@inproceedings{yu-etal-2025-multi,
title = "Multi-Agent Based Character Simulation for Story Writing",
author = "Yu, Tian and
Shi, Ken and
Zhao, Zixin and
Penn, Gerald",
editor = "Padmakumar, Vishakh and
Gero, Katy and
Wambsganss, Thiemo and
Sterman, Sarah and
Huang, Ting-Hao and
Zhou, David and
Chung, John",
booktitle = "Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico, US",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.in2writing-1.9/",
doi = "10.18653/v1/2025.in2writing-1.9",
pages = "87--108",
ISBN = "979-8-89176-239-8",
abstract = "This work proposes a novel multi-agent story-generation system that writes stories from a narrative plan. Traditional approaches tend to generate a section of text directly from its outline. Our system, by contrast, divides this elaboration process into role-play and rewrite steps, where the former step enacts the story in chronological order with LLM-backed character agents, and the latter step refines the role-play result to align with a narrative plan. We show that the stories produced by our system are preferable to two other LLM-based story-generation approaches. We attribute this advancement to the benefits of incorporating a character-based simulation strategy."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2025-multi">
<titleInfo>
<title>Multi-Agent Based Character Simulation for Story Writing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tian</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ken</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zixin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerald</namePart>
<namePart type="family">Penn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vishakh</namePart>
<namePart type="family">Padmakumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katy</namePart>
<namePart type="family">Gero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thiemo</namePart>
<namePart type="family">Wambsganss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Sterman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting-Hao</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Chung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico, US</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-239-8</identifier>
</relatedItem>
<abstract>This work proposes a novel multi-agent story-generation system that writes stories from a narrative plan. Traditional approaches tend to generate a section of text directly from its outline. Our system, by contrast, divides this elaboration process into role-play and rewrite steps, where the former step enacts the story in chronological order with LLM-backed character agents, and the latter step refines the role-play result to align with a narrative plan. We show that the stories produced by our system are preferable to two other LLM-based story-generation approaches. We attribute this advancement to the benefits of incorporating a character-based simulation strategy.</abstract>
<identifier type="citekey">yu-etal-2025-multi</identifier>
<identifier type="doi">10.18653/v1/2025.in2writing-1.9</identifier>
<location>
<url>https://aclanthology.org/2025.in2writing-1.9/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>87</start>
<end>108</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Agent Based Character Simulation for Story Writing
%A Yu, Tian
%A Shi, Ken
%A Zhao, Zixin
%A Penn, Gerald
%Y Padmakumar, Vishakh
%Y Gero, Katy
%Y Wambsganss, Thiemo
%Y Sterman, Sarah
%Y Huang, Ting-Hao
%Y Zhou, David
%Y Chung, John
%S Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico, US
%@ 979-8-89176-239-8
%F yu-etal-2025-multi
%X This work proposes a novel multi-agent story-generation system that writes stories from a narrative plan. Traditional approaches tend to generate a section of text directly from its outline. Our system, by contrast, divides this elaboration process into role-play and rewrite steps, where the former step enacts the story in chronological order with LLM-backed character agents, and the latter step refines the role-play result to align with a narrative plan. We show that the stories produced by our system are preferable to two other LLM-based story-generation approaches. We attribute this advancement to the benefits of incorporating a character-based simulation strategy.
%R 10.18653/v1/2025.in2writing-1.9
%U https://aclanthology.org/2025.in2writing-1.9/
%U https://doi.org/10.18653/v1/2025.in2writing-1.9
%P 87-108
Markdown (Informal)
[Multi-Agent Based Character Simulation for Story Writing](https://aclanthology.org/2025.in2writing-1.9/) (Yu et al., In2Writing 2025)
ACL
- Tian Yu, Ken Shi, Zixin Zhao, and Gerald Penn. 2025. Multi-Agent Based Character Simulation for Story Writing. In Proceedings of the Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2025), pages 87–108, Albuquerque, New Mexico, US. Association for Computational Linguistics.