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Abstract
The rapid spread of fake news presents a sig-
nificant global challenge, particularly in low-
resource languages like Bangla, which lack ad-
equate datasets and detection tools. Although
manual fact-checking is accurate, it is expen-
sive and slow to prevent the dissemination of
fake news. Addressing this gap, we intro-
duce BanFakeNews-2.0, a robust dataset to en-
hance Bangla fake news detection. This ver-
sion includes 11,700 additional, meticulously
curated fake news articles validated from credi-
ble sources, creating a proportional dataset of
47,000 authentic and 13,000 fake news items
across 13 categories. In addition, we created a
manually curated independent test set of 460
fake and 540 authentic news items for rigor-
ous evaluation. We invest efforts in collect-
ing fake news from credible sources and man-
ually verified while preserving the linguistic
richness. We develop a benchmark system
utilizing transformer-based architectures, in-
cluding fine-tuned Bidirectional Encoder Rep-
resentations from Transformers variants (F1-
87%) and Large Language Models with Quan-
tized Low-Rank Approximation (F1-89%), that
significantly outperforms traditional methods.
BanFakeNews-2.0 offers a valuable resource to
advance research and application in fake news
detection for low-resourced languages. We pub-
licly release our dataset and model on Github1

to foster research in this direction.

1 Introduction

The widespread dissemination of fake news, de-
fined as intentionally misleading information, has
become a critical issue in modern society with so-
cial consequences. Fake news and misinforma-
tion circulate across media channels—from social
networks to online news portals—often aiming to
mislead and manipulate public opinion. The con-
sequences of such disinformation can range from

1 Github: https://github.com/Shibu4064/IndoNLP
† These authors have equal contributions.

Dataset Source #FN #TN
(SadikAlJarif, 2022) 4.5K 10K
(Al-Zaman and Noman, 2023) 2K 5k
(Hossain et al., 2020) 1.3K 48.6k
(Hussain et al., 2020) 1K 2.5K
BanFakeNews-2 (Proposed) 13K 47k

Table 1: Overview of existing Bangla fake news datasets.
Here #FN represents No. of fake news and #TN repre-
sents the No. of authentic news dataset

shaping public opinion on critical matters to cat-
alyzing large-scale societal unrest. For example,
during the COVID-19 pandemic, misinformation
regarding vaccine safety led to substantial vaccine
reluctance (Lee et al., 2022; O’Connor and Murphy,
2020). In Bangladesh, the effects of such misin-
formation have been severe, including incidents of
violence and communal discord spurred by false ru-
mors online (Shirina and Prodhan, 2020; Bhikkhu,
2014). Moreover, the infodemic—defined as an
overabundance of information, including false or
misleading details—further complicated efforts to
combat COVID-19 globally, as highlighted in stud-
ies exploring misinformation trends and mitiga-
tion strategies (Kouzy et al., 2020; Bridgman et al.,
2020; Uddin et al., 2021). This challenge extends
to various content forms, such as articles, images,
videos, and memes, amplifying the difficulty of
detection (Cao et al., 2020; Das et al., 2021; Singh
and Sharma, 2022; Das et al., 2022).

Detecting fake news in low-resource languages
like Bangla remains challenging due to limited
datasets and resources. While English-language
fake news detection has progressed, robust datasets
for Bangla remain scarce, hindering model devel-
opment. Although efforts like the BanFakeNews
dataset (Hossain et al., 2020) and others (Al-Zaman
and Noman, 2023) have made initial strides, ex-
isting datasets remain limited in size and cover-
age, and manual fact-checking is impractical at
scale. To address these limitations, we present

https://github.com/Shibu4064/IndoNLP
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BanFakeNews-2.0, a substantially extended dataset
tailored for improved Bangla fake news detection.
Building upon BanFakeNews, this new dataset in-
cludes 13,000 source-verified fake news articles,
forming a balanced collection of 60,000 news
items (47,000 authentic, 13,000 fake) across 13
diverse categories compared to the previous largest
BanFakeNews dataset. Manually curating an in-
dependent test set of 1,000 news articles further
enables rigorous model evaluation. Our bench-
marks incorporate transformer-based models, such
as BERT, and fine-tuned large language models
(LLMs) using Quantized Low-Rank Approxima-
tion (QLORA).

