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Abstract

Multilingual speaker identification and veri-
fication is a challenging task, especially for
languages with diverse acoustic and linguis-
tic features such as Indo-Aryan and Dravidian
languages. Previous models have struggled to
generalize across multilingual environments,
leading to significant performance degradation
when applied to multiple languages. In this
paper, we propose an advanced approach to
multilingual speaker identification and verifica-
tion, specifically designed for Indo-Aryan and
Dravidian languages. Empirical results on the
Kathbath dataset show that our approach signifi-
cantly improves speaker identification accuracy,
reducing the performance gap between mono-
lingual and multilingual systems from 15% to
just 1%. Additionally, our model reduces the
equal error rate for speaker verification from
15% to 5% in noisy conditions. Our method
demonstrates strong generalization capabilities
across diverse languages, offering a scalable
solution for multilingual voice-based biometric
systems.

1 Introduction

In today’s world, biometric recognition is revolu-
tionizing how we identify and verify individuals.
Traditional methods, such as passwords, personal
identification numbers, or signatures, are often in-
convenient because they can be forgotten, stolen,
or forged (Jain et al., 2004). In contrast, biometric
traits are unique to each individual, making them
difficult to replicate or steal. These systems rely on
either physiological characteristics, such as finger-
prints, iris patterns, or facial features, or behavioral
traits, such as handwriting, voice, or keystroke pat-
terns, to identify a person (Tolba et al., 2006).

Among these biometric traits, voice-based recog-
nition offers clear advantages. Two factors make it
a strong choice: First, speech is a natural and easy
signal for users to provide. Second, the wide avail-
ability of phones and low-cost microphones make

voice capture accessible and convenient for many
applications (Reynolds, 2002). In voice-based bio-
metric recognition, there are two distinct modes of
operation: speaker identification, which typically
involves recognizing an individual from a larger
pool, and speaker verification, which focuses on
validating a specific identity claim (Togneri and
Pullella, 2011).

Voice-based recognition systems can be classi-
fied by their language handling capabilities into
monolingual and multilingual systems (Nagaraja
and Jayanna, 2012). Monolingual systems are
trained and tested within a single language, offer-
ing high accuracy but limited flexibility outside
that specific linguistic context. Multilingual sys-
tems, on the other hand, are designed to recognize
speakers across multiple languages within a single
model, eliminating the need for separate models
for each language. This versatility makes multilin-
gual systems well-suited for environments where
multiple languages are spoken.

Recent advancements in self-supervised learn-
ing (SSL) have significantly enhanced the perfor-
mance and robustness of voice-based recognition
systems. SSL models, particularly in the context of
the upstream model, play a crucial role in feature
extraction. Here, rich speech features are captured
and transferred to a downstream model, which is
responsible for tasks such as speaker identifica-
tion and verification (wen Yang et al., 2021). By
separating the feature extraction and task-specific
components, SSL models offer greater flexibility,
improving the performance of voice recognition
systems, particularly in multilingual applications.

Despite these advances, multilingual systems
still lag behind their monolingual counterparts in
terms of accuracy (Javed et al., 2023). This perfor-
mance gap is particularly significant in multilingual
countries such as India, where linguistic diversity
presents a unique challenge. India’s population
speaks languages from four main language fam-
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Figure 1: Architecture of our speaker identification model. The model processes an input speech signal in .m4a
format (sampled at 16 kHz) using the pre-trained IndicWav2Vec model (Javed et al., 2023) to generate 24 frame-
level representations. These are then mean-pooled along the time axis to create utterance-level representations. A
weighted average pooling is applied across the 24 utterance-level representations to produce the final representation,
which is passed through two fully connected layers to predict speaker identity. Layer dimensions and additional
hyper-parameters are detailed in Section 3.

ilies, with approximately 96% of speakers using
languages from the Indo-Aryan and Dravidian fam-
ilies, while the remaining languages have smaller
speaker bases (Kakwani et al., 2020). In this con-
text, a multilingual voice recognition system capa-
ble of handling multiple languages within a single
model is crucial. It would eliminate the need for
separate models for each language, streamlining
speaker identification and verification processes
across India’s diverse linguistic landscape.

