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Abstract

Motivated by how inflectional morphology is
encoded in modern embeddings, we revisit the
55,271 inflected forms from the 2,000 most
frequent Finnish nouns analyzed by Nikolaev
et al. (2022) using fastText and ask a single
question: where does inflectional morphology
emerge in BERT? For each form, we extract
minimal-context FinBERT vectors from every
layer (1-12) by running each word in isolation
and averaging its WordPiece vectors into a sin-
gle representation. Using the same generating
model as in Nikolaev et al. (2022), we impute
latent vectors for the stem, NUMBER, CASE,
POSSESSIVE, and CLITIC, plus a higher-order
interaction, and evaluate by rank-1 nearest cor-
relation.

Within BERT, accuracy follows an emergence
curve from 67.21% (layer 1) to 86.16%
(layer 12). The error mix shifts with depth: mid-
dle layers show a lower share of CASE errors
but a higher share of NUMBER errors, whereas
the top layer reverses this tendencys; clitic-only
errors are rare throughout. For context, the
fastText ceiling is slightly higher (=89%),
but our focus is the layer-resolved profile in-
side BERT.

The result is a compact, reproducible map of
Finnish noun inflection across the BERT stack,
showing how different inflectional cues become
recoverable at different depths (BERT layers)
under an identical modeling and evaluation
pipeline.

1 Introduction

We take the same 55,271 inflected forms derived
from the 2,000 most frequent Finnish nouns in
Nikolaev et al. (2022) and ask a single question:
where does inflectional morphology emerge in
BERT? Whereas Nikolaev et al. (2022) evaluated
fastText (Bojanowski et al., 2017), we keep the
items and pipeline unchanged but replace the tar-
get space with BERT, treating each BERT layer as a
separate target space.

Nikolaev et al. (2022) introduced the simple idea
we use here: treat each inflected form as a sum of a
few “building blocks”, one vector for the stem (lex-
eme) and one vector for each inflectional feature
(number, case, possessive, clitic), plus optional in-
teraction blocks when features combine. Formally,
a design matrix L says which blocks are “on” for
each form; S holds the gold vectors; and we learn
the block vectors () by solving the linear system
L@ = S (least squares). A predicted form is then
S = LQ, and we score it by checking whether its
nearest neighbour by correlation is the correct gold
vector (“rank-1" accuracy).

Using fastText, Nikolaev et al. (2022) showed
three key facts: adding case gives the first
big jump in accuracy; a numberXcase interac-
tion is required to capture non-additive struc-
ture; and adding the higher-order bundle (num-
ber:case:possessive:clitic) yields the best overall
performance (about 89-92%). We keep the same
items, the same design L, and the same evaluation,
and ask how accuracy, the composition of errors,
and the geometry of the space change across BERT
layers under this identical setup.

Applied layer by layer (each BERT layer as its
own target space), this reused model gives three
concise diagnostics of “emergence”: (i) overall
recoverability (accuracy of S® across layers);
(i1) combination sensitivity (gains from interac-
tion terms at each layer); and (iii) feature fragility
(within-layer error composition by category). To-
gether these yield a layer-resolved map of inflec-
tional morphology in BERT that is directly compa-
rable to the fastText baseline.

For BERT, we extracted minimal-context vectors
from the cased Finnish encoder (Virtanen et al.,
2019; Devlin et al., 2019). For each surface form,
we tokenized it with the FinBERT WordPiece to-
kenizer and constructed the minimal input [CLS]
t1...tx [SEP], where t; are WordPiece segments
(Schuster and Nakajima, 2012) (no additional con-
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text). We then ran a forward pass through the pre-
trained encoder with parameters held fixed (eval-
uation mode; dropout disabled; no fine-tuning) to
obtain layer-wise hidden states, selected a layer
¢ e{1,...,12}, and mean-pooled the layer-¢ vec-
tors over the WordPiece positions, excluding [CLS]
and [SEP]. This yielded one 768-dimensional vec-
tor per form per layer. We did not average across
sentence occurrences. By contrast, a fastText
type vector was a single parameter learned from
all occurrences of a form and, via character n-
grams, effectively summarized corpus-wide us-
age in one vector. Our BERT vectors are usage-
trained in the sense that the encoder’s parameters
were learned from large Finnish text corpora us-
ing self-supervised objectives (masked-language
modeling), so they encode distributional regular-
ities of how forms occur across contexts. At ex-
traction time, however, we supplied no surround-
ing words (only [CLS] wordpieces [SEP]) and
mean-pooled a chosen layer over the wordpieces.
The resulting vectors are deterministic, type-like
summaries that reflect the model’s usage-trained
knowledge without being conditioned on any spe-
cific sentence. We adopted this minimal-context
setting to localize where inflectional cues resided
across layers while holding items and evaluation
fixed. Averaging BERT token vectors over many
sentences would have made them more fastText-
like as type proxies, but it would have introduced
corpus/sense sampling choices and mixed context
effects with layer effects; we therefore intended our
results to be read as a layer-resolved probe of mor-
phology in BERT, not as an equivalence between
minimal-context BERT and a context average.