BLOOM is a state-of-the-art, open-access large
language model that is collaboratively developed
by hundreds of researchers and trained on the mul-
tilingual ROOTS corpus. It supports 46 natural
and 13 programming languages, enabling broad
applications and competitive performance across
benchmarks (Workshop et al., 2023). We observe
that our fine-tuned BLOOM 560M model achieves
the highest performance, with a macro F1 score
of 89. This dataset and benchmark represent a
crucial step in advancing fake news detection for
low-resource languages like Bangla, providing a
foundation for future research and practical appli-
cations. Our main contributions include:

• We present BanFakeNews-2.0, a significant in-
cremental version of BanFakeNews as shown
in Table 1, while previous research is limited
in size and highly imbalanced. We manually
collected and validated 60K Bangla news arti-
cles, including 13K fake news.

• We conducted extensive experiments using tra-
ditional linguistic features, transformer-based
models like BERT, and LLMs to improve the
performance of detecting fake news in Bangla.

• We create an independent test set of 1,000
news articles (460 fake, 540 authentic)
to ensure rigorous evaluation and cross-
comparison of models.

2 Development of BanFakeNews-2.0

We focused on data preparation to ensure linguis-
tic richness and dataset diversity with two main
objectives: (1) collect verified fake news from di-
verse sources and domains and (2) enhance dataset
variety while minimizing redundancy. Our newly
curated dataset comprises approximately 13,000

fake and 47,000 authentic news articles from on-
line news portals and mainstream media. We
have collected the misleading or false context
type of news mostly from www.jaachai.com and
www.bdfactcheck.com. These two websites pro-
vide a logical and informative explanation of the
authenticity of the news published on other sites.
So, we have also collected the news mentioned
on those two sites from the actual publishing sites
and ensured that we avoid duplicates. We have
used Python’s web-scraping method for automated
and accurate collection of category-based news
from different online news portals, such as poli-
tics, sports, entertainment, medical, religious, etc.
The initial screening has been conducted by evalu-
ating the credibility of sources and verifying claims
through fact-checking platforms, authoritative ref-
erences, or collaborative verification methods. Rel-
evant keywords such as "rumor," "hoax," "viral
news," and Bangla-specific terms linked to sensa-
tional topics have helped in categorizing the ar-
ticles. Employing automated web-scraping tech-
niques alongside manual validation ensures data
accuracy and quality. Additionally, maintaining a
balanced representation of topics, time-frames, and
domains has been ensured to create this dataset.

For authentic news, we selected the top 30
Bangladeshi news portals, recognized for their cred-
ibility and high readership. For fake news, we
gathered content from six major fact-checking plat-
forms that frequently debunk misinformation in
Bangladesh, identifying and validating articles as
probable fake news for inclusion. To ensure unique-
ness, we filtered out duplicates and removed items
with over 50% or 300 words of token overlap, aim-
ing to expand vocabulary diversity and contextual
variety. This broad range of content enhances the
robustness of our classification system, support-
ing better generalization across various linguistic
styles.

