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Abstract
The increasing use of Romanized typing for
Indo-Aryan languages on social media poses
challenges due to its lack of standardiza-
tion and loss of linguistic richness. To ad-
dress this, we propose a sentence-level back-
transliteration approach using the LLaMa 3.1
model for Hindi. Leveraging fine-tuning with
the Dakshina dataset, our approach effectively
resolves ambiguities in Romanized Hindi text,
offering a robust solution for converting it into
the native Devanagari script.

1 Introduction

The widespread use of social media platforms and
the prevalence of English keyboards have led to
a significant rise in the use of Romanized typing
for Indo-Aryan languages, primarily for quick and
informal communication. However, Romanized
text on social media often lacks consistency, with
variations in spelling, phonetic representation, and
vowel omission. This lack of standardization intro-
duces ambiguity, as the same word can be written
in multiple ways, such as (Namaste) appear-
ing as Namste, Nmst, or Namastey. Romanized
text also involves one-to-many mappings based
on context, such as Romanized text sir can corre-
spond to (English: head) or (English: Sir)
based on the context. Such inconsistencies lead to
misunderstandings in human communication and
errors in NLP applications like machine transla-
tion.

In addition to standardization issues, Roman-
ized scripts fail to preserve the linguistic richness
and phonetic nuances of native scripts, often los-
ing cultural and linguistic expression. Certain
sounds in Hindi and other Indo-Aryan languages
lack precise representation in Roman script, re-
sulting in phonetic ambiguities. For example, the
Hindi letters (retroflex T) and (dental T) are
both commonly written as T or Ta in Roman-
ized text, ignoring the critical distinction between

retroflex and dental sounds in native pronuncia-
tion. Similarly, English sounds do not always map
neatly to Hindi phonetics. For instance, the En-
glish sounds v and w are often transliterated as

(v), which can be confused with b-like sounds
such as or . Such limitations underscore the
challenges of relying solely on Romanized text for
meaningful communication and accurate linguis-
tic representation.

These challenges emphasize the need for ro-
bust back-transliteration systems to convert Ro-
manized Indo-Aryan text into native scripts. Back-
transliteration maps Romanized text to its native
script based on phonetic representation, address-
ing the absence of standardization and variability
in typing habits. Accurate back-transliteration en-
hances digital communication by promoting cul-
tural preservation, improving readability, and re-
ducing miscommunication. Furthermore, it facili-
tates the integration of Romanized content into au-
tomated systems such as machine translation, text-
to-speech, and text mining, significantly boosting
their effectiveness and utility.

Transliteration can be approached at both the
word level and the sentence level. Word-level
transliteration models often fall short due to their
inability to account for contextual information,
which is essential for accurately resolving ambi-
guities in Romanized text. This study explores
sentence-level transliteration for Hindi, leveraging
the LLaMa 3.1(8B) (Dubey et al., 2024) model.
The experiments include both zero-shot learning
and fine-tuning approaches. For fine-tuning, the
Dakshina dataset (Roark et al., 2020a) is em-
ployed.

The fine-tuned LLaMa 3.1 model achieves sig-
nificant improvements in transliteration accuracy,
as demonstrated by the BLEU scores on the Hindi
Test dataset . On Test Set 1, the model achieves
a BLEU score of 0.8866 for character overlap and
0.6288 for word overlap. On Test Set 2, the BLEU
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scores are 0.8176 for character overlap and 0.5105
for word overlap. These results underscore the ef-
fectiveness of fine-tuning in improving translitera-
tion performance, providing a robust solution for
the challenges associated with Romanized Hindi
text conversion.

2 Related Works

In recent years, significant progress has been made
in transliteration for Indo-Aryan languages. No-
table contributions include Kunchukuttan et al.
(2015), who introduced Brahmi-Net, a statistical
transliteration system capable of handling script
conversion across 18 Indo-Aryan languages, re-
sulting in 306 language pairs, including Hindi.
Similarly, Roark et al. (2020b) developed the Dak-
shina dataset, supporting transliteration and lan-
guage modeling tasks for 12 South Asian lan-
guages written in Roman script, providing a foun-
dational resource for this domain.