In this paper, we propose a novel architecture for
voice-based biometric recognition using the pre-
trained IndicWac2Vec model (Javed et al., 2023)
to enhance both speaker identification and verifica-
tion. Our model was tested under two conditions:
clean and noisy environments. While there was a
slight improvement in monolingual speaker identifi-
cation accuracy, the major gain was in multilingual
speaker identification accuracy, where the perfor-
mance gap between monolingual and multilingual
systems decreased from around 15% to 1%. Ad-
ditionally, instead of creating a separate speaker

verification model, we used the speaker embed-
dings from our speaker identification model for
verification. Compared to the standard approach,
our method reduced the equal error rate from 15%
to 5% on unknown data in both clean and noisy
conditions, demonstrating improved multilingual
voice-based recognition.

2 Methodology

Our speaker identification model builds upon the
architecture proposed by Javed et al.. To enhance
the model’s performance on speaker identification
and verification tasks, we have introduced two key
modifications, as illustrated in Figure 1.

2.1 Weighted Average Pooling Strategy

The original model employs mean pooling, which
averages representations from all transformer en-
coder layers to generate a single vector. While
straightforward, this approach assumes equal con-
tribution from all layers, which may not align with
the properties of speech representations. Prior stud-
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Figure 2: Encoder layer-wise representation weights for speaker identification models trained on specific languages
and a multi-language dataset. The figure contains 13 subplots: each of the first 12 subplots shows a model trained
exclusively on one language, labeled by the language name. The final subplot, labeled "all," displays results from a
model trained on a combined dataset incorporating all 12 languages. This visualization highlights the variation in
layer importance across language-specific models and the multi-language model.

ies (Chen et al., 2022) have shown that middle
layers of transformer-based models often capture
speaker-specific features more effectively than the
initial or final layers.

To address this limitation, we employ a weighted
average pooling strategy, which assigns learnable
weights to each layer’s representation. This ap-
proach enables the model to emphasize layers that
capture speaker-specific features while reducing
the contribution of less relevant layers. By priori-
tizing these layers, the model effectively exploits
the hierarchical structure of transformer outputs,
as supported by the findings in (Chen et al., 2022),
which highlight the importance of middle layers
for speaker-related tasks.

2.2 Additional Embedding Layer

In the baseline architecture, the aggregated repre-
sentation is passed directly to the classifier. To en-
hance the model’s ability to refine speaker-related
features, we introduce an additional embedding
layer, a linear transformation applied to the pooled
representation before classification. This layer re-
fines the pooled representation to better distinguish
speaker-specific features, leveraging the hypothesis

that increased depth improves feature separability
(Shi et al., 2020). Additionally, the refined em-
beddings support both speaker identification and
verification, providing a unified representation that
enhances the model’s accuracy and robustness.

The resulting model improves accuracy and ro-
bustness for speaker identification and verifica-
tion. Details on layer dimensions and other hyper-
parameters are in Section 3.

3 Experimental Setup

Our speaker identification model consists of two
main components: an upstream model and a
downstream model. The upstream model, In-
dicWav2Vec, is a Wav2Vec-based model pre-
trained on half a million hours of raw speech data
across 128 Indian languages (Javed et al., 2023).
Following standard practice in speech processing
benchmarks, such as SUPERB (wen Yang et al.,
2021), we freeze the upstream model and train only
the downstream model. This approach allows us
to use the rich, pre-trained representations while
reducing computational complexity, as only the
downstream model is updated to predict speaker
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Language SID - Mono SID - Multi
Clean Noise Dravidian Indo-Aryan All

Clean Noise Clean Noise Clean Noise
Bengali 99.64 99.63 - - 99.54 99.44 99.54 99.37
Gujarati 97.73 95.97 - - 97.63 95.68 97.79 94.94
Hindi 99.39 99.08 - - 99.23 98.68 99.17 98.62
Kannada 98.54 99.86 99.00 100.00 - - 98.91 100.00
Malayalam 99.94 99.93 99.94 99.65 - - 99.77 99.58
Marathi 94.11 97.97 - - 94.11 98.39 93.82 98.47
Odia 98.17 98.39 - - 98.24 97.82 98.10 97.37
Punjabi 99.41 99.24 - - 99.13 99.19 98.94 99.37
Sanskrit 99.82 99.56 - - 99.94 99.24 99.94 99.62
Tamil 96.41 96.73 96.96 96.85 - - 96.12 96.65
Telugu 93.61 96.48 94.81 95.83 - - 94.73 95.66
Urdu 99.72 99.29 - - 99.62 99.20 99.27 99.23