Each article was cross-checked by three anno-
tators to confirm authenticity. Five undergraduate
students, guided by detailed source verification pro-
tocols, reviewed potentially misleading sources and
excluded redundant entries. Note that, we define a
verified source of news when the source is at least
a person or organization capable of verification of
claimed news. When no specific source is available,
the reporters or journalists themselves are consid-
ered the source of the news. We used majority
voting to assign a final label of "fake" or "authen-
tic," achieving a high inter-annotator agreement

www.jaachai.com
www.bdfactcheck.com
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score of 0.93, indicating strong labelling consis-
tency (Fleiss, 1971). During dataset analysis, we
standardized categories to align with the classifica-
tions used in BanFakeNews (Hossain et al., 2020),
resulting in 13 distinct categories. Categories were
assigned based on the classification of the news
at its source. If the source did not provide a cate-
gory, the news was thoroughly read to understand
its context and categorized accordingly. We focus
on increasing the number of fake news articles to
reduce the data imbalance, with 500 fake news arti-
cles per category. Still, we face challenges in the
lifestyle, medical, and religious categories. The
final dataset, comprising 60K news articles, is dis-
tributed across 13 categories in Table 2.

Category Authentic Fake
Politics 3141 3403
Miscellaneous 2218 1655
International 6990 1461
Lifestyle 901 308
Medical 112 448
Religious 118 359
Sports 6526 925
Educational 1115 808
Technology 843 725
National 18708 1167
Crime 1272 720
Entertainment 2636 1441
Finance 1259 573

Table 2: Statistics of the dataset.

3 Methodologies

Here, we will outline the methods to create a bench-
mark model for detecting fake news in Bangla.
Our methodologies include traditional linguistic at-
tributes as well as neural networks and transformer-
based models.

3.1 Traditional Approaches

We extracted lexical linguistic features using TF-
IDF for character n-grams (n = 3,4,5) and word
n-grams (n = 1,2,3) similarly as existing works (Is-
lam et al., 2022). We applied a Linear Support
Vector Machine (SVM) (Hearst et al., 1998) to
these features for classification. Recognizing the
value of semantic information, we experimented
with pre-trained word embeddings to represent arti-
cles. Specifically, we used Bangla 300-dimensional
word vectors pre-trained with FastText on Common
Crawl and Wikipedia (Hossain et al., 2020; Romim
et al., 2022). Finally, we combined all the features
with SVM.

3.2 Transformer-based BERT Models

Encoder-based pre-trained BERT (Devlin et al.,
2018a) models are exceptional in downstream
tasks due to their superior contextual understand-
ing capabilities. We chose five pre-trained model
bases: BanglaBERT (Bhattacharjee et al., 2022)
and SagorBERT (Sarker, 2020), which are mono-
lingual, XLM-RoBERTa (XRoBERTa) (Conneau
et al., 2019), multilingual-BERT cased and uncased
(m-BERT-c and m-BERT-unc, respectively) (De-
vlin et al., 2018b) which are multilingual. We shuf-
fled the training samples and enforced gradient
clipping to fine-tune these models. We utilized
the outputs from the last two layers of multi-head
attention, subsequently employing a linear layer
for classification. We fine-tuned the model using
Adam optimizer (Kingma and Ba, 2014).

3.3 Large Language Model

Large language models (LLMs) have recently
demonstrated impressive linguistic analysis and
reasoning abilities. In our experiments, we applied
several advanced LLMs to our dataset, including
BLOOM 560M (Scao et al., 2022), Phi-3 Mini
3.8B (Abdin et al., 2024), Stable LM 2 1.6B (Bel-
lagente et al., 2024), and Llama 3.2 1B (Inan et al.,
2023). To fine-tune these models, we employed
QLoRA, loading them in 4-bit precision and set-
ting the rank and alpha parameters to 8 and 32,
respectively, for trainable adapters. Each model
was configured in half-precision floating-point for-
mat with normalized 4-bit quantization, using the
final token for classification. To manage model
complexity and avoid overfitting, alpha is used as
a regularization parameter. Its value is adjusted
to strike a compromise between underfitting and
overfitting (Moradi et al., 2020). 4-bit quantization
(Pan et al., 2023) is perfect for devices with lim-
ited resources or for quicker inference because it
drastically reduces model size and increases com-
puting efficiency. Modern quantization methods
provide low accuracy loss, allowing for effective
deployment with respectable performance. Fine-
tuning was optimized through gradient accumula-
tion at each step with a paged Adam 8-bit opti-
mizer(Simoulin et al., 2024).

