUSCICLAIMS is also accompa-
nied by a question about the figure that is relevant
for the verification process. These questions test ba-
sic visual reading abilities (e.g., “How many days
does the data span?" in Figure 1) and do not re-
quire complex reasoning. Figure 3 shows that most
models perform poorly on such questions. Sonnet
performs the best, correctly answering ∼78% of
the questions. The moderate performance indicates
a gap in models’ visual comprehension capabilities
when it comes to scientific figures.

Models struggle with cross-modal reasoning.
Table 4 compares model performance when pro-
vided both the figure and its caption, just the cap-
tion and just the figure. Models must reason over
information in both modalities in order to best as-
sess a claim since information is found in both the

F+C C F

4o-mini
D 0.42 0.46 0.38

R→D 0.46 0.50 0.45

4o
D 0.52 0.50 0.45

R→D 0.56 0.44 0.51

Sonnet
D 0.68 0.58 0.60

R→D 0.70 0.51 0.64

InternVL3
D 0.74 0.64 0.68

R→D 0.58 0.47 0.47

Table 4: Models achieve a large chunk of their perfor-
mance using information from just one modality even
though information from both modalities is needed to
judge claims. F+C indicates when both the figure and
the caption is provided, C indicates when only the cap-
tion (textual) is provided, and F indicates when only the
figure (visual) is provided to the model.

figure (visual) as well as its caption (textual). How-
ever, we note that models’ performance doesn’t
improve substantially over its performance when
using just one modality. This indicates that they
might not be effectively combining the complemen-
tary information present in both modalities.

Obs Inf Both None

4o-mini
D 13% 13% 0% 12%

R→D 20% 28% 0% 22%

4o
D 13% 30% 0% 23%

R→D 7% 26% 0% 27%

Sonnet
D 47% 50% 0% 45%

R→D 47% 54% 0% 52%

InternVL
D 67% 72% 50% 65%

R→D 60% 39% 0% 35%

Table 5: Model sensitivity—changing their prediction
about a claim for different types of perturbation.

Models can’t handle epistemic mismatches.
Claims often encode epistemic relationships which
can be systematically perturbed to test the sensitiv-
ity of contemporary models (Verma et al., 2023).
We calculate sensitivity as the percentage of times
models change predictions across the supported
and refuted version of the same claim. Table 5
shows the sensitivity of models by perturbation
type. Models are not sensitive enough to under-
stand nuances in epistemic relationships, being the
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# Examples SUPPORT NEUTRAL CONTRADICT OVERALL
P R F P R F P R F P R F

4o-mini

k = 0 0.40 0.90 0.56 0.66 0.42 0.51 0.74 0.10 0.18 0.6 0.47 0.42
k = 1 0.41 0.90 0.56 0.81 0.12 0.22 0.73 0.48 0.58 0.65 0.50 0.45
k = 3 0.41 0.92 0.57 0.71 0.46 0.56 0.8 0.11 0.19 0.64 0.50 0.44
k = 5 0.41 0.91 0.56 0.71 0.49 0.58 0.86 0.08 0.15 0.66 0.49 0.43

GPT-4o

k = 0 0.43 0.96 0.59 0.93 0.44 0.60 0.84 0.23 0.36 0.73 0.54 0.52
k = 1 0.48 0.92 0.63 0.90 0.53 0.66 0.77 0.38 0.51 0.72 0.61 0.60
k = 3 0.46 0.95 0.62 0.90 0.53 0.67 0.83 0.28 0.42 0.73 0.59 0.57
k = 5 0.45 0.95 0.62 0.90 0.51 0.65 0.86 0.28 0.42 0.74 0.58 0.56

Sonnet

k = 0 0.53 0.92 0.67 0.91 0.63 0.74 0.82 0.49 0.61 0.76 0.68 0.68
k = 1 0.64 0.73 0.68 0.74 0.74 0.74 0.76 0.66 0.71 0.71 0.71 0.71
k = 3 0.62 0.75 0.68 0.75 0.66 0.70 0.73 0.65 0.69 0.70 0.69 0.69
k = 5 0.60 0.83 0.69 0.83 0.69 0.76 0.77 0.60 0.67 0.73 0.71 0.71

Table 6: Model (D) performance on BIOLOGY claims in MUSCICLAIMS. k denotes the number of few-shot
examples provided as part of the prompt.

worst when both the observation and inference is
modified. Analyzing differences in models’ confi-
dences for predictions may provide more insight
(Marcé and Poliak, 2022).

Few-shot examples help a little. We experiment
with few-shot prompting (or in-context learning)
(Brown et al., 2020; Wei et al., 2022) on BIOLOGY

claims for the decision-only (D) experiments us-
ing a subset of closed-source models. Using the
methodology described in section 3, we create 45
claims from Cell papers 6. The few-shot exam-
ples (k) are selected randomly from these created
claims.

Table 6 presents model performance when
prompted to just produce a decision (D). We find
that performance improves for all models when
they are provided any number of in-context exam-
ples. However, the benefits go down as the number
of examples goes up.