Building on these efforts, Kunchukuttan et al.
(2021) explored multilingual neural machine
transliteration for English and 10 Indian lan-
guages, demonstrating the potential of multilin-
gual systems. Another significant milestone is
the Aksharantar dataset presented by Madhani
et al. (2023), which covers 21 Indian languages
and achieved state-of-the-art results using the In-
dicXlit model. Additionally, Ruder et al. (2023)
evaluated sentence-level transliteration across 13
languages, including 12 from the Dakshina dataset
and Amharic, using transfer learning models like
mT5-Base, ByT5-Base, and FlanPaLM-62B.

Transliteration for informal and social media
text has also been addressed in shared tasks or-
ganized by the Forum for Information Retrieval
(FIRE). For instance, FIRE 2013 and FIRE 2014
(Roy et al., 2013; Choudhury et al., 2014) focused
on transliterating Hindi song lyrics written in Ro-
man script, shedding light on the challenges of
informal text processing. Transliteration of Ro-
manized Assamese text on social media environ-
ment is explored in the study (Baruah et al., 2024b)
and recently back transliteration of Romanized As-
samese social media text is explored by Baruah
et al. (2024a) using BiLSTM, Neural Transformer
Model, mT5, and ByT5.

Despite these advancements, existing research
does not specifically address the transliteration
challenges posed by Romanized social media
datasets, characterized by inconsistencies, non-

Split Script #Data #Word #Char

Train Roman 10041 17.50 102.08
Native 10041 17.50 92.42

Test Set1 Roman 9998 15.30 89.09
Native 9998 15.30 80.63

Test Set2 Roman 4998 15.29 80.11
Native 4998 15.28 80.46

Table 1: Statistics of the Training and Testing Dataset.
Here #Data represents the number of text samples,
#Word denotes the average number of words per text
sample, and #Char indicates the average number of
characters per text sample.

standard typing patterns, and ad-hoc translitera-
tions. This highlights the need for further research
tailored to the complexities of social media com-
munication.

3 Approach

In this experiment, we focus on training a back-
transliteration model to convert Romanized Hindi
text into Devanagari script using a sentence-level
model. The architecture used is the LLaMa 3.1
model, which is fine-tuned using a pre-defined set
of instructions and inputs. The model training pro-
cess includes both zero-shot and fine-tuning tech-
niques to enhance the model’s transliteration capa-
bilities. The code for training is available at this
GitHub repo1.

3.1 Dataset

For training our model, we use the Dakshina
dataset(Roark et al., 2020a), which provides a
transliteration parallel corpus of 12 Indian lan-
guages, including Hindi. All the samples whose
lengths are greater than 100 words are manually
broken into smaller sentences. For the testing, we
have used the two sets of the dataset provided in
the shared task2. The statistics of the Hindi dataset
used for our training are tabulated in Table 1. The
romanized text in Test Set 2 has most of the sam-
ple with the vowel omission. The same is reflected
in Table 1 as well. The average character count for
romanized text in Test Set 2 is less than that of
Test Set 1. The word distribution of each dataset
is shown in Fig. 1. It is observed that most of

1https://github.com/saurabhdbz/LlaMa_Translit
2IndoNLP Workshop 2025: https://indonlp-

workshop.github.io/IndoNLP-Workshop/

https://github.com/saurabhdbz/LlaMa_Translit
https://indonlp-workshop.github.io/IndoNLP-Workshop/
https://indonlp-workshop.github.io/IndoNLP-Workshop/
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(a) Train Set (b) Test Set-1 (c) Test Set-2

Figure 1: Word distribution of the Training and the Testing dataset

the samples in training data fall under the sample
length of 50 words, and for the testing data, the
sample length is limited to 30 words.

The dataset is formatted to fit the Alpaca prompt
structure, where the instruction is to transliter-
ate the Romanized Hindi input back into Devana-
gari script. The dataset is processed by creating
training examples that combine instructions, in-
puts, and outputs, with the end-of-sequence token
(EOS) added to each instance to guide the model in
generating complete sequences. The fixed instruc-
tion, “Transliterate the given Romanized Hindi
text back to Devanagari script.” is consistently
used across both the training and testing phases.

