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Abstract

An understanding of natural language correc-
tions is essential for artificial agents that are
meant to collaborate and converse with hu-
mans. We present some preliminary experi-
ments using language-to-action models investi-
gating whether discourse structure, in particular
CORRECTION relations, improves the action
prediction capabilities of language-to-action
models for simple block world tasks. We focus
on scenarios in which a model must correct a
previous action, and present a corpus of syn-
thetic dialogues to help explain model perfor-
mance.

1 Introduction

In order to successfully complete a shared task,
such as building a block structure in a shared envi-
ronment, participants must accumulate a body of
shared information about the goal of the task, the
changing state of play, and their beliefs and inten-
tions, collectively referred to as common ground
(Clark, 1996). Errors are integral to the process
of building common ground, as participants natu-
rally explore and test their strategies through trial
and error (Thomaz et al., 2019). When natural
language is among the modes of communication
available to participants, corrective speech acts pro-
vide an efficient and information-rich mechanism
with which they can identify and quickly resolve
errors (Benotti and Blackburn, 2021). For artifi-
cial agents that can collaborate with humans using
natural language, the ability to understand and use
corrections is essential.

While most speech acts entail a monotonic up-
date of the common ground (elaborations or ac-
knowledgments, for example), a correction entails
a revision to the common ground, and is an exam-
ple of a divergent speech act (Asher and Lascarides,
2003). An agent that understands corrections must:

Action α

Instruction β

Action γ

CORRECTION(α, β)

CORRECTION(α, γ)

RESULT(β, γ)

Figure 1: A Correction Triangle is formed by two
CORRECTION relations and a RESULT relation, and
appears in dialogues where an initial correction to an
action results in a new action.

1. Recognize an utterance as an instance of a
divergent speech act.

2. Determine the content of the correction by
identifying the parts of the previous dialogue
and/or shared environment it refers to.

3. Revise the common ground according to 1
and 2, and make any required changes to the
shared environment.

The Minecraft Dialogue Corpus (MDC)
(Narayan-Chen et al., 2019) features interactions
in which two humans, playing the roles of Builder
and Architect, collaborate to construct block struc-
tures in a simulated 3D environment. Architect
and Builder communicate via chat window, where
Architect describes the structure to Builder, who
may then place and remove blocks on the grid.
The MDC provides paradigmatic examples of
collaborative conversation situated in a shared
environment, wherein the players’ linguistic
contributions and the non-linguistic Builder
actions are highly interdependent, particularly
when Builder performs an erroneous action which
the Architect must then verbally correct. The
Minecraft Structured Dialogue Corpus (MSDC)
(Thompson et al., 2024b) adds an annotation layer
to the MDC, drawing semantically-typed relations
(Asher and Lascarides, 2003) between player utter-
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ances and actions, which elucidate the overarching
semantic structure—or discourse structure—of the
interaction. In the MSDC, correction scenarios
are captured in substructures called Correction
Triangles: an Architect instruction β stands in the
CORRECTION relation to the previous erroneous
action α, eliciting a new action γ, which is the
RESULT of the Architect correction and also a
CORRECTION of the erroneous action (Figure 1).

The MSDC discourse structures, including Cor-
rection Triangles, were shown to be automatically
retrievable with state-of-the-art accuracy using the
Llamipa discourse parser (Thompson et al., 2024a).
Presumably, an agent utilizing the output of this
parser would have at least a partial understanding
of correction scenarios, since predicting the rela-
tion CORRECTION(α, β), amounts to identifying
utterance α as a correction (”no, I said add a blue
block” (1), and connecting it to the previous con-
text β (Builder places red block) (2). However, the
question we want to address in this paper is whether
an agent can leverage the discourse structure of an
interaction to inform its subsequent manipulation
of the environment. This goes beyond the pars-
ing task: given a dialogue context and its semantic
structure, including CORRECTION(α, β), we want
to know whether the presence of the structure im-
proves agent predictions of the action sequence γ
that would appropriately complete the Triangle.