7 Conclusion

Assessing whether claims are supported requires
understanding the methods and data presented in as-
sociated figures. One must find the correct piece of
information in the figure and then combine it with
the caption. This paper introduces MUSCICLAIMS,
a new diagnostic dataset to evaluate the claim veri-
fication capabilities of VLMs. We find that most
VLMs are poor at this task out-of-the-box, and
chain-of-thought only helps slightly. Particularly,
they are significantly worse at understanding that
given evidence contradicts (or is not related to) the

6These papers are not part of the MUSCICLAIMS evalua-
tion set.

claim. EVIDENCELOCALIZATION shows that mod-
els are bad at identifying the right panel of data,
a critical flaw in their claim verification capabili-
ties. CROSS-MODALAGGREGATION indicates that
models do not effectively use both visual and tex-
tual information for their judgments. Diagnostics
also reveal that they do not understand some obvi-
ous characteristics of the associated figures. Our
results establish the current abilities of VLMs for
claim verification over heterogeneous, information-
rich scientific figures, and our diagnostics highlight
specific avenues of research to improve them.

Limitations

We benchmark a reasonably diverse set of VLMs.
However, we acknowledge that we can try more
models across a spectrum of architectures, training
paradigms and sizes. Due to the current fast-paced
landscape of VLM development, we will continue
to evaluate more VLMs on MUSCICLAIMS.

Due to the difficulty of creating data that VLMs
have not already seen (published after their cutoff
dates), we are unable to train models for this task.
We perform few-shot experiments with closed-
source models (4o-mini, 4o and Sonnet) but we
leave further exploration of different methods of
example selection to future work.

We formulate the task of multimodal scientific
claim verification. But our dataset is limited to
using captions as the textual part of the input to
models. While these captions are descriptive, mod-
els might benefit from using extra context, such as
that extracted from the Methods sections of papers.
Further, we limit the extraction of claims only to
the Results sections, even though claims may occur
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in other sections too.
In this work, we perform some qualitative evalu-

ation of weaknesses in the reasoning produced by
VLMs. However, we are unable to do so at scale.
Such evaluation requires experts with incredibly
specific domain expertise. Even a graduate student
(PhD level) or faculty cannot verify reasoning for
all domains covered in Nature Physics, Journal of
the American Chemical Society and Cell. For in-
stance, an expert in ecology cannot easily judge the
reasoning about claims in cellular biology. We will
explore how to conduct better evaluations as part
of future work.

Our work only investigates English-language
documents and this limits the generalizability of
our findings to other languages, although most sci-
entific articles are disseminated in English.

Due to high cost of the recently released o3
and o4-mini models, we are unable to ana-
lyze it across the full spectrum of our diagnos-
tics. For consistency, we analyze Sonnet and
InternVL3 since they have similar performance
on MUSCICLAIMS.

Ethical Considerations and Risks

Prior work has shown that VLMs exhibit various
types of bias. While they do not generate free-form
language for our binary prediction task, it is possi-
ble, though highly unlikely, that biases explicitly
come up in the explanations. Deploying such unre-
liable models into critical infrastructure and relying
on them for decisions can cause harm to users.
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A Benchmark Models

We provide details of each model we evaluate on
MUSCICLAIMS.

gpt-4o-2024-11-20 accepts as input any com-
bination of text, audio, image, and video and gen-
erates any combination of text, audio, and image
outputs. It is especially better at vision and audio
understanding compared to existing models.

gpt-4o-mini-2024-07-18 has a context win-
dow of 128K tokens, supports up to 16K output
tokens per request. It surpasses other small mod-
els released to that date on academic benchmarks
across both textual intelligence and multimodal rea-
soning, and supports the same range of languages
as 4o.

claude-3-5-sonnet-20241022 sets new indus-
try benchmarks for graduate-level reasoning
(GPQA), undergraduate-level knowledge (MMLU),
and coding proficiency (HumanEval). It shows
marked improvement in grasping nuance, humor,
and complex instructions, and is exceptional at writ-
ing high-quality content with a natural, relatable
tone.

o3-2025-04-16 excels at solving complex math,
coding, and scientific challenges while demonstrat-
ing strong visual perception and analysis. It uses
tools in its chains of thought to augment its capabili-
ties; for example, cropping or transforming images,
searching the web, or using Python to analyze data
during the thought process.

o4-mini-2025-04-16 is a smaller model opti-
mized for fast, cost-efficient reasoning—it achieves
remarkable performance for its size and cost, par-
ticularly in math, coding, and visual tasks. It is
the best-performing benchmarked model on AIME
2024 and 2025. It performs especially strongly
at visual tasks like analyzing images, charts, and
graphics.

Phi-4-multimodal-instruct is a 5.6 billion
parameter multimodal modal that combines image,
textual and audio modalaties into a single small
language model via LoRA adapters and modality-
specific routers that make multiple inference modes
possible without interference. The model has been
extensively instruction tuned on a combination of
synthetic and web data.

llava-v1.6-mistral-7b-hf is a 7.6 billion pa-
rameter vision language model that is part of the
Llava-Next regimen and built on top of the Llava
architecture. It has a pretrained vision encoder and
Mistral-7B as the language modeling backbone. It
has been instruction tuned on over a million data
points coming from a combination of high-quality
user instruct data and multimodal document/chart.

Llama-3.2-11B-Vision-Instruct is the 11B
version of the Llama 3.2-Vision set of multimodal
LLMs which have been instruction tuned for im-
age reasoning. It is built on top of the pretrained
Llama 3.1 text only LLM by combining a seper-
ately trained vision adapter module. Using a combi-
nation of supervised fine-tuning and reinforcement
learning from human feedback, the model has been
optimized to do a variety of vision tasks like image
recognition, reasoning, captioning, and question
answering on images.