Table 1: Performance of different languages on the Speaker Identification (SID) tasks, specifically for the Mono
and Multi language settings, evaluated on both clean and noisy datasets. In the SID-Multi task, languages are
grouped into three categories: Dravidian (a model trained on all Dravidian languages and tested on each language
individually), Indo-Aryan (a model trained on all Indo-Aryan languages and tested on each language individually),
and All (a model trained on all languages combined and tested on each language individually)

identity. 1 2.
As the speaker identification task is framed as

a classification problem, we use cross-entropy as
the loss function and accuracy as the evaluation
metric. In the speaker verification task, we first
train the model for multilingual speaker identifi-
cation, then extract speaker embeddings. These
embeddings are compared using cosine similarity,
and performance is evaluated using the Equal Error
Rate (EER), which represents the point at which
the false acceptance rate equals the false rejection
rate. Hyper-parameter tuning, performed using grid
search, was applied to both tasks to optimize the
model’s performance 3.

For evaluating our model’s performance, we
select the Kathbath dataset (Javed et al., 2023),
which is particularly well-suited for speaker iden-
tification tasks involving Indo-Aryan and Dra-
vidian languages. This dataset is the largest
available for Indian languages, making it an
ideal choice for multilingual speaker identifica-
tion. It includes 8 Indo-Aryan languages—Gujarati,
Marathi, Bengali, Odia, Hindi, Punjabi, Sanskrit,
and Urdu—and 4 Dravidian languages—Kannada,
Malayalam, Tamil, and Telugu. All 12 languages

1Our model was implemented using PyTorch.
2All experiments were conducted on an NVIDIA Quadro

RTX 6000 GPU with 30GB of RAM.
3The fully connected layer has a dimension of 1500, with

a batch size of 32 and a learning rate of 2.5× 10−3.

are widely spoken, ensuring the model’s general-
ization across a diverse set of linguistic and acous-
tic features. The dataset is divided into four cat-
egories: Clean Known, Noise Known, Clean Un-
known, and Noise Unknown, which allows for ro-
bust evaluation under varying conditions of noise
and speaker familiarity. The "Clean" and "Noise"
labels distinguish between clean and noisy audio,
while "Known" and "Unknown" indicate whether
the speaker is seen or unseen during training. We
follow the recommended train-test splits for each
dataset.

4 Results and Discussion

A key architectural modification in our model
is the use of weighted average pooling for fea-
tures extracted from the pre-trained IndicWav2Vec
model, replacing traditional mean pooling. Fig-
ure 2 demonstrates that layer contributions are not
uniform; notably, layers 9 through 12 consistently
receive higher weights across all models. This sug-
gests that these deeper layers play a substantial role
in encoding speaker identity, as they may capture
more abstract, speaker-specific features that are
essential for accurate identification.

Furthermore, there is a strong correlation be-
tween the weight patterns in monolingual and mul-
tilingual models. Layers with relatively small
weights in monolingual models appear even smaller
in the multilingual model, while those with higher
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Model Clean - Known Clean - Unknown Noisy - Known Noisy - Unknown
Speaker Identification Monolingual (SID-Mono) - Accuracy

XLS-R 94.2 - 92.4 -
IndicWav2Vec 95.6 - 95.2 -
Ours 98.04 - 98.51 -

Speaker Identification Multilingual (SID-Multi) - Accuracy
XLS-R 70.71 - 69.22 -
IndicWav2Vec 79.26 - 78.08 -
Ours 97.96 - 98.12 -

Automatic Speaker Verification - EER
XLS-R 2.15 12.05 2.83 11.58
IndicWav2Vec 2.08 15.33 2.11 15.39
Ours 4.61 5.15 5.23 5.55

Table 2: Performance comparison of different models on various tasks, including Speaker Identification (SID) in
both monolingual (SID-Mono) and multilingual (SID-Multi) settings, and Automatic Speaker Verification (ASV).
For SID-Mono and SID-Multi, the accuracy is reported for both clean and noisy conditions on known speakers. For
ASV, the Equal Error Rate (EER) is reported for clean and noisy conditions on both known and unknown speakers.
Ours denotes the model proposed in this work, which outperforms the other models, XLS-R and IndicWav2Vec, in
most settings.

weights tend to be accentuated in the multilingual
setting. This consistency suggests that the multi-
lingual model captures a generalizable layer-wise
structure across languages, reinforcing the impor-
tance of weighted pooling in effectively leveraging
essential layers for robust speaker representation.
These findings demonstrate that our approach pre-
serves key features across languages, enhancing
speaker identification accuracy.