In what follows, we briefly discuss current work
relevant to our question. We then describe the
language-to-action model that will serve as our
agent for action prediction experiments using the
MSDC. We explain how our preliminary results
incentivize the creation of synthetic correction di-
alogues, which allow for more tightly controlled
experiments. We then discuss model performance
on synthetic correction dialogues and directions for
future work.

2 Related Work

Previous approaches to building agents that un-
derstand corrections in collaborative tasks differ
with respect to model architectures. Rubavicius
et al. (2024) and Appelgren and Lascarides (2020)
build agent models based on pared down cognitive
architectures for interactive task learning (Laird
et al., 2017), where a corrective utterance generates
symbolically encoded, probabilistically weighted
hypotheses, and is used to update the agent’s be-
lief state and inform an action plan. Alternatively,

Chiyah-Garcia et al. (2024) create a language-to-
action model by fine-tuning a large vision language
model (VLM) on instruction-action pairs from a
block world dataset (Bisk et al., 2016). They aug-
ment the instructions with third position repairs
(Schegloff, 1992), and use masking techniques dur-
ing finetuning to encourage the model to recog-
nize the repair. In our experimental setup, we
also use an LLM-based language-to-action model:
our agent model is based on Nebula (Chaturvedi
et al., 2024), a Llama3 architecture fine-tuned on
the MDC dialogue-to-action corpus. Furthermore,
we use the discourse structure annotations from the
MSDC, which make corrections explicit, whereas
the repairs in Chiyah-Garcia et al. (2024) were un-
marked.

Discourse parsing predicts the semantic relations
that hold between the elementary units of a dia-
logue, and produces a structural representation of
the interaction. The most recent approaches to pars-
ing based on LLMs formulate the structure predic-
tion task as a sequence-to-sequence generation task
(Li et al., 2024), where the parser takes the dialogue
units as input, and outputs the discourse structure
as a sequence of typed tuples. The Llamipa parser
(Thompson et al., 2024b) provides state-of-the-art
results on the MSDC using this approach. Our
agent model uses the Llamipa structure representa-
tion, in which the discourse graph is flattened into a
string of typed tuples, where each tuple represents
a single relation (see Figure 2).

Discourse structure has been used to improve
performance on various downstream tasks. Deva-
tine et al. (2023) leverages discourse information to
predict political orientation of news articles, while
Rennard et al. (2024) uses it to improve extrac-
tive meeting summarization. Sharma et al. (2025)
demonstrate that discourse structure can improve
a model’s performance on mathematical reasoning
tasks. The experiments described in this paper are
the first to use discourse structure to improve action
prediction in situated collaborative tasks.

Finally, data synthesis has been increasingly
used to provide high-quality training data for LLMs
and LLM-based agents (Liu et al., 2024; Shichman
et al., 2024), as well as to perform targeted tests
of LLM knowledge (Wu et al., 2024). Synthetic
data has been shown to be especially helpful in de-
termining which concepts an agent trained on the
MDC’s ambiguous natural language instructions
actually learned (Chaturvedi et al., 2024; Jayan-
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MDC (F1) SynthCorr300 (Accuracy) [Action error/ Site error]

All relations Correction Overall D1 D3 D5

Nebula 0.39 0.57 0.79 [0.18/0.03] 1.00 [0/0] 0.73 [0.07/0.02] 0.64 [0.1/0.02]
Nebulipa 0.37 0.50 0.80 [0.17/0.02] 1.00 [0/0] 0.75 [0.06/0.02] 0.66 [0.1/0.01]
Nebulipa-E 0.37 0.52 0.67 [0.29/0.04] 0.98 [0.01/0] 0.57 [0.12/0.02] 0.46 [0.17/0.01]