Molmo-7B-D-0924 is a 7 billion parameter open-
source vision-language model. It is developed upon
the Qwen2-7B language model with OpenAI CLIP
as the vision adapter. The model has been trained
on PiXMo, a dataset containing 1 million high qual-
ity curated (image,text) tuples.

InternVL3-38B is a 38 billion parameter open-
source vision language model. It has been built
based upon the following components: variable vi-
sual position encoding which handles longer multi-
modal context; native multimodal pre-training that
combines language pre-training and multimodal
post-training in a single pipeline; mixed preference
optimization to align the model response distribu-
tion with the ground-truth distribution; and test-
time scaling using VisualPRM-8B as a critic model
for Best-of-N evaluation.

Qwen2.5-VL-32B-Instruct is a 32 billion pa-
rameter vision language model. It is created on
top of the Qwen-2.5 7 billion language model by
following the ViT architecture. It has been exten-
sively instruction tuned on (image,text) tuples to
so that the model understands all things visual, is
agentic, can comprehend long videos and events,
can do visual localization, and generate structured
outputs.

deepseek-vl2-small is a 16 billion parame-
ters mixture-of-experts vision language model. It
has shown been to demonstrate enhanced perfor-
mance across multiple tasks like visual question
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answering, optical character recognition, documen-
t/table/chart understanding, and visual grounding.
It improves upon its predecessor, DeepSeek-VL, by
using an improved high-resoultion vision encoder
for better visual comprehension and an optimized
language model backbone for training and test time
efficiency. It is trained on a data that boosts per-
formance and gives new capabilities to the model
such as precise visual grounding.

B Human Annotation Details

The design and instructions for the different appli-
cations through which annotations are collected can
be found in Figure 4, 5 and 6. Our annotators are
graduate students who are experts at reading figures
but have limited domain knowledge. To alleviate
the skill issue, we ask them to avoid perturbations
that require more domain knowledge than they pos-
sess. They were not paid for annotations, and were
informed of how the annotations would be used.

C Automatic Extraction Details

To construct a high-quality multimodal bench-
mark for scientific claim verification, we devel-
oped an automated pipeline for extracting tex-
tual claims and their associated visual elements
from research articles. Our approach operates
over full-text HTML and PDF documents sourced
from Nature Physics (https://www.nature.com/
nphys/), the Journal of the American Chemi-
cal Society (https://pubs.acs.org/journal/
jacsat) and Cell (https://www.cell.com), lead-
ing impact factor venues in their respective fields.
It creates reliable mapping between complex scien-
tific assertions and their supporting visual evidence
with minimal manual supervision. During dataset
collection, no personal identifying info (PII) was
collected. None of the collected data contained any
offensive content.

C.1 Automatic Figure Extraction

We extract figures and their corresponding cap-
tions from the structured HTML versions of ar-
ticles sourced from these journals. Each article
contains embedded figure blocks that follow con-
sistent filename conventions and DOM structures,
allowing for reliable identification and extraction.
Figures are mapped to canonical identifiers (e.g.,
figure_1, figure_2, etc.) to ensure consistency
across the dataset.

Captions are extracted from the <figcaption>
elements associated with each figure and typically
consist of a short title followed by descriptive text.
We concatenate these segments, remove structural
prefixes and apply light normalization to clean
residual markup or formatting noise. Only high-
resolution main-text figures are retained, while sup-
plementary or non-standard assets are excluded.
This approach yields a clean, structured mapping
between each visual element and its corresponding
caption, enabling precise alignment with textual
claims during the dataset construction process.

C.2 Automatic Claim Extraction
Scientific claims are typically concentrated in the
Results section, where authors present novel find-
ings grounded in empirical data, often accompa-
nied by figures such as charts, microscopy images,
or diagrams. In contrast, other sections such as
Introduction or Discussion tend to be more specula-
tive, summarizing prior work or offering high-level
interpretations. To ensure that extracted statements
are factual, visually grounded, and suitable for ver-
ification, we restrict claim extraction to the Results
section.

We process article PDFs using a layout-aware
parser to identify the Results section and extract its
contents. Section headers such as “Results” and
“Discussion” are detected using regex patterns ro-
bust to formatting variations and numbering con-
ventions. The extracted text is segmented into
candidate sentences using a customized version
of the NLTK Punkt tokenizer, adapted for scien-
tific prose by accounting for common abbreviations
(e.g., “Fig.”, “et al.”) and inline structures such as
references and equations.

Candidate sentences are filtered using a series
of quality criteria to ensure that only concise, vi-
sually grounded claims are retained. Specifically,
each sentence must (i) contain an explicit reference
to a main-text figure (e.g., “(Figure 2A)”), (ii) be
between 40 and 800 characters in length, (iii) in-
clude at least 8 words, and (iv) not match known
patterns associated with citations, table fragments,
or supplementary material. To maintain clarity and
reduce ambiguity during alignment, we retain only
single-sentence claims that refer to a single primary
figure (i.e., claims with multiple distinct figure ref-
erences are excluded). Additionally, we restrict
figure selection to images smaller than 5MB to
ensure compatibility with downstream modeling.
This process yields a clean set of scientific claims,
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Figure 4: Instructions and UI of the application used to collect perturbations of claims from manual annotators.

each grounded in a single visual source and suit-
able for fine-grained multimodal verification and
localization tasks.

