@inproceedings{gokulakrishnan-etal-2025-gatsby,
title = "Gatsby without the `{E}': Creating Lipograms with {LLM}s",
author = "Gokulakrishnan, Nitish and
Balasubramanian, Rohan and
Saba, Syeda Jannatus and
Skiena, Steven",
editor = "Inui, Kentaro and
Sakti, Sakriani and
Wang, Haofen and
Wong, Derek F. and
Bhattacharyya, Pushpak and
Banerjee, Biplab and
Ekbal, Asif and
Chakraborty, Tanmoy and
Singh, Dhirendra Pratap",
booktitle = "Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "The Asian Federation of Natural Language Processing and The Association for Computational Linguistics",
url = "https://aclanthology.org/2025.ijcnlp-short.18/",
pages = "189--199",
ISBN = "979-8-89176-299-2",
abstract = "Lipograms are a unique form of constrained writing where all occurrences of a particular letter are excluded from the text, typified by the novel Gadsby (Wright, 1939), which daringly avoids all usage of the letter `e'. In this study, we explore the power of modern large language models (LLMs) by transforming the novel The Great Gatsby (Fitzgerald, 1925) into a fully `e'-less text. We experimented with a range of techniques, from baseline methods like synonym replacement to sophisticated generative models enhanced with beam search and named entity analysis. We show that excluding up to 3.6{\%} of the most common letters (up to the letter `u') had minimal impact on the text{'}s meaning, although translation fidelity rapidly and predictably decays with stronger lipogram constraints. Our work highlights the surprising flexibility of English under strict constraints."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gokulakrishnan-etal-2025-gatsby">
<titleInfo>
<title>Gatsby without the ‘E’: Creating Lipograms with LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nitish</namePart>
<namePart type="family">Gokulakrishnan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rohan</namePart>
<namePart type="family">Balasubramanian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Syeda</namePart>
<namePart type="given">Jannatus</namePart>
<namePart type="family">Saba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Skiena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haofen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derek</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biplab</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhirendra</namePart>
<namePart type="given">Pratap</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Asian Federation of Natural Language Processing and The Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-299-2</identifier>
</relatedItem>
<abstract>Lipograms are a unique form of constrained writing where all occurrences of a particular letter are excluded from the text, typified by the novel Gadsby (Wright, 1939), which daringly avoids all usage of the letter ‘e’. In this study, we explore the power of modern large language models (LLMs) by transforming the novel The Great Gatsby (Fitzgerald, 1925) into a fully ‘e’-less text. We experimented with a range of techniques, from baseline methods like synonym replacement to sophisticated generative models enhanced with beam search and named entity analysis. We show that excluding up to 3.6% of the most common letters (up to the letter ‘u’) had minimal impact on the text’s meaning, although translation fidelity rapidly and predictably decays with stronger lipogram constraints. Our work highlights the surprising flexibility of English under strict constraints.</abstract>
<identifier type="citekey">gokulakrishnan-etal-2025-gatsby</identifier>
<location>
<url>https://aclanthology.org/2025.ijcnlp-short.18/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>189</start>
<end>199</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Gatsby without the ‘E’: Creating Lipograms with LLMs
%A Gokulakrishnan, Nitish
%A Balasubramanian, Rohan
%A Saba, Syeda Jannatus
%A Skiena, Steven
%Y Inui, Kentaro
%Y Sakti, Sakriani
%Y Wang, Haofen
%Y Wong, Derek F.
%Y Bhattacharyya, Pushpak
%Y Banerjee, Biplab
%Y Ekbal, Asif
%Y Chakraborty, Tanmoy
%Y Singh, Dhirendra Pratap
%S Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
%D 2025
%8 December
%I The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-299-2
%F gokulakrishnan-etal-2025-gatsby
%X Lipograms are a unique form of constrained writing where all occurrences of a particular letter are excluded from the text, typified by the novel Gadsby (Wright, 1939), which daringly avoids all usage of the letter ‘e’. In this study, we explore the power of modern large language models (LLMs) by transforming the novel The Great Gatsby (Fitzgerald, 1925) into a fully ‘e’-less text. We experimented with a range of techniques, from baseline methods like synonym replacement to sophisticated generative models enhanced with beam search and named entity analysis. We show that excluding up to 3.6% of the most common letters (up to the letter ‘u’) had minimal impact on the text’s meaning, although translation fidelity rapidly and predictably decays with stronger lipogram constraints. Our work highlights the surprising flexibility of English under strict constraints.
%U https://aclanthology.org/2025.ijcnlp-short.18/
%P 189-199
Markdown (Informal)
[Gatsby without the ‘E’: Creating Lipograms with LLMs](https://aclanthology.org/2025.ijcnlp-short.18/) (Gokulakrishnan et al., IJCNLP-AACL 2025)
ACL
- Nitish Gokulakrishnan, Rohan Balasubramanian, Syeda Jannatus Saba, and Steven Skiena. 2025. Gatsby without the ‘E’: Creating Lipograms with LLMs. In Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics, pages 189–199, Mumbai, India. The Asian Federation of Natural Language Processing and The Association for Computational Linguistics.