Table 1: Performance of the context-aware (Nebula) and structure-aware (Nebulipa) models. Nebulipa-E(mpty)
shows the results of an ablation in which structure is removed from the test samples. Column 1 shows the net
action F1 scores on the MDC test set using all relation types; Column 2 shows F1 calculated on just those MDC
validation samples whose predicted action sequence is mediated by a CORRECTION relation (see Figure 3). For a
full breakdown of MDC splits see Appendix C. Columns 3-6 give the accuracy scores on the 300 synthetic correction
dialogues broken down by the CORRECTION distance.

navar et al., 2025). This work is the first to create
synthetic dialogues with discourse annotations to
test the efficacy of discourse structure in a down-
stream task.

3 A structure-aware language-to-action
model

The Nebula language-to-action model (Chaturvedi
et al., 2024), was trained using the MDC to predict
a Builder action sequence given the previous dia-
logue, and was evaluated using the same net action
F1 metric as the baseline MDC model (Jayannavar
et al., 2020). Given a completed action sequence,
net action F1 is computed on newly placed blocks
that exactly match the color and position of those
in the corresponding gold action sequence. Nebula
leveraged the large context window of the Llama3-
8b architecture (Dubey et al., 2024), which allowed
it to predict an action sequence using the entire
previous dialogue context, resulting in a context-
aware model that doubled the baseline F1 on the
MDC.

In order to see whether the addition of discourse
structure might further improve performance on the
action prediction task, we augmented each MDC
training sample with the gold1 discourse structure
from the MSDC. We formatted the structure as a
sequence of typed tuples, and appended it to the
dialogue context (see Figure 2). Following the Neb-
ula training regime, we finetuned Llama3-8b using
QLoRA (Dettmers et al., 2023) for 3 epochs on
the augmented data (training parameters shown in
Appendix A). The result was Nebulipa, a structure-
aware language-to-action model.

The leftmost column of Table 1 compares the

1Since the purpose of these experiments is to see whether
the inclusion of structure makes any difference at all, we use
the gold annotations. Of course, a fully autonomous agent
would predict actions as well as structure.

net action F1 scores of Nebula and Nebulipa on the
MDC augmented with the full MSDC structures;
i.e., all 17 relation types (Thompson et al., 2024b).
Nebulipa-E (“Nebulipa-Empty”) shows the result
of an ablation in which the structure was removed
from the test samples, in order to provide some fur-
ther indication of whether Nebulipa, trained with
structure, learned to use it. We see that this brute
inclusion of structure hinders rather than improves
model performance, as F1 drops two points. Also,
Nebulipa-E shows no change with respect to Nebu-
lipa. If Nebulipa were using discourse information
for action prediction, we would expect its removal
to result in a drop in F1; yet this result indicates
that, overall, training with structure did not lead to
the model to exploit it.

4 Focusing on Correction Triangles

The preliminary result above shows that includ-
ing full discourse structures, containing many dif-
ferent relation types, does not improve language-
to-action model performance on the MDC action
prediction task. We note that the relational struc-
ture presents each relation uniformly, even though
some types are more informative than others, given
the discourse context. As mentioned in Section 1,
CORRECTIONS describe revisions to the common
ground, and so are often more informative than
other relation types holding between less salient
parts of the context: COMMENT, ACKNOWLEDGE-
MENT, etc.

To test this, we took a subset of MDC samples2

in which the final action sequence to be predicted
by the model is the result of an Architect correction,
i.e. where a CORRECTION relation is critical to the
final prediction (Figure 3). The second column of

2For this test we looked at a subset of the MDC validation
set, 149 of 1051 samples. See Appendix C for a description
of MDC splits.
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Table 1 shows that F1 improves on the subset, but
is still higher for Nebula, thus corroborating the
first result. Further, F1 improves when structure is
removed (Nebulipa-E), suggesting that the addition
of structure hinders performance.