D Model Setup

Python was the main scripting language for data
collection and experimentation. For experiments
using closed source models, we used OpenAI7 and
Anthropic8 APIs. The total cost for OpenAI was ∼
400 USD and ∼ 160 USD for Claude. The open-
source experiments were conducted on 4 A6000
GPUs, each having 48 GB. The total GPU hours
for all the experiments was ∼40. The models were
downloaded from Huggingface and hosted for in-
ference using Huggingface transformers module
and vLLM. We use GitHub Co-Pilot to help with
writing code but verify it manually before running
any experiments.

7https://openai.com/api/pricing/
8https://://www.anthropic.com/pricing

E Additional Results

E.1 Model Performance by Domain

Table 7 presents model performance for different
domains in MUSCICLAIMS. On average, we note
that models are worst at verifying PHYSICS claims
and best at judging CHEMISTRY claims. How-
ever, the highest performance is achieved by o3
and o4-mini on BIOLOGY claims. We also present
per-label metrics for model performance in each
domain in Table 8, Table 9 and Table 10.

E.2 MUSCICLAIMS task as a two-class
problem

Table 11 presents the results when the main claim
verification task of MUSCICLAIMS is converted
from a three-class (SUPPORT, CONTRADICT, NEU-
TRAL) problem to a two-class problem by merg-
ing CONTRADICT and NEUTRAL classes to NON-
SUPPORT class. From the table, we observe that
overall F1-scores do vary from the three-class F1-
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Figure 5: Instructions and UI of the application used to collect perturbations of claims from manual annotators
(contd.).

Figure 6: Instructions and UI designed to collect a second round of manual annotation to verify that the perturbed
claims are contradictions of the supported claims through Figure 4 and Figure 5. We ask three annotators to do this
task and find that they full agree for all the perturbations.
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PHYSICS CHEMISTRY BIOLOGY OVERALL

P R F P R F P R F P R F

4o-mini
D 0.56 0.45 0.38 0.65 0.55 0.49 0.60 0.47 0.42 0.60 0.48 0.43

R→D 0.52 0.47 0.43 0.57 0.54 0.51 0.57 0.50 0.46 0.56 0.50 0.47

4o
D 0.53 0.47 0.43 0.69 0.59 0.57 0.73 0.54 0.52 0.68 0.54 0.51

R→D 0.55 0.50 0.48 0.64 0.60 0.57 0.69 0.59 0.56 0.65 0.57 0.55

Sonnet
D 0.62 0.53 0.50 0.68 0.62 0.61 0.76 0.68 0.68 0.71 0.65 0.64

R→D 0.62 0.53 0.51 0.72 0.66 0.66 0.78 0.70 0.70 0.73 0.66 0.66

o3 R→D 0.58 0.55 0.54 0.72 0.71 0.71 0.79 0.77 0.77 0.73 0.72 0.72

o4-mini R→D 0.64 0.59 0.57 0.73 0.72 0.71 0.81 0.77 0.77 0.75 0.72 0.72

Phi-4
D 0.43 0.40 0.38 0.60 0.48 0.47 0.63 0.47 0.43 0.54 0.46 0.43

R→D 0.62 0.37 0.27 0.52 0.39 0.32 0.60 0.42 0.37 0.58 0.41 0.34

Llava-Next
D 0.28 0.39 0.30 0.36 0.46 0.37 0.74 0.42 0.32 0.68 0.42 0.33

R→D 0.52 0.39 0.34 0.55 0.45 0.40 0.50 0.44 0.38 0.51 0.43 0.38

Llama-3.2
D 0.51 0.45 0.41 0.56 0.48 0.44 0.60 0.50 0.47 0.57 0.49 0.45

R→D 0.53 0.41 0.35 0.52 0.41 0.34 0.60 0.43 0.36 0.56 0.42 0.35

Molmo
D 0.46 0.41 0.37 0.55 0.47 0.42 0.62 0.50 0.46 0.57 0.47 0.43

R→D 0.43 0.40 0.38 0.44 0.41 0.37 0.47 0.43 0.41 0.46 0.42 0.39

InternVL3
D 0.59 0.58 0.57 0.73 0.72 0.72 0.77 0.74 0.74 0.72 0.70 0.70

R→D 0.56 0.49 0.46 0.69 0.57 0.56 0.75 0.59 0.58 0.69 0.57 0.55

Qwen2.5
D 0.68 0.58 0.54 0.70 0.65 0.62 0.72 0.66 0.65 0.70 0.65 0.63

R→D 0.63 0.47 0.43 0.70 0.53 0.51 0.71 0.54 0.52 0.68 0.53 0.50

DeepSeek
D 0.47 0.47 0.46 0.52 0.50 0.49 0.51 0.51 0.50 0.50 0.67 0.58

R→D 0.42 0.42 0.39 0.46 0.46 0.42 0.50 0.47 0.46 0.48 0.46 0.44

Table 7: Model performance on the claim verification task of MUSCICLAIMS by the scientific domain of the
claims when prompted to simply generate the decision (D), and when asked to reason and then generating the
decision (R→D).

