@inproceedings{mondal-etal-2025-language,
title = "Language-Specific Neurons Do Not Facilitate Cross-Lingual Transfer",
author = "Mondal, Soumen Kumar and
Sen, Sayambhu and
Singhania, Abhishek and
Jyothi, Preethi",
editor = "Drozd, Aleksandr and
Sedoc, Jo{\~a}o and
Tafreshi, Shabnam and
Akula, Arjun and
Shu, Raphael",
booktitle = "The Sixth Workshop on Insights from Negative Results in NLP",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.insights-1.6/",
doi = "10.18653/v1/2025.insights-1.6",
pages = "46--62",
ISBN = "979-8-89176-240-4",
abstract = "Multilingual large language models (LLMs) aim towards robust natural language understanding across diverse languages, yet their performance significantly degrades on low-resource languages. This work explores whether existing techniques to identify language-specific neurons can be leveraged to enhance cross-lingual task performance of low-resource languages. We conduct detailed experiments covering existing language-specific neuron identification techniques (such as LanguageActivation Probability Entropy and activation probability-based thresholding) andneuron-specific LoRA fine-tuning with models like Llama 3.1 and Mistral Nemo. We find that such neuron-specific interventions are insufficient to yield cross-lingual improvements on downstream tasks (XNLI, XQuAD) in low-resource languages. This study highlights the challenges in achieving cross-lingual generalization and provides critical insights for multilingual LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mondal-etal-2025-language">
<titleInfo>
<title>Language-Specific Neurons Do Not Facilitate Cross-Lingual Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soumen</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Mondal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sayambhu</namePart>
<namePart type="family">Sen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Singhania</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preethi</namePart>
<namePart type="family">Jyothi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>The Sixth Workshop on Insights from Negative Results in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Akula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raphael</namePart>
<namePart type="family">Shu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-240-4</identifier>
</relatedItem>
<abstract>Multilingual large language models (LLMs) aim towards robust natural language understanding across diverse languages, yet their performance significantly degrades on low-resource languages. This work explores whether existing techniques to identify language-specific neurons can be leveraged to enhance cross-lingual task performance of low-resource languages. We conduct detailed experiments covering existing language-specific neuron identification techniques (such as LanguageActivation Probability Entropy and activation probability-based thresholding) andneuron-specific LoRA fine-tuning with models like Llama 3.1 and Mistral Nemo. We find that such neuron-specific interventions are insufficient to yield cross-lingual improvements on downstream tasks (XNLI, XQuAD) in low-resource languages. This study highlights the challenges in achieving cross-lingual generalization and provides critical insights for multilingual LLMs.</abstract>
<identifier type="citekey">mondal-etal-2025-language</identifier>
<identifier type="doi">10.18653/v1/2025.insights-1.6</identifier>
<location>
<url>https://aclanthology.org/2025.insights-1.6/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>46</start>
<end>62</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language-Specific Neurons Do Not Facilitate Cross-Lingual Transfer
%A Mondal, Soumen Kumar
%A Sen, Sayambhu
%A Singhania, Abhishek
%A Jyothi, Preethi
%Y Drozd, Aleksandr
%Y Sedoc, João
%Y Tafreshi, Shabnam
%Y Akula, Arjun
%Y Shu, Raphael
%S The Sixth Workshop on Insights from Negative Results in NLP
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-240-4
%F mondal-etal-2025-language
%X Multilingual large language models (LLMs) aim towards robust natural language understanding across diverse languages, yet their performance significantly degrades on low-resource languages. This work explores whether existing techniques to identify language-specific neurons can be leveraged to enhance cross-lingual task performance of low-resource languages. We conduct detailed experiments covering existing language-specific neuron identification techniques (such as LanguageActivation Probability Entropy and activation probability-based thresholding) andneuron-specific LoRA fine-tuning with models like Llama 3.1 and Mistral Nemo. We find that such neuron-specific interventions are insufficient to yield cross-lingual improvements on downstream tasks (XNLI, XQuAD) in low-resource languages. This study highlights the challenges in achieving cross-lingual generalization and provides critical insights for multilingual LLMs.
%R 10.18653/v1/2025.insights-1.6
%U https://aclanthology.org/2025.insights-1.6/
%U https://doi.org/10.18653/v1/2025.insights-1.6
%P 46-62
Markdown (Informal)
[Language-Specific Neurons Do Not Facilitate Cross-Lingual Transfer](https://aclanthology.org/2025.insights-1.6/) (Mondal et al., insights 2025)
ACL