Nevertheless, we maintain that this result must
not be taken as decisive for three reasons. The
first is that the longer dialogue contexts feature a
dense relational structure (with uniform relations,
as just mentioned), presenting the possibility that
the signal provided by more informative relation
types, such as CORRECTION, is greatly diminished;
this is illustrated in Appendix B. Second, the MDC
instructions contain highly context-dependent lan-
guage, rich in anaphora and ellipsis, which often
does not indicate a single correct action sequence.
For example, we see in Figure 3 that Nebulipa
performs the correct net action given the previous
dialogue, but then places additional blocks—yet
there is nothing in the dialogue that prohibits this.
The second reason, already mentioned above, is
that the contexts are long and can be very dense.
Lastly, since the net action F1 metric requires ac-
tion sequences match the exact positions of the gold
sequences, it unjustly discounts actions that are the
result of instructions that are naturally ambiguous,
e.g. put a block in a corner, and thus obscures the
model’s true performance.

Taking these factors into consideration, we de-
termined that a set of short dialogues in simple
correction scenarios, in which we could zero in on
Correction Triangles, would help us more clearly
assess whether structure can be leveraged for action
prediction. To this end, we synthetically generated
SynthCorr300, a set of 300 short dialogues3. In
each dialogue, Architect gives three instructions
for simple shapes, one of which Builder botches,
eliciting a correction in Architect’s final turn (Fig-
ure 2). The shapes are towers and rows, which
Nebula was shown to build with high accuracy
(Chaturvedi et al., 2024), as well as single blocks,
which Nebula was able to place and remove on
rows and towers already present on the grid. For
each instruction, a shape and its parameters were
chosen randomly: one of six possible colors and
a size (for towers and rows) of 3, 4, or 5 blocks.
Repeated colors, shapes, or sizes occurs in a major-
ity of the dialogues (Table 2), however, each shape
is disambiguated by its location descriptor (centre,

3The SynthCorr300 data, and the code used to gen-
erate it, are available at https://huggingface.co/
datasets/linagora/synthetic_corrections

Figure 2: A SynthCorr300 dialogue example in which
the given CORRECTION connects the Architect at turn
8 with the Builder error at turn 3, and so is of dis-
tance 5 (D5). NB: the SynthCorr300 dialogues use
the Llamipa structure representation (Thompson et al.,
2024a), where the relations are typed tuples appended
after the dialogue in a “Structure” field.

corner edge). To botch an instruction for a tower or
row, we randomly chose whether to remove or add
(+1 or -1) a single block from the number of blocks
given by Architect. For single block placement in-
structions, we changed the color of the block given
by Architect by randomly choosing from the five
remaining colors.

We generated 100 dialogues for each of the three
possibilities for Builder error: after the first, sec-
ond, or third instruction. We also generated the
discourse structure, which was identical for each
dialogue except for the first relation of the Cor-
rection Triangle CORRECTION(α, β). This latter
varied with the position of the error, e.g. if it was
after the first instruction, the CORRECTION would
reach farther back into the dialogue context (dis-
tance 5) than it would if it was after the second
(distance 3) or third (distance 1) instruction.

SynthCorr300 tests whether a model can accu-
rately produce the action sequence γ which would
effectively complete the Correction Triangle, and
whether the addition of discourse structure im-
proves its performance. The correct action se-
quence for each dialogue is clearly defined and
can be checked automatically.
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Figure 3: MDC sample where the predicted sequence
is the RESULT of Architect CORRECTION in 65 and a
CORRECTION of the action sequence in 63.
NB: to conserve space we truncated the dialogue context of
this sample, shown in full in Appendix B.

D1 D3 D5 All
No ambiguity 17 12 13 42
Color only 7 11 9 27
Shape only 41 39 43 123
Color and shape 35 38 35 108

Table 2: Sample counts by relation distance D between
the CORRECTION source and target, and ambiguity type:
Color only: shapes are all different, but colors are re-
peated; Shape only: colors are different but shapes are
repeated.