Q: How many days does the data span?
A: 20 days

Figure 7: Each claim is accompanied by a diagnostic
question that tests whether models can read the relevant
panel of the claim’s associated figure.

scores, highlighting that MUSCICLAIMS is hard
to solve even on a simplified problem setting. We
see higher precision and recall values for NON-
SUPPORT compared CONTRADICT and NEUTRAL

metrics in three-class problem. This shows that
while models can do coarse-grained classification
of wrong or irrelevant claims, in context of the
figure and cpation, but struggle when doing fine-
grained classification.

E.3 Panel Complexity

Table 12 shows the results of different models
when doing inference on single panel images from

MUSCICLAIMS compared to multi-panel im-
ages. Multi-panel images represent claim verifica-
tion tasks from MUSCICLAIMS of higher com-
plexity since models have to reason on the correct
panel and filter out distractor panels. However,
results show models doing better on average for
multi-panel setting compared to single-panel set-
ting. This might be because multi-panel provides
more visual context for model to do the task.

F Qualitative Error Analysis

In addition to the diagnostics, we perform quali-
tative error analysis on a random sample of 100
errors in o3 reasoning (R→D) on MUSCICLAIMS.
We categorize the errors into the following cate-
gories:

1. Domain Expertise (27%) - Models lack domain
expertise, knowledge of related work and com-
mon practices of representing data specific to
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SUPPORT NEUTRAL CONTRADICT OVERALL

P R F P R F P R F P R F

4o-mini
D 0.40 0.81 0.54 0.52 0.47 0.49 0.75 0.06 0.12 0.56 0.45 0.38

R→D 0.41 0.79 0.54 0.56 0.46 0.50 0.58 0.15 0.23 0.52 0.47 0.43

4o
D 0.40 0.83 0.54 0.63 0.38 0.47 0.56 0.19 0.28 0.53 0.47 0.43

R→D 0.44 0.71 0.54 0.54 0.57 0.56 0.66 0.22 0.33 0.55 0.50 0.48

Sonnet
D 0.44 0.77 0.56 0.60 0.58 0.59 0.81 0.23 0.36 0.62 0.53 0.50

R→D 0.45 0.79 0.57 0.60 0.54 0.57 0.81 0.26 0.39 0.62 0.53 0.51

o3 R→D 0.59 0.52 0.55 0.50 0.79 0.62 0.63 0.34 0.45 0.58 0.55 0.54

o4-mini R→D 0.53 0.66 0.59 0.56 0.76 0.65 0.82 0.34 0.49 0.64 0.59 0.57

Phi-4
D 0.37 0.70 0.49 0.43 0.24 0.31 0.48 0.27 0.35 0.43 0.40 0.38

R→D 0.35 0.90 0.50 1.00 0.02 0.04 0.51 0.19 0.27 0.62 0.37 0.27

Llava-Next
D 0.36 0.78 0.49 0.47 0.39 0.42 0.00 0.00 0.00 0.28 0.39 0.30

R→D 0.37 0.74 0.49 0.40 0.35 0.38 0.80 0.08 0.15 0.52 0.39 0.34

Llama-3.2
D 0.40 0.80 0.53 0.54 0.41 0.46 0.59 0.14 0.22 0.51 0.45 0.41

R→D 0.36 0.90 0.52 0.59 0.18 0.27 0.65 0.16 0.25 0.53 0.41 0.35

Molmo
D 0.38 0.83 0.52 0.51 0.22 0.31 0.50 0.19 0.27 0.46 0.41 0.37

R→D 0.37 0.72 0.49 0.50 0.23 0.31 0.43 0.26 0.32 0.43 0.40 0.38

InternVL3
D 0.55 0.69 0.61 0.59 0.68 0.63 0.63 0.38 0.47 0.59 0.58 0.57

R→D 0.43 0.78 0.55 0.55 0.49 0.52 0.70 0.20 0.31 0.56 0.49 0.46

Qwen2.5
D 0.52 0.67 0.59 0.56 0.82 0.66 0.96 0.24 0.38 0.68 0.58 0.54

R→D 0.40 0.84 0.54 0.55 0.39 0.45 0.94 0.18 0.30 0.63 0.47 0.43

DeepSeek
D 0.52 0.43 0.47 0.48 0.72 0.57 0.41 0.27 0.33 0.47 0.47 0.46

R→D 0.40 0.60 0.48 0.45 0.50 0.47 0.43 0.16 0.23 0.42 0.42 0.39

Table 8: Model performance on the claim verification task of MUSCICLAIMS for PHYSICS claims when
prompted to simply generate the decision (D), and when asked to reason and then generating the decision (R→D).

the scientific field.

2. Visual Understanding (23%) - Models are un-
able to make the correct inference from the
information that they perceive from the figure.

3. Visual Perception (23%) - Models either miss
or pick up data presented in the figure, which
can lead to the correct judgment.

4. Cross Modal Aggregation (17%) - Models in-
correctly weight information from one modality
over another (such as focus on the caption more
than the figure), coming to the wrong conclu-
sion.

5. Others (10%) - This category contains infre-
quent error types bucketed together. For in-
stance, models simply misunderstand the cap-
tion (textual understanding), or fail to aggregate
information from multiple panels (multi-panel
aggregation).

