@inproceedings{krasitskii-etal-2025-hybrid,
title = "A Hybrid Multilingual Approach to Sentiment Analysis for {U}ralic and Low-Resource Languages: Combining Extractive and Abstractive Techniques",
author = "Krasitskii, Mikhail and
Kolesnikova, Olga and
Sidorov, Grigori and
Gelbukh, Alexander",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
Rie{\ss}ler, Michael and
Morooka, Eiaki V. and
Kharlashkin, Lev},
booktitle = "Proceedings of the 10th International Workshop on Computational Linguistics for Uralic Languages",
month = dec,
year = "2025",
address = "Joensuu, Finland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwclul-1.5/",
pages = "29--38",
ISBN = "979-8-89176-360-9",
abstract = "This paper introduces a novel hybrid architecture for multilingual sentiment analysis specifically designed for morphologically complex Uralic languages. Our approach synergistically combines extractive and abstractive summarization with specialized morphological processing for agglutinative structures. The proposed model integrates dynamic thresholding mechanisms and culturally-aware attention layers, achieving statistically significant improvements of 12{\%} accuracy for Uralic languages (p {\ensuremath{<}} 0.01) while outperforming state-of-the-art alternatives in summarization quality (ROUGE 1: 0.60 vs. 0.52). Key innovations include language-specific stemmers for Finno-Ugric languages and cross-Uralic transfer learning, yielding 15.7{\%} improvement in recall while maintaining 98.2{\%} precision. Comprehensive evaluations across multiple datasets demonstrate consistent superiority over contemporary baselines, with particular emphasis on addressing Uralic language processing challenges."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="krasitskii-etal-2025-hybrid">
<titleInfo>
<title>A Hybrid Multilingual Approach to Sentiment Analysis for Uralic and Low-Resource Languages: Combining Extractive and Abstractive Techniques</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mikhail</namePart>
<namePart type="family">Krasitskii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Kolesnikova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grigori</namePart>
<namePart type="family">Sidorov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Gelbukh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th International Workshop on Computational Linguistics for Uralic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Rießler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eiaki</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Morooka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lev</namePart>
<namePart type="family">Kharlashkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Joensuu, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-360-9</identifier>
</relatedItem>
<abstract>This paper introduces a novel hybrid architecture for multilingual sentiment analysis specifically designed for morphologically complex Uralic languages. Our approach synergistically combines extractive and abstractive summarization with specialized morphological processing for agglutinative structures. The proposed model integrates dynamic thresholding mechanisms and culturally-aware attention layers, achieving statistically significant improvements of 12% accuracy for Uralic languages (p \ensuremath< 0.01) while outperforming state-of-the-art alternatives in summarization quality (ROUGE 1: 0.60 vs. 0.52). Key innovations include language-specific stemmers for Finno-Ugric languages and cross-Uralic transfer learning, yielding 15.7% improvement in recall while maintaining 98.2% precision. Comprehensive evaluations across multiple datasets demonstrate consistent superiority over contemporary baselines, with particular emphasis on addressing Uralic language processing challenges.</abstract>
<identifier type="citekey">krasitskii-etal-2025-hybrid</identifier>
<location>
<url>https://aclanthology.org/2025.iwclul-1.5/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>29</start>
<end>38</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Hybrid Multilingual Approach to Sentiment Analysis for Uralic and Low-Resource Languages: Combining Extractive and Abstractive Techniques
%A Krasitskii, Mikhail
%A Kolesnikova, Olga
%A Sidorov, Grigori
%A Gelbukh, Alexander
%Y Hämäläinen, Mika
%Y Rießler, Michael
%Y Morooka, Eiaki V.
%Y Kharlashkin, Lev
%S Proceedings of the 10th International Workshop on Computational Linguistics for Uralic Languages
%D 2025
%8 December
%I Association for Computational Linguistics
%C Joensuu, Finland
%@ 979-8-89176-360-9
%F krasitskii-etal-2025-hybrid
%X This paper introduces a novel hybrid architecture for multilingual sentiment analysis specifically designed for morphologically complex Uralic languages. Our approach synergistically combines extractive and abstractive summarization with specialized morphological processing for agglutinative structures. The proposed model integrates dynamic thresholding mechanisms and culturally-aware attention layers, achieving statistically significant improvements of 12% accuracy for Uralic languages (p \ensuremath< 0.01) while outperforming state-of-the-art alternatives in summarization quality (ROUGE 1: 0.60 vs. 0.52). Key innovations include language-specific stemmers for Finno-Ugric languages and cross-Uralic transfer learning, yielding 15.7% improvement in recall while maintaining 98.2% precision. Comprehensive evaluations across multiple datasets demonstrate consistent superiority over contemporary baselines, with particular emphasis on addressing Uralic language processing challenges.
%U https://aclanthology.org/2025.iwclul-1.5/
%P 29-38
Markdown (Informal)
[A Hybrid Multilingual Approach to Sentiment Analysis for Uralic and Low-Resource Languages: Combining Extractive and Abstractive Techniques](https://aclanthology.org/2025.iwclul-1.5/) (Krasitskii et al., IWCLUL 2025)
ACL