2 Results

2.1 fastText vs. BERT as target spaces

Table 1 reports fastText alongside BERT results
taken from the fop (12th) layer. The qualitative
pattern replicates across spaces: starting from stem-
only, adding case to the main-effects model yields
the first substantial gain (33.01% for BERT,;—12;
35.7% for fastText); adding the numberxcase
interaction improves further; and the four-way bun-
dle (number:case:possessive:clitic) reaches the ceil-
ing. The top-layer BERT ceiling is modestly lower
than fastText (86.16% vs. 89%).

Table 2 contrasts error types (share of all errors).
Relative to fastText, BERT (top, 12th layer) shows
more case errors (35.3% vs. 3.7%), more lexeme

Model fastText BERT
Stem only 3.6 3.62

Stem + Number 7.0 7.45

Stem + Case 35.7 33.01
Stem + Number + Case + Poss + Clitic 75.6 75.13
+ Number:Case 82.4 81.87
+ Number:Case:Poss:Clitic 89.0 86.16

Table 1: Accuracies (%) of generating models: fastText
(Nikolaev et al., 2022) vs. BERT (top, 12th layer; this
study). Evaluation by best correlation with gold targets.

Error category fastText BERT
Case 3.7% 35.3%
Lexeme (stem exchange) 16.5% 22.4%
Number 9.9% 17.5%
Overabundance 7.5% 11.4%
Possessive 4.3% 4.6%

Clitic (alone) 6.4% 0.48%

Table 2: Top error categories (share of all errors): fast-
Text (Nikolaev et al., 2022) vs. BERT (top, 12th layer;
this study)

exchanges (22.4% vs. 16.5%), and more number
errors (17.5% vs. 9.9%), while reducing clitic-only
errors (0.48% vs. 6.4%). Overabundance occupies
a larger fraction for BERT (11.4% vs. 7.5%); exclud-
ing these raises BERT from 86.16% to ~87.7% and
fastText to ~92%.

Both spaces reward the same interaction struc-
ture, supporting interaction-rich inflectional seman-
tics. BERT’s lower ceiling is driven by case/number
confusions and more lexeme swaps, suggesting
softer neighborhoods. Conversely, clitic-only er-
rors are rarer with BERT, consistent with contextual
localization of discourse particles.

2.2 Unsupervised structure of BERT noun
embeddings

We visualized BERT embeddings (top, 12th layer)
with t-SNE, coloring by case, number, possessive,
and clitic (Figures 1-2). t-SNE preserves local
neighborhoods rather than global axes.

Case yields visible macro-organization with
semi-separated islands (e.g., locatives, PAR, GEN),
but with broad overlap and diffuse borders, consis-
tent with the need for interactions and residual case
confusions.

Singular/plural show interdigitated strata with
small pockets of separation; number is salient lo-
cally, but boundaries are porous.

Possessive marking forms localized patches (no-
tably 2SG, 3SG), shaping local neighborhoods with-
out dominating the global layout.

Clitic-bearing forms occupy small, compact pe-
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Figure 1: t-SNEs of BERT (top, 12th layer) noun embed-
dings: case (left) and number (right).

Figure 2: t-SNEs of BERT (top, 12th layer) noun embed-
dings: possessive (left) and clitic (right).

ripheral clusters; presence is encoded sharply when
it occurs but is globally sparse, matching the low
rate of clitic-only errors.

2.3 Layer-wise results for BERT noun
embeddings

We evaluated the full generating model (main ef-
fects for stem, number, case, possessive, clitic, plus
the number:case:possessive:clitic interaction) sep-
arately for each FinBERT layer ¢ € {1,...,12}
using the same inventory of 55,271 forms and the
same evaluation protocol (rank-1 nearest correla-
tion) as in Nikolaev et al., 2022.