G Prompts Used

We present the exact prompts used for different
experiments with Sonnet in Figure 8, Figure 9 and
Figure 10 and InternVL3 in Figure 11, Figure 12

and Figure 13.
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SUPPORT NEUTRAL CONTRADICT OVERALL

P R F P R F P R F P R F

4o-mini
D 0.46 0.86 0.60 0.70 0.69 0.69 0.79 0.11 0.19 0.65 0.55 0.49

R→D 0.46 0.74 0.57 0.63 0.67 0.65 0.63 0.21 0.32 0.57 0.54 0.51

4o
D 0.46 0.91 0.61 0.91 0.59 0.72 0.70 0.25 0.37 0.69 0.59 0.57

R→D 0.49 0.82 0.61 0.76 0.71 0.73 0.66 0.26 0.38 0.64 0.60 0.57

Sonnet
D 0.49 0.85 0.63 0.89 0.62 0.73 0.66 0.38 0.48 0.68 0.62 0.61

R→D 0.53 0.87 0.66 0.90 0.63 0.74 0.74 0.48 0.58 0.72 0.66 0.66

o3 R→D 0.75 0.66 0.70 0.67 0.86 0.76 0.73 0.61 0.67 0.72 0.71 0.71

o4-mini R→D 0.67 0.78 0.72 0.72 0.82 0.76 0.81 0.56 0.66 0.73 0.72 0.71

Phi-4
D 0.43 0.71 0.54 0.97 0.29 0.45 0.41 0.44 0.42 0.60 0.48 0.47

R→D 0.35 0.86 0.50 0.56 0.05 0.09 0.65 0.27 0.38 0.52 0.39 0.32

Llava-Next
D 0.39 0.90 0.55 0.68 0.47 0.55 0.00 0.00 0.00 0.36 0.46 0.37

R→D 0.38 0.80 0.51 0.60 0.45 0.51 0.69 0.11 0.18 0.55 0.45 0.40

Llama-3.2
D 0.40 0.86 0.55 0.81 0.38 0.52 0.46 0.18 0.26 0.56 0.48 0.44

R→D 0.38 0.93 0.54 0.67 0.12 0.20 0.53 0.18 0.27 0.52 0.41 0.34

Molmo
D 0.42 0.92 0.58 0.78 0.27 0.40 0.44 0.20 0.28 0.55 0.47 0.42

R→D 0.38 0.80 0.52 0.58 0.28 0.38 0.36 0.16 0.22 0.44 0.41 0.37

InternVL3
D 0.66 0.76 0.70 0.88 0.74 0.80 0.65 0.66 0.66 0.73 0.72 0.72

R→D 0.44 0.89 0.59 0.96 0.53 0.69 0.66 0.28 0.39 0.69 0.57 0.56

Qwen2.5
D 0.56 0.74 0.64 0.68 0.90 0.78 0.86 0.31 0.46 0.70 0.65 0.62

R→D 0.41 0.91 0.57 0.88 0.43 0.58 0.81 0.24 0.37 0.70 0.53 0.51

DeepSeek
D 0.62 0.36 0.45 0.50 0.76 0.60 0.43 0.39 0.41 0.52 0.50 0.49

R→D 0.41 0.69 0.52 0.53 0.54 0.54 0.44 0.14 0.21 0.46 0.46 0.42

Table 9: Model performance on the claim verification task of MUSCICLAIMS for CHEMISTRY claims when
prompted to simply generate the decision (D), and when asked to reason and then generating the decision (R→D).
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SUPPORT NEUTRAL CONTRADICT OVERALL