3.2 Model Architecture

The foundation of our system is the LLaMA 3.1
8B model (Dubey et al., 2024), a large-scale
transformer-based architecture with 8 billion pa-
rameters. This model is multilingual and supports
a significantly extended context length of 128K,
making it suitable for advanced use cases such as
long-form text summarization, multilingual con-
versational agents, and coding assistants. The fine-
tuned variant of LLaMA employed in this work
is optimized for causal language modeling and en-
hanced with Low-Rank Adaptation (LoRA) and
4-bit quantization. LoRA is applied with a rank
of 16, enabling efficient adaptation by training
lightweight low-rank matrices while freezing the
original model weights, significantly reducing the
number of trainable parameters. The model con-
sists of 32 decoder layers, each comprising self-
attention and feedforward modules. All projec-
tions (query, key, value, and output) within the
self-attention mechanism leverage low-rank ma-
trices, with rotary embeddings incorporated for

positional encoding. The use of 4-bit quanti-
zation further minimizes memory and computa-
tional overhead, making the model highly effi-
cient for resource-constrained environments while
maintaining its performance quality.

3.3 Training Method

The training process utilizes the SFTTrainer class
from the trl library, designed explicitly for su-
pervised fine-tuning of language models. To im-
prove memory efficiency, we integrated the Un-
sloth3 framework, which supports 4-bit quantiza-
tion by loading the pre-trained model in a com-
pressed format. This approach accelerates train-
ing and inference while significantly reducing the
memory footprint.

The model is fine-tuned for one epoch with a
batch size of 2, using gradient accumulation steps
set to 4 to manage the training of the large model
size. The learning rate was configured to 2×10−4,
and the AdamW optimizer was employed with
8-bit precision to further reduce memory usage.
Additionally, the training process incorporated a
warm-up phase followed by linear learning rate de-
cay to ensure stable convergence.

3.4 Back-transliteration

We employ both the pre-trained LLaMa model
and the fine-tuned model to perform back-
transliteration of Romanized Hindi text. In both
cases, the same prompt, i.e. “Transliterate the
given Romanized Hindi text back to Devanagari
script.” is used. During text generation in both
cases, the default temperature value of 1.0 is used,
which strikes a balance between randomness and

3Unsloth: https://github.com/unslothai/unsloth

https://github.com/unslothai/unsloth
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Model Test Set 1 Test Set 2

WER CER BLUEC BLUEW WER CER BLUEC BLUEW

IndicXlit 0.4552 0.1785 0.7319 0.2505 0.5320 0.2313 0.6567 0.1689
LLaMa3.1 0.2154 0.0881 0.8675 0.5996 0.2851 0.1339 0.8029 0.4879
Proposed 0.1892 0.0684 0.8866 0.6288 0.2640 0.1183 0.8176 0.5105

Table 2: Model performance on both test sets, evaluated using Word Error Rate (WER), Character Error Rate
(CER), BLEU score for character overlap (BLEUC), and BLEU score for word overlap (BLEUW ). The proposed
model is the fine-tuned version of LLaMa 3.1.

(a)Performance on Test Set-1 (b)Performance on Test Set-2

Figure 2: Average BLEU score and the variance of the BLUE score across different text lengths of the sample from
both Test Set 1 and Test Set 2.

determinism, ensuring natural and coherent out-
put.

4 Results and Discussion

We evaluate the model’s performance in two sce-
narios: a zero-shot setting, where responses are
generated directly from the pre-trained model us-
ing prompts, and after the model fine-tuning, by
analyzing its responses on two test datasets: Test
Set 1 and Test Set 2. The performance metrics
include Word Error Rate (WER), Character Error
Rate (CER), and BLEU score.

For the BLEU score, we compute two distinct
types of overlap: Character-Level Overlap and
Word-Level (or Token-Level) Overlap. The BLEU
score for Character-Level Overlap evaluates the
precision of individual characters in the gener-
ated output compared to the reference, making it
particularly useful for fine-grained tasks such as
transliteration. On the other hand, the BLEU score
for Word-Level Overlap measures the precision of
word-level tokens in the generated output, which

is more suited for tasks emphasizing semantic ac-
curacy and fluency. The BLEU score is calculated
by assigning equal weight to unigrams, bigrams,
trigrams, and fourgrams to ensure a balanced eval-
uation across different n-gram levels.