Table 1 presents the performance of our model
on the SID task across monolingual and multilin-
gual settings, evaluated on both clean and noisy
datasets. In the monolingual setting, the model
achieves high accuracy on several languages, with
Bengali, Hindi, and Malayalam exceeding 99%
accuracy. However, languages like Marathi and
Telugu show a drop in performance, particularly
in noisy conditions. This indicates that noise sig-
nificantly impacts speaker identification for these
languages, potentially due to their unique acoustic
characteristics. Overall, the monolingual perfor-
mance demonstrates the model’s capability to accu-
rately identify speakers in controlled environments,
though its performance is more sensitive to noise
in certain languages.

In contrast, the multilingual setting shows a
slight decrease in accuracy compared to the mono-
lingual case, which is expected due to the added
complexity of handling multiple languages. Never-
theless, the model trained on the "All" languages
category maintains relatively high performance

across languages, demonstrating strong general-
ization. The Dravidian and Indo-Aryan subsets per-
form similarly, with the Indo-Aryan model slightly
outperforming others in some cases. Notably, the
multilingual models exhibit better resilience to
noise compared to the monolingual models, sug-
gesting that training with multiple languages helps
the model learn more robust speaker features. How-
ever, noise remains a challenge, and further im-
provements in noise robustness are needed for bet-
ter performance in real-world conditions.

Next, Table 2 compares the performance of our
model against two baseline models, XLS-R and
IndicWav2Vec, across three tasks: SID in both
monolingual (SID-Mono) and multilingual (SID-
Multi) settings, and Automatic Speaker Verification
(ASV). For both SID-Mono and SID-Multi tasks,
our model consistently outperforms the baselines in
terms of accuracy, particularly in noisy conditions.
In the monolingual setting, our model achieves an
accuracy of 98.04% for clean and 98.51% for noisy
conditions, significantly surpassing the 95.6% and
95.2% accuracy of IndicWav2Vec and the 94.2%
and 92.4% accuracy of XLS-R. Similarly, in the
multilingual setting, our model shows remark-
able performance, achieving 97.96% in clean and
98.12% in noisy conditions, well ahead of both
XLS-R and IndicWav2Vec.

However, when it comes to ASV, our model lags
behind the baselines in terms of Equal Error Rate
(EER). While XLS-R and IndicWav2Vec achieve



72

EER values ranging from 2.08 to 2.83 for clean
conditions and 11.58 to 15.39 for noisy conditions,
our model exhibits better EER values, particularly
in unknown conditions, with the best value being
5.15 for unknown speakers in clean conditions and
5.55 for unknown speakers in noisy conditions.
These results suggest that while our model excels in
speaker identification tasks, further improvements
in ASV, especially under known conditions, are
necessary. Despite the performance gap in ASV,
the results highlight the robustness of our model
in SID tasks across both monolingual and multilin-
gual settings, making it a promising candidate for
practical voice recognition applications.

5 Conclusion

In this work, we presented a novel approach for
multilingual speaker identification and verifica-
tion using a modified IndicWav2Vec-based model.
Our model integrates self-supervised learning tech-
niques to extract rich, robust speech features, which
substantially improve speaker identification perfor-
mance, especially in multilingual settings. Key
innovations include a weighted average pooling
mechanism for better aggregation of transformer
layer representations and an additional embedding
layer to refine speaker-specific features. These
modifications led to significant improvements, re-
ducing the performance gap between monolingual
and multilingual systems from 15% to 1%, and
lowering the equal error rate for speaker verifica-
tion from 15% to 5% under noisy conditions. Our
experiments, conducted with the Kathbath dataset,
demonstrated the model’s ability to generalize ef-
fectively across multiple languages. The simplicity
of the model structure, combined with its robust
performance, positions it as an efficient and scal-
able solution for voice-based biometric recogni-
tion.

6 Limitation

Despite the promising results, our model still faces
several limitations. Although it excels in multi-
lingual speaker identification and verification, its
performance is limited by the diversity of the train-
ing dataset, as it relies heavily on the Kathbath
dataset. Expanding the training data to cover a
wider variety of languages and acoustic conditions
will be crucial for enhancing generalization. Addi-
tionally, while the model performs well under clean
and moderately noisy conditions, its robustness

in highly noisy environments remains a challenge.
The equal error rate, though reduced in typical sce-
narios, may degrade in real-world applications with
severe noise or poor-quality recordings. Lastly, the
model’s computational complexity, especially with
the added pooling and embedding layers, may limit
its suitability for real-time or resource-constrained
applications.
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