P R F P R F P R F P R F

4o-mini
D 0.40 0.90 0.56 0.66 0.42 0.51 0.74 0.10 0.18 0.60 0.47 0.42

R→D 0.42 0.87 0.57 0.68 0.41 0.51 0.62 0.21 0.31 0.57 0.50 0.46

4o
D 0.43 0.96 0.59 0.93 0.44 0.60 0.84 0.23 0.36 0.73 0.54 0.52

R→D 0.48 0.92 0.63 0.76 0.58 0.66 0.83 0.26 0.39 0.69 0.59 0.56

Sonnet
D 0.53 0.92 0.67 0.91 0.63 0.74 0.82 0.49 0.61 0.76 0.68 0.68

R→D 0.55 0.92 0.69 0.94 0.64 0.76 0.84 0.54 0.65 0.78 0.70 0.70

o3 R→D 0.67 0.84 0.75 0.80 0.77 0.78 0.89 0.69 0.78 0.79 0.77 0.77

o4-mini R→D 0.63 0.92 0.75 0.87 0.75 0.80 0.92 0.64 0.76 0.81 0.77 0.77

Phi-4
D 0.46 0.69 0.55 0.98 0.14 0.24 0.44 0.60 0.51 0.63 0.47 0.43

R→D 0.36 0.86 0.51 0.85 0.13 0.23 0.57 0.27 0.37 0.60 0.42 0.37

Llava-Next
D 0.37 0.98 0.53 0.85 0.27 0.41 1.00 0.01 0.01 0.74 0.42 0.32

R→D 0.39 0.82 0.53 0.58 0.42 0.49 0.55 0.08 0.14 0.50 0.44 0.38

Llama-3.2
D 0.42 0.88 0.57 0.70 0.44 0.54 0.67 0.18 0.29 0.60 0.50 0.47

R→D 0.38 0.95 0.54 0.79 0.16 0.27 0.63 0.17 0.27 0.60 0.43 0.36

Molmo
D 0.42 0.92 0.57 0.85 0.32 0.47 0.60 0.24 0.34 0.62 0.50 0.46

R→D 0.39 0.75 0.51 0.57 0.30 0.39 0.44 0.25 0.32 0.47 0.43 0.41

InternVL3
D 0.63 0.84 0.72 0.93 0.66 0.77 0.74 0.71 0.72 0.77 0.74 0.74

R→D 0.46 0.96 0.62 0.93 0.47 0.62 0.88 0.35 0.50 0.75 0.59 0.58

Qwen2.5
D 0.55 0.85 0.67 0.77 0.75 0.76 0.83 0.37 0.51 0.72 0.66 0.65

R→D 0.43 0.93 0.59 0.86 0.42 0.56 0.84 0.28 0.43 0.71 0.54 0.52

DeepSeek
D 0.55 0.45 0.49 0.52 0.63 0.57 0.46 0.44 0.45 0.51 0.51 0.50

R→D 0.42 0.66 0.51 0.53 0.50 0.51 0.54 0.26 0.35 0.50 0.47 0.46

Table 10: Model performance on the claim verification task of MUSCICLAIMS for BIOLOGY claims when
prompted to simply generate the decision (D), and when asked to reason and then generating the decision (R→D).

SUPPORT NONSUPPORT OVERALL

P R F P R F P R F

4o-mini
D 0.39 0.93 0.55 0.89 0.29 0.43 0.72 0.5 0.47

R→D 0.41 0.92 0.56 0.89 0.33 0.49 0.73 0.53 0.51
I→R→D 0.37 0.96 0.53 0.91 0.18 0.30 0.73 0.44 0.37

4o
D 0.41 0.96 0.57 0.94 0.30 0.46 0.77 0.52 0.50

R→D 0.43 0.95 0.59 0.94 0.38 0.54 0.77 0.57 0.56
I→R→D 0.39 0.98 0.56 0.97 0.25 0.39 0.78 0.49 0.45

Sonnet
D 0.52 0.93 0.67 0.94 0.57 0.71 0.80 0.69 0.70

R→D 0.53 0.95 0.68 0.96 0.58 0.72 0.82 0.70 0.71
I→R→D 0.51 0.96 0.66 0.96 0.53 0.69 0.81 0.68 0.68

Table 11: Model performance on BIOLOGY claims when posing MUSCICLAIMS as a two class problem.
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Single-Panel Multi-Panel
P R F P R F

4o-mini
D 0.59 0.47 0.41 0.65 0.51 0.47

R→D 0.58 0.49 0.46 0.56 0.51 0.48
I→R→D 0.6 0.45 0.4 0.57 0.46 0.41

4o
D 0.73 0.54 0.52 0.77 0.55 0.53

R→D 0.69 0.58 0.56 0.72 0.61 0.59
I→R→D 0.73 0.51 0.47 0.76 0.53 0.5

Sonnet
D 0.75 0.68 0.68 0.78 0.68 0.69

R→D 0.78 0.7 0.7 0.79 0.72 0.72
I→R→D 0.79 0.7 0.7 0.76 0.67 0.68

Table 12: Model performance on BIOLOGY claims when broken down by complexity of visual aggregation for
claims

Dataset Scientific? Multimodal? Claim Verification? Heterogeneous Figures? Real? Complex?

ArXivQa ✓ ✓ × ✓ ✓ ×
MMC ✓ ✓ × ✓ ✓ ×

PlotQA × ✓ × × × ×
SPIQA ✓ ✓ × ✓ ✓ ×

FigureQA × ✓ × × × ×
DVQA × ✓ × × × ×

ChartQA × ✓ × × ✓ ×
ChartBench × ✓ × ✓ ✓ ×

ChartX × ✓ × ✓ × ×
MultiChartQA × ✓ × ✓ ✓ ✓

ChartCheck × ✓ ✓ × ✓ ×
SciFact ✓ × ✓ × × ×

SciFact-Open ✓ × ✓ × × ×
PubHealthTab × × ✓ × × ×
MuSciClaims ✓ ✓ ✓ ✓ ✓ ✓

Table 13: Comparison of MUSCICLAIMS against related work benchmarks across different desired characteristics
for a multimodal claim verification task.
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You are an AI model tasked with verifying claims related
to visual evidence using zero-shot learning. Your job is
to analyze a given image(s) and its provided caption(s)
to decide whether it SUPPORT or CONTRADICT or
NEUTRAL the provided claim.

CLAIM: CLAIM
IMAGE CAPTION(S): IMAGE_CAPTIONS

Guidelines:
1. Evaluate the claim’s plausibility based on visual
elements within the image(s).
2. Consider the relevance, meaning, and implications of
both the depicted content and the caption(s).
3. Analyze the broader context and scope of the image(s)
and caption(s) in relation to the claim.

After completing your analysis, output exactly one JSON
object with exactly one key: “decision”.
- For “decision”, output exactly one word — either “SUP-
PORT” or “CONTRADICT” or “NEUTRAL” (uppercase,
no extra text).
Do NOT add markdown formatting, code fences, or any
additional text. The output must start with an opening
curly brace { and end with a closing curly brace }.

Example output format:
{“decision”: “SUPPORT”}

Now, please evaluate the image(s) and caption(s) with re-
spect to the claim provided above.