4 Experimental Setup

4.1 Data Preprocessing and Model Validation

English words and hyperlinks were removed from
the dataset. Text normalization, punctuation, and
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stop-words removal were performed for traditional
models. We have done some pre-processing, in-
cluding removing NaN values, deleting duplicate
rows, etc. As punctuation is essential for capturing
context in a sentence, there was no punctuation
removal for our LLM experiments.

We validated the models using the holdout
method. For this purpose, we split the dataset into
train and test sets containing 70% and 30%, respec-
tively, following the distribution by the authors of
the BanFakeNews (Hossain et al., 2020) dataset
while keeping the same class ratio. We took half
of the test split as validation and the rest for test-
ing purposes. This split strikes a practical balance,
maintaining sufficient data for each phase while
ensuring reliable model evaluation.

4.2 Baselines

In our experimental evaluation, we benchmark our
results against two baseline approaches. Firstly,
a majority baseline assigns the predominant class
label (in this case, ’authentic news’) to all articles.
The second is a random baseline, which randomly
classifies articles as authentic or fake. Table 3
presents the average precision, recall, and F1-score
obtained from 10 random baseline experiments.

4.3 Experiments

For each experiment, we chose the hyperparame-
ters based on the validation set (Andonie, 2019)
and evaluated the model on the test set as well as
our independent test set. For traditional models,
we only trained on the content of the news. For
BERTs and LLMs, we trained both on content and
headlines while keeping a maximum limit of 512
input tokens. To differentiate the headline and con-
tent of each news sample, we added the string “ \\ “
between these.

5 Result and Analysis

Table 3, describes the performance of various mod-
els in terms of Precision (P), Recall (R), and F1
(F1-Score) for both the authentic and fake news
classes. Our approach, validated using the inde-
pendent holdout dataset, yields an unbiased per-
formance measure compared to previous works in
Bangla fake news detection. The results indicate
high P, R, and F1 scores for the authentic class,
with nearly perfect recall. For fake news detection,
performance varies by model, reflecting the unique
challenges of this classification task.

Model Authentic Fake Macro
P R F1 P R F1 F1

Baselines
Majority 79 100 88 0 0 0 78
Random 79 50 61 21 51 30 63

Linguistic Features with SVM
Unigram(U) 92 95 93 78 70 74 84
Bigram(B) 91 95 93 78 67 72 83
Trigram(T) 91 88 90 62 69 66 78
U+B+T 92 95 94 79 70 75 85
C3-Gram(C3) 96 97 98 80 74 77 86
C4-Gram(C4) 97 98 97 79 75 77 86
C5-Gram(C5) 96 97 96 81 74 77 86
C3+C4+C5 97 98 97 79 75 77 86
Embedding 89 98 93 90 57 70 82
All Features(All) 92 96 94 85 72 78 86

BERT models
BanglaBERT 89 99 94 97 53 69 81
SagorBERT 92 99 95 95 68 79 87
m-BERT-c 92 98 95 93 69 79 87
m-BERT-unc 92 98 95 93 70 79 87
XRoBERTa 90 98 94 89 61 72 83

LLMs
BLOOM 560M 92 100 96 99 69 81 89
Phi 3 mini 3.8B 90 98 94 92 58 71 83
Stable LM 2 1.6B 90 98 94 89 61 71 83
Llama 3.2 1B 92 99 95 94 66 78 86

Table 3: Precision (P), Recall (R), and F1 score for each
categorical class (Authentic and Fake)

