@inproceedings{arnold-kim-2025-interaction,
title = "Interaction-Required Suggestions for Control, Ownership, and Awareness in Human-{AI} Co-Writing",
author = "Arnold, Kenneth C. and
Kim, Jiho",
editor = "Padmakumar, Vishakh and
Gero, Katy and
Wambsganss, Thiemo and
Sterman, Sarah and
Huang, Ting-Hao and
Zhou, David and
Chung, John",
booktitle = "Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico, US",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.in2writing-1.6/",
doi = "10.18653/v1/2025.in2writing-1.6",
pages = "62--68",
ISBN = "979-8-89176-239-8",
abstract = "This paper explores interaction designs for generative AI interfaces that necessitate human involvement throughout the generation process. We argue that such interfaces can promote cognitive engagement, agency, and thoughtful decision-making. Through a case study in text revision, we present and analyze two interaction techniques: (1) using a predictive-text interaction to type the agent{'}s response to a revision request, and (2) highlighting potential edit opportunities in a document. Our implementations demonstrate how these approaches reveal the landscape of writing possibilities and enable fine-grained control. We discuss implications for human-AI writing partnerships and future interaction design directions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arnold-kim-2025-interaction">
<titleInfo>
<title>Interaction-Required Suggestions for Control, Ownership, and Awareness in Human-AI Co-Writing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kenneth</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Arnold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiho</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vishakh</namePart>
<namePart type="family">Padmakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katy</namePart>
<namePart type="family">Gero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thiemo</namePart>
<namePart type="family">Wambsganss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Sterman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting-Hao</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Chung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico, US</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-239-8</identifier>
</relatedItem>
<abstract>This paper explores interaction designs for generative AI interfaces that necessitate human involvement throughout the generation process. We argue that such interfaces can promote cognitive engagement, agency, and thoughtful decision-making. Through a case study in text revision, we present and analyze two interaction techniques: (1) using a predictive-text interaction to type the agent’s response to a revision request, and (2) highlighting potential edit opportunities in a document. Our implementations demonstrate how these approaches reveal the landscape of writing possibilities and enable fine-grained control. We discuss implications for human-AI writing partnerships and future interaction design directions.</abstract>
<identifier type="citekey">arnold-kim-2025-interaction</identifier>
<identifier type="doi">10.18653/v1/2025.in2writing-1.6</identifier>
<location>
<url>https://aclanthology.org/2025.in2writing-1.6/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>62</start>
<end>68</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interaction-Required Suggestions for Control, Ownership, and Awareness in Human-AI Co-Writing
%A Arnold, Kenneth C.
%A Kim, Jiho
%Y Padmakumar, Vishakh
%Y Gero, Katy
%Y Wambsganss, Thiemo
%Y Sterman, Sarah
%Y Huang, Ting-Hao
%Y Zhou, David
%Y Chung, John
%S Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico, US
%@ 979-8-89176-239-8
%F arnold-kim-2025-interaction
%X This paper explores interaction designs for generative AI interfaces that necessitate human involvement throughout the generation process. We argue that such interfaces can promote cognitive engagement, agency, and thoughtful decision-making. Through a case study in text revision, we present and analyze two interaction techniques: (1) using a predictive-text interaction to type the agent’s response to a revision request, and (2) highlighting potential edit opportunities in a document. Our implementations demonstrate how these approaches reveal the landscape of writing possibilities and enable fine-grained control. We discuss implications for human-AI writing partnerships and future interaction design directions.
%R 10.18653/v1/2025.in2writing-1.6
%U https://aclanthology.org/2025.in2writing-1.6/
%U https://doi.org/10.18653/v1/2025.in2writing-1.6
%P 62-68
Markdown (Informal)
[Interaction-Required Suggestions for Control, Ownership, and Awareness in Human-AI Co-Writing](https://aclanthology.org/2025.in2writing-1.6/) (Arnold & Kim, In2Writing 2025)
ACL