@inproceedings{nguyen-etal-2025-kda,
title = "{KDA}: Knowledge Distillation Adapter for Cross-Lingual Transfer",
author = "Nguyen, Ta-Bao and
Phan, Nguyen-Phuong and
Le, Tung and
Nguyen, Huy Tien",
editor = "Flek, Lucie and
Narayan, Shashi and
Phương, L{\^e} Hồng and
Pei, Jiahuan",
booktitle = "Proceedings of the 18th International Natural Language Generation Conference",
month = oct,
year = "2025",
address = "Hanoi, Vietnam",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.inlg-main.8/",
pages = "122--133",
abstract = "State-of-the-art cross-lingual transfer often relies on massive multilingual models, but their prohibitive size and computational cost limit their practicality for low-resource languages. An alternative is to adapt powerful, task-specialized monolingual models, but this presents challenges in bridging the vocabulary and structural gaps between languages. To address this, we propose KDA, a Knowledge Distillation Adapter framework that efficiently adapts a fine-tuned, high-resource monolingual model to a low-resource target language. KDA utilizes knowledge distillation to transfer the source model{'}s task-solving capabilities to the target language in a parameter-efficient manner. In addition, we introduce a novel adapter architecture that integrates source-language token embeddings while learning new positional embeddings, directly mitigating cross-lingual representational mismatches. Our empirical results on zero-shot transfer for Vietnamese Sentiment Analysis demonstrate that KDA significantly outperforms existing methods, offering a new, effective, and computationally efficient pathway for cross-lingual transfer."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-etal-2025-kda">
<titleInfo>
<title>KDA: Knowledge Distillation Adapter for Cross-Lingual Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ta-Bao</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen-Phuong</namePart>
<namePart type="family">Phan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tung</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huy</namePart>
<namePart type="given">Tien</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lucie</namePart>
<namePart type="family">Flek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shashi</namePart>
<namePart type="family">Narayan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lê</namePart>
<namePart type="given">Hồng</namePart>
<namePart type="family">Phương</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahuan</namePart>
<namePart type="family">Pei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hanoi, Vietnam</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>State-of-the-art cross-lingual transfer often relies on massive multilingual models, but their prohibitive size and computational cost limit their practicality for low-resource languages. An alternative is to adapt powerful, task-specialized monolingual models, but this presents challenges in bridging the vocabulary and structural gaps between languages. To address this, we propose KDA, a Knowledge Distillation Adapter framework that efficiently adapts a fine-tuned, high-resource monolingual model to a low-resource target language. KDA utilizes knowledge distillation to transfer the source model’s task-solving capabilities to the target language in a parameter-efficient manner. In addition, we introduce a novel adapter architecture that integrates source-language token embeddings while learning new positional embeddings, directly mitigating cross-lingual representational mismatches. Our empirical results on zero-shot transfer for Vietnamese Sentiment Analysis demonstrate that KDA significantly outperforms existing methods, offering a new, effective, and computationally efficient pathway for cross-lingual transfer.</abstract>
<identifier type="citekey">nguyen-etal-2025-kda</identifier>
<location>
<url>https://aclanthology.org/2025.inlg-main.8/</url>
</location>
<part>
<date>2025-10</date>
<extent unit="page">
<start>122</start>
<end>133</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KDA: Knowledge Distillation Adapter for Cross-Lingual Transfer
%A Nguyen, Ta-Bao
%A Phan, Nguyen-Phuong
%A Le, Tung
%A Nguyen, Huy Tien
%Y Flek, Lucie
%Y Narayan, Shashi
%Y Phương, Lê Hồng
%Y Pei, Jiahuan
%S Proceedings of the 18th International Natural Language Generation Conference
%D 2025
%8 October
%I Association for Computational Linguistics
%C Hanoi, Vietnam
%F nguyen-etal-2025-kda
%X State-of-the-art cross-lingual transfer often relies on massive multilingual models, but their prohibitive size and computational cost limit their practicality for low-resource languages. An alternative is to adapt powerful, task-specialized monolingual models, but this presents challenges in bridging the vocabulary and structural gaps between languages. To address this, we propose KDA, a Knowledge Distillation Adapter framework that efficiently adapts a fine-tuned, high-resource monolingual model to a low-resource target language. KDA utilizes knowledge distillation to transfer the source model’s task-solving capabilities to the target language in a parameter-efficient manner. In addition, we introduce a novel adapter architecture that integrates source-language token embeddings while learning new positional embeddings, directly mitigating cross-lingual representational mismatches. Our empirical results on zero-shot transfer for Vietnamese Sentiment Analysis demonstrate that KDA significantly outperforms existing methods, offering a new, effective, and computationally efficient pathway for cross-lingual transfer.
%U https://aclanthology.org/2025.inlg-main.8/
%P 122-133
Markdown (Informal)
[KDA: Knowledge Distillation Adapter for Cross-Lingual Transfer](https://aclanthology.org/2025.inlg-main.8/) (Nguyen et al., INLG 2025)
ACL