We compare our model against IndicXlit (Mad-
hani et al., 2023), considering it as baseline. It
is a transformer-based state-of-the-art multilin-
gual transliteration model with 11 million param-
eters, supporting 21 Indian languages for Roman-
to-native and native-to-Roman script conversions.
Using IndicXlit, the Romanized Hindi text was
converted into Devanagari and compared with the
outputs of our trained models.

Table 2 summarizes the performance of the
models on Test Set 1 and Test Set 2. The pre-
trained LLaMa model outperforms the baseline In-
dicXlit model on both test sets, achieving signifi-
cant reductions in WER and CER. On Test Set 1,
the WER and CER are reduced by 24% and 9%,
respectively, while on Test Set 2, the reductions
are 25% and 10%, respectively. Additionally, the
Character-Level BLEU score shows a gain of 13%,
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and the Word-Level BLEU score improves by 34%
on Test Set 1, with similar improvements observed
on Test Set 2.

The fine-tuned model demonstrates the best per-
formance overall. On Test Set 1, it achieves a
WER of 18.92% and a CER of 6.84%. For BLEU
scores, the fine-tuned model achieves 88.66% for
Character-Level Overlap and 62.88% for Word-
Level Overlap, representing gains of 15.47% and
37.83%, respectively. Similarly, on Test Set 2, the
model significantly reduces the WER and CER
by 41.37% and 11.3%, respectively, compared to
the IndicXlit baseline. Furthermore, it achieves a
BLEU score of 81.76% on Character-Level Over-
lap for Test Set 2, underscoring its effectiveness in
transliteration tasks.

Additionally, we analyze the relationship be-
tween text length and model performance by plot-
ting line graphs of the average BLEU score and its
variance against text length for both Test Set 1 and
Test Set 2, as shown in Fig. 2. From the graphs,
we observe that the model’s performance remains
relatively consistent for texts longer than 8 words
across both test sets. However, a slightly higher
variance in BLEU scores for smaller text indicates
that the model’s performance is less stable on text
of smaller length.

5 Conclusion and Future Work

This paper addresses the challenges of back-
transliteration of Romanized Hindi text, which of-
ten suffers from inconsistencies in spelling, pho-
netic representation, and the omission of vowels.
We explore the use of the LLaMa 3.1 (8B) model
for back-transliteration, employing both prompt-
ing and fine-tuning methods. For fine-tuning, the
Dakshina dataset was utilized. Our results demon-
strate significant improvements in transliteration
accuracy, as measured by Word Error Rate (WER),
Character Error Rate (CER), and BLEU score, pro-
viding an effective solution for handling the vari-
ability in Romanized text and enhancing the per-
formance of NLP applications such as machine
translation and text mining.

In future work, we plan to extend our ap-
proach to other Indo-Aryan languages, incorpo-
rating larger and more diverse datasets. We also
aim to refine the model to handle even greater text
variability and improve transliteration accuracy
further. Additionally, exploring domain-specific
adaptations and integrating the model into real-

time applications will be key directions for advanc-
ing back-transliteration systems in the future.

Limitations

This work is primarily limited to the Hindi lan-
guage and focuses on more structured text. The
training data used for model development lacks
the nuances of social media text, such as abbrevi-
ations, short forms, and vowel omissions. As a re-
sult, the model’s performance declines for shorter
sentences and on datasets like Test Set 2, which
include texts with vowel omissions.

Additionally, the study is restricted to
transformer-based models, specifically the
encoder-decoder architecture and the LLaMa
model. While large language models (LLMs)
like LLaMa demonstrate superior performance,
their significant size makes them less suitable for
deployment on resource-constrained devices, such
as mobile phones, for real-time transliteration. To
address this, future work should explore model
compression techniques to reduce the computa-
tional footprint and enhance applicability in such
environments.
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