Figure 3 summarizes the layer-wise accuracies.
Accuracy rises steeply from the lowest layers to
layer 4 and then varies within a narrow band until
the top layer: L1 67.21%, L2 76.02%, L3 82.77%,
L4 84.23%, L5 83.90%, L6 83.45%, L7 83.44%,
L8 81.27%, L9 81.57%, L10 82.46%, L11 82.56%,
and 12 86.16%. The best performance is at the
top (12th) layer.

Figure 4 reports, for each layer, the within-layer
composition of errors (shares summing to 100%).
Clitic-related errors are rare at all depths, and over-
abundance contributes a stable minority of the error
mass. The relative weighting of CASE and NUM-
BER varies with depth: compared to the top layer,
several middle layers show a lower share of CASE
errors and a higher share of NUMBER errors. Fig-
ure 5 makes this explicit by plotting, for each layer,
the log-odds difference in the share of CASE and
NUMBER errors relative to layer 12.
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Figure 3: Accuracy by BERT layer (full model).
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Figure 4: Within-layer error composition (shares sum
to 100%) across layers 1-12.

3 Discussion

Using a fixed generating model, we find a
Case—Number dissociation across BERT’s depth:
mid layers best support CASE (a lower share of
case errors), the top layer best supports NUMBER
(highest overall accuracy with a lower share of
number errors), while fastText yields crisper case
geometry and a slightly higher ceiling. We cast the
comparison in layered terms (treating each Fin-
BERT layer as its own target space) to ask where
in the stack inflectional cues become recoverable.
Two results are stable across all settings. First,
inflectional meaning is distributed and interaction-
rich: adding case to stem features yields the first
major improvement, the number x case interaction
adds a further jump, and a higher-order bundle
(number:case:possessive:clitic) reaches the ceiling.
Second, representation design and depth determine
which cues are easiest to recover.

In our setup, fastText remains a morphology-
forward baseline: character n-grams overlap suf-
fixal material and produce crisp case geometry
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Figure 5: Log-odds difference in error share for CASE
and NUMBER relative to layer 12 (95% Cls).

with a slightly higher ceiling. By contrast, our
BERT targets are usage-trained but extracted with
minimal context, and the layerwise pattern aligns
with Booij’s distinction between inherent vs. con-
textual inflection (Booij, 2012): NUMBER is in-
herently chosen (a lexical-semantic property of
the noun phrase), whereas CASE is typically con-
textually assigned by government or agreement (a
dependency with verbs, adpositions, or nominal
heads). Without sentence context at extraction,
case cues must be recovered from priors learned
in pretraining. This helps explain the graded disso-
ciation we observe: several middle layers (where
morpho-syntactic regularities are strongest) show
a lower share of CASE errors but a higher share
of NUMBER errors, while the top (12th) layer
(where broader lexico-semantic structure domi-
nates) yields the best overall accuracy yet con-
tributes a relatively larger share of residual CASE
errors and fewer NUMBER errors. Clitic-only errors
are rare at all depths, and possessive contributes a
small, stable portion of the error mass.

A further depth effect concerns LEXEME-swap
errors (predicting the right slot of the wrong
lemma): these are small low in the stack but in-
crease toward the top, consistent with a shift from
form-anchored identity to lexico-semantic attrac-
tion as depth grows. This pattern fits with evi-
dence that segmentation choices condition what
morphology is recoverable in Transformer spaces:
morphology-aware segmentations can improve per-
formance and invite a dual-route view in which
models sometimes store whole forms and some-
times compose them from parts (Hofmann et al.,
2021). In our setting we kept WordPiece fixed
and used minimal context, so the layerwise curves

should be read as localizing priors learned in pre-
training (not sentence-conditioned assignment at
test time). Two concrete predictions follow for fu-
ture work: averaging token vectors over diverse
sentence contexts should attenuate lexeme compe-
tition, and adopting morpheme-aligned segmenta-
tion for Finnish should sharpen case recoverabil-
ity. A Finnish-specific caveat is that pervasive
consonant gradation and stem allomorphy mean
that strictly morpheme-boundary tokenization can
hide useful boundary-spanning cues: the very sub-
strings that fastText’s character n-grams exploit
and that BERT may capture through sequences of
WordPieces. We therefore expect hybrid inter-
ventions (morpheme-aligned units plus boundary-
spanning character features, or explicit modeling
of gradation/allomorphy) to outperform a purely
morpheme-segmented vocabulary. The present
layer-resolved map provides the baseline against
which these Finnish-specific design choices can be
measured.
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