5 Results

There was only a one-point difference between
Nebula and Nebulipa on SynthCorr300 (Table 1),
but unlike on MDC tests, Nebulipa was in the
superior position. Furthermore, Nebulipa-E ab-
lation conformed to previous expectations: accu-
racy dropped substantially when the structure was
removed, indicating that a model trained with struc-
ture does learn to leverage it. When we look at
the performance by CORRECTION distance, we see
that the pattern holds at longer distances, although
performance degraded for all models as distance
increased, which is unsurprising given that the ma-
jority of CORRECTIONS in the MSDC training data
(∼ 70%) are of distance 3 or less.

To consider another angle of comparison, we
looked at two ways in which models failed to gen-
erate the correct action sequences. Action errors
occurred when the model correctly identified the
shape to be changed (after the first, second, or third
instruction), but did not perform the correct actions
to do so. Site errors occurred when the model
changed a shape that was not indicated by the COR-
RECTION, misidentifying the botched sequence.

Returning to the discussion in Section 1 of what is
in involved in understanding corrections, we can
roughly align Site errors with the failure to identify
what portion the previous dialogue the CORREC-
TION refers to (2), e.g. which instruction. We can
align Action errors with the failure to properly re-
vise the common ground (3), e.g. to perform the
correct block placements and removals.

Table 1 gives action errors and site errors as a
proportion of total samples. There was little differ-
ence in error rates between Nebula and Nebulipa,
although with Nebulipa-E we saw an increase in
Action errors. Since a CORRECTION representation
Corr(x,y) effectively acts as a pointer to the botched
sequence x, we would expect an increase in Site er-
rors once the pointer was taken away. Instead, there
was a greater incidence of Action errors. While the
SynthCorr300 data is too small to support conclu-
sions on the relationship between error types, the
preliminary indication here is that the CORREC-
TION relations are not used to pick out the error
site (perhaps the model can already do this using
linguistic context) but rather to provide important
semantic information about what the model is sup-
posed to do at the site. For instance, it is possible
the Architect utterance “The tower ... should be 3
blocks.” might only lead to model to correctly infer
the correct actions (i.e., remove one block from the
tower) when combined with a semantic marker for
CORRECTION. Possible future work might thus
involve varying the synthetic dialogues by replac-
ing the final CORRECTIONS with a different but
coherent relation type such as ELABORATION, and
testing for changes in Action errors.

6 Conclusion

In this paper we broach a question in discourse that
has gotten relatively little attention—can discourse
structure guide action predictions?—and explore
a particular LLM-based approach for an initial in-
vestigation. The results of our synthetic dialogue
experiments showed that, overall, access to large
contexts overrides the effects of adding explicit dis-
course representations. However, there was some
indication that models trained with structure did
learn to exploit CORRECTIONS, using them to cor-
rect relevant parts of the discourse context with
higher accuracy. In future work, we will enlarge
the synthetic data in order to further investigate the
action error results, as well as consider more varied
correction scenarios.
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7 Limitations

This work explores the role of discourse structure
in conversational instruction following scenarios
where the agent’s goal is to perform the correct
action sequences in a shared environment. It only
considers one instantiation of such a scenario, in
which the agent builds block structures on a 3D
grid. The experimental results are obtained using
agent models based on generative LLMs, where
the discourse structure is represented as a string
of typed tuples, and appended after the dialogue
text in the model inputs. Certainly there are other
ways to represent and feed structure into the agent
model—or perhaps to integrate structural informa-
tion into the model architecture rather than the data
inputs—as well as other model architectures which
would be worth exploring, such as graph neural
networks. The synthetic data generated is small,
and covers only a portion of the variation possible
in correction dialogues with respect to the source
and complexity of the Builder action errors, and to
the referential ambiguity of correction language.
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2023. An integrated approach for political bias pre-
diction and explanation based on discursive structure.
In Findings of the Association for Computational
Linguistics (EACL 2023), pages 11196–11211. ACL:
Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The Llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Prