@inproceedings{liu-etal-2025-annotating,
title = "Annotating Hallucinations in Question-Answering using Rewriting",
author = "Liu, Xu and
Chen, Guanyi and
van Deemter, Kees and
He, Tingting",
editor = "Flek, Lucie and
Narayan, Shashi and
Phương, L{\^e} Hồng and
Pei, Jiahuan",
booktitle = "Proceedings of the 18th International Natural Language Generation Conference",
month = oct,
year = "2025",
address = "Hanoi, Vietnam",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.inlg-main.48/",
pages = "823--832",
abstract = "Hallucinations pose a persistent challenge in open-ended question answering (QA). Traditional annotation methods, such as span-labelling, suffer from inconsistency and limited coverage. In this paper, we propose a rewriting-based framework as a new perspective on hallucinations in open-ended QA. We report on an experiment in which annotators are instructed to rewrite LLM-generated answers directly to ensure factual accuracy, with edits automatically recorded. Using the Chinese portion of the Mu-SHROOM dataset, we conduct a controlled rewriting experiment, comparing fact-checking tools (Google vs. GPT-4o), and analysing how tool choice, annotator background, and question openness influence rewriting behaviour. We find that rewriting leads to more hallucinations being identified, with higher inter-annotator agreement, than span-labelling."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-annotating">
<titleInfo>
<title>Annotating Hallucinations in Question-Answering using Rewriting</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanyi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tingting</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lucie</namePart>
<namePart type="family">Flek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shashi</namePart>
<namePart type="family">Narayan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lê</namePart>
<namePart type="given">Hồng</namePart>
<namePart type="family">Phương</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahuan</namePart>
<namePart type="family">Pei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hanoi, Vietnam</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hallucinations pose a persistent challenge in open-ended question answering (QA). Traditional annotation methods, such as span-labelling, suffer from inconsistency and limited coverage. In this paper, we propose a rewriting-based framework as a new perspective on hallucinations in open-ended QA. We report on an experiment in which annotators are instructed to rewrite LLM-generated answers directly to ensure factual accuracy, with edits automatically recorded. Using the Chinese portion of the Mu-SHROOM dataset, we conduct a controlled rewriting experiment, comparing fact-checking tools (Google vs. GPT-4o), and analysing how tool choice, annotator background, and question openness influence rewriting behaviour. We find that rewriting leads to more hallucinations being identified, with higher inter-annotator agreement, than span-labelling.</abstract>
<identifier type="citekey">liu-etal-2025-annotating</identifier>
<location>
<url>https://aclanthology.org/2025.inlg-main.48/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>823</start>
<end>832</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Annotating Hallucinations in Question-Answering using Rewriting
%A Liu, Xu
%A Chen, Guanyi
%A van Deemter, Kees
%A He, Tingting
%Y Flek, Lucie
%Y Narayan, Shashi
%Y Phương, Lê Hồng
%Y Pei, Jiahuan
%S Proceedings of the 18th International Natural Language Generation Conference
%D 2025
%8 October
%I Association for Computational Linguistics
%C Hanoi, Vietnam
%F liu-etal-2025-annotating
%X Hallucinations pose a persistent challenge in open-ended question answering (QA). Traditional annotation methods, such as span-labelling, suffer from inconsistency and limited coverage. In this paper, we propose a rewriting-based framework as a new perspective on hallucinations in open-ended QA. We report on an experiment in which annotators are instructed to rewrite LLM-generated answers directly to ensure factual accuracy, with edits automatically recorded. Using the Chinese portion of the Mu-SHROOM dataset, we conduct a controlled rewriting experiment, comparing fact-checking tools (Google vs. GPT-4o), and analysing how tool choice, annotator background, and question openness influence rewriting behaviour. We find that rewriting leads to more hallucinations being identified, with higher inter-annotator agreement, than span-labelling.
%U https://aclanthology.org/2025.inlg-main.48/
%P 823-832
Markdown (Informal)
[Annotating Hallucinations in Question-Answering using Rewriting](https://aclanthology.org/2025.inlg-main.48/) (Liu et al., INLG 2025)
ACL