Figure 8: Prompt for Sonnet for the D experiment

You are an AI model tasked with verifying claims related
to visual evidence using zero-shot learning. Your job is
to analyze a given image(s) and its provided caption(s) to
decide whether it SUPPORT or CONTRADICT or NEU-
TRAL the provided claim.
CLAIM: {CLAIM}
IMAGE CAPTION(S): {IMAGE_CAPTIONS}
Guidelines:
1. Evaluate the claim’s plausibility based on visual ele-
ments within the image(s). 2. Consider the relevance,
meaning, and implications of both the depicted content and
the caption(s). 3. Analyze the broader context and scope
of the image(s) and caption(s) in relation to the claim. 4.
Think step by step to reach your conclusion, but only pro-
vide a concise reasoning statement in the output.
After completing your analysis, output exactly one JSON
object with exactly two keys in this order: “reasoning" and
“decision".
- For “reasoning", provide a brief (one- or two-sentence)
explanation of your analysis.
- For “decision", output exactly one word — either “SUP-
PORT" or “CONTRADICT" or “NEUTRAL" (uppercase,
no extra text).
Do NOT add markdown formatting, code fences, or any
additional text. The output must start with an opening curly
brace { and end with a closing curly brace }.
Example output format:
{“reasoning": “The caption confirms the rising trend visible
in the image, supporting the claim.", “decision": “SUP-
PORT"}
Now, please evaluate the image(s) and caption(s) with re-
spect to the claim provided above.

Figure 9: Prompt for Sonnet for the R→D experiment

You are an AI model tasked with verifying claims related
to visual evidence using zero-shot learning. Your job is
to analyze a given image(s) and its provided caption(s)
to decide whether it SUPPORT or CONTRADICT or
NEUTRAL the provided claim.

CLAIM: CLAIM
IMAGE CAPTION(S): IMAGE_CAPTIONS

Guidelines:
1. Evaluate the claim’s plausibility based on visual
elements within the image(s).
2. Consider the relevance, meaning, and implications of
both the depicted content and the caption(s).
3. Analyze the broader context and scope of the image(s)
and caption(s) in relation to the claim.
4. Identify which specific panels (e.g., Panel A, Panel B,
Panel C, etc.) are necessary to evaluate the claim.
5. Think step by step to reach your conclusion and provide
it in a concise manner in the output.

After completing your analysis, output exactly one
JSON object with exactly three keys in this order:
“figure_panels”, “reasoning”, and “decision”.
- For “figure_panels”, list ONLY the names or labels of
the panels needed to evaluate the claim (e.g., [“Panel A”,
“Panel C”]) with no further description. If no panels are
needed, return [].
- For “reasoning”, provide a brief (one- or two-sentence)
explanation of your analysis.
- For “decision”, output exactly one word — either “SUP-
PORT” or “CONTRADICT” or “NEUTRAL” (uppercase,
no extra text).
Do NOT add markdown formatting, code fences, or any
additional text. The output must start with an opening
curly brace { and end with a closing curly brace }.

Example output format:
{“figure_panels”: [“Panel A”, “Panel C”], “reasoning“:
“The trend in Panel A aligns with the claim, while Panel C
corroborates the effect.”, “decision”: “SUPPORT”}

Now, please evaluate the image(s) and caption(s) with re-
spect to the claim provided above.

Figure 10: Prompt for Sonnet for the I→R→D experi-
ment

This is an image from a scientific paper. The following is
the caption of the image.

IMAGE CAPTION(S): IMAGE_CAPTIONS

Using this image, analyze whether the following claim is
supported, contradicted or neutral according to the image
and caption.

CLAIM: CLAIM

Reply with one of the following keywords: SUPPORT,
CONTRADICT, NEUTRAL. Do not generate any other
text or explanation.

Return your answer in following format:
DECISION: <your decision>

Figure 11: Prompt for InternVL3 for the D experiment
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This is an image from a scientific paper. The following is
the caption of this image.

IMAGE CAPTION(S): IMAGE_CAPTIONS

Using this image, analyze whether the following claim is
supported, contradicted or neutral according to the image
and caption.

CLAIM: CLAIM

Think step by step to reach your conclusion and then reply
with only one of the following keywords: SUPPORT,
CONTRADICT, NEUTRAL. Your reasoning should be
brief and concise, no more than 100 words.

Return your answer in following format:
REASONING: <your reasoning>
DECISION: <your decision>

Figure 12: Prompt for InternVL3 for the R→D experi-
ment

This is an image, with multiple panels, from a scientific
paper. The following is the caption of this image.

IMAGE CAPTION(S): IMAGE_CAPTIONS

Using this image, analyze whether the following claim is
supported, contradicted or neutral according to the image
and caption.

CLAIM: CLAIM

First identify the relevant panels (Figure A, Figure B etc.)
in the image that are needed to analyze the claim. Then
think step by step to reach your conclusion and reply
with only one of the following keywords: SUPPORT,
CONTRADICT, NEUTRAL. Your reasoning should be
brief and concise, no more than 100 words.

Return your answer in following format:
FIGURE PANELS: <the figure panels to use for deduc-
tion>
REASONING: <your reasoning>
DECISION: <your decision>

Figure 13: Prompt for InternVL3 for the I→R→D
experiment
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