Among word n-grams, unigrams achieved the
highest F1 score of 84%, outperforming bigrams
(83%) and trigrams (78%). Combining these n-
grams resulted in an F1 score of 85%, demon-
strating that multi-gram approach enhances classi-
fication accuracy. Character n-grams yielded sim-
ilar performance; however, combinations of char-
acter n-grams did not provide substantial gains.
Across experiments, authentic news classification
achieved over 90% in P, R, and F1. However, fake
news classification showed greater variability. Tra-
ditional SVM models, employing linguistic fea-
tures, outperformed LLMs and transformers-based
models in identifying authentic news. Conversely,
LLM-based models excelled in detecting fake news,
yielding higher F1 scores. Notably, the transformer
models multilingual BERT (m-BERT-unc) and
BLOOM achieved an F1 score of 81% in the fake
news class, surpassing the 77% F1-score achieved
by the C3-Gram model. However, traditional mod-
els performed slightly better overall, reaching an
F1 score of 98% in the authentic class, compared
to the highest F1 score of 96% for transformers.
This discrepancy may stem from the increased vol-
ume of fake news in the dataset, posing unique
challenges for transformers in handling nuanced
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Model Train dataset Test dataset Mac. F1

SVM (All) BanFakeNews Test (internal) 74
SVM (All) BanFakeNews-2.0 Test (internal) 86
SVM (All) BanFakeNews Test (external) 39
SVM (All) BanFakeNews-2.0 Test (external) 91
BLOOM BanFakeNews Test (internal) 78
BLOOM BanFakeNews-2.0 Test (internal) 89
BLOOM BanFakeNews Test (external) 29
BLOOM BanFakeNews-2.0 Test (external) 67

Table 4: Ablation experiments with different train-test
combinations of existing BanFakeNews and proposed
BanFakeNews-2.0

distinctions within the fake class. Among the tested
transformers, BLOOM and m-BERT-uncased con-
sistently achieved top performance. However,
BanglaBERT lagged, exhibiting low P and R for
both classes. For linguistic features, character-
based models outperformed word-based models
in fake news detection. The C3-Gram model sur-
passed the unigram+bigram+trigram(U+B+T) fea-
ture model, showing a 1%, 4%, and 2% higher P, R,
and F1, respectively, for fake news. This trend also
held for authentic news detection, underscoring the
effectiveness of character-level features in handling
the nuanced patterns of Bangla fake news.

To assess the generalisability of our models,
we evaluated them using a manually curated ex-
ternal test set of 1,000 samples. We tested
the top-performing models—the traditional lin-
guistic feature-based SVM and the LLM-based
BLOOM—both trained on the BanFakeNews-2.0
dataset, as shown in Table 4. On this exter-
nal test set, models trained with BanFakeNews-
2.0 consistently outperformed those trained on
the original BanFakeNews dataset, demonstrating
BanFakeNews-2.0’s improved diversity and bal-
ance. This enhancement, similar to expanding inter-
view questions to address a wide range of scenarios,
equips the models to handle complex and varied
data, establishing BanFakeNews-2.0 as a valuable
resource for Bangla fake news detection.

6 Conclusion and Future Works

The study presents BanFakeNews-2.0, a Bangla
fake news dataset with 13K manually annotated
articles across 13 categories aimed at improving
fake news detection in Bangla. Our evaluation
demonstrated that BLOOM and m-BERT-unc mod-
els outperformed other models, highlighting the
importance of contextually diverse datasets over
basic linguistic features for achieving high accu-

racy. BanFakeNews-2.0 allowed transformer mod-
els and LLMs to excel, highlighting the need for
diverse datasets and robust detection tools. Future
work will focus on enhancing dataset features, re-
fining models, and exploring real-time monitoring.
Testing emerging LLMs like Mistral, Minitron, and
GPT 4 in zero-shot settings may provide further
insights. BanFakeNews-2.0 provides a strong foun-
dation for advancing research in Bangla fake news
detection and mitigation.

7 Limitations

Generative language models are becoming more
human-like, enabling them to imitate authentic
news. However, the proposed dataset and pre-
trained models may struggle to differentiate ad-
vanced fabricated news from upcoming generative
models. The low fake news count in some news cat-
egories makes it difficult to differentiate. Despite
high classification capabilities, the current dataset
is imbalanced due to insufficient fake news. A more
balanced dataset could improve model capabilities.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jian-
min Bao, Harkirat Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Qin Cai,
Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Dong Chen, Dongdong
Chen, Yen-Chun Chen, Yi-Ling Chen, Parul Chopra,
Xiyang Dai, Allie Del Giorno, Gustavo de Rosa,
Matthew Dixon, Ronen Eldan, Victor Fragoso, Dan
Iter, Mei Gao, Min Gao, Jianfeng Gao, Amit Garg,
Abhishek Goswami, Suriya Gunasekar, Emman
Haider, Junheng Hao, Russell J. Hewett, Jamie
Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Li-
den, Ce Liu, Mengchen Liu, Weishung Liu, Eric Lin,
Zeqi Lin, Chong Luo, Piyush Madan, Matt Mazzola,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon
Norick, Barun Patra, Daniel Perez-Becker, Thomas
Portet, Reid Pryzant, Heyang Qin, Marko Radmi-
lac, Corby Rosset, Sambudha Roy, Olatunji Ruwase,
Olli Saarikivi, Amin Saied, Adil Salim, Michael San-
tacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Swadheen Shukla, Xia Song, Masahiro Tanaka, An-
drea Tupini, Xin Wang, Lijuan Wang, Chunyu Wang,
Yu Wang, Rachel Ward, Guanhua Wang, Philipp
Witte, Haiping Wu, Michael Wyatt, Bin Xiao, Can
Xu, Jiahang Xu, Weijian Xu, Sonali Yadav, Fan Yang,
Jianwei Yang, Ziyi Yang, Yifan Yang, Donghan Yu,
Lu Yuan, Chengruidong Zhang, Cyril Zhang, Jian-
wen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang,



105

Yunan Zhang, and Xiren Zhou. 2024. Phi-3 technical
report: A highly capable language model locally on
your phone. Preprint, arXiv:2404.14219.

Md. Sayeed Al-Zaman and Mridha Md. Shiblee No-
man. 2023. A dataset on social media users’ engage-
ment with religious misinformation. Data in Brief,
49:109439.
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A Appendix

Authentic News Sources

Domain Count
www.kalerkantho.com 4491
www.jagonews24.com 4426
www.banglanews24.com 4035
www.banglatribune.com 3696
www.jugantor.com 2835
www.dhakatimes24.com 2654
www.ittefaq.com.bd 2589
www.somoynews.tv 2552
www.dailynayadiganta.com 2371
www.bangla.bdnews24.com 2365
www.prothomalo.com 2350
www.bd24live.com 2335
www.risingbd.com 2220
www.dailyjanakantha.com 1531
www.bd-pratidin.com 1421
www.channelionline.com 1401
www.samakal.com 1372
www.independent24.com 1220
www.rtnn.net 1149
www.bangla.thereport24.com 859
www.mzamin.com 785
www.bhorerkagoj.net 21

Table 5: Detailed statistics of the collected authentic
news with the domain URL

Fake News Sources

Domain Count
www.boombd.com/fake-news 321
www.anandabazar.com/topic/fake-news 192
www.jachai.org/fact-checks 345
www.bangla.hindustantimes.com/fake 272
www.earki.co 231
www.balerkontho.net/2020/03/ 138
www.prothom1alu.blogspot.com 154
www.motikontho.wordpress.com 271
www.bengalbeats.com 204
www.shadhinbangla24.com.bd 291
www.bengaliviralnews.com 268
www.shawdeshbhumi.com 373
www.bdexclusivenews.blogspot.com 312
www.banglainsider.com 277
www.bd-pratidin.com 293
www.dailyinqilab.com 191
www.bangla.dhakatribune.com 267

Table 6: Detailed statistics of the collected fake news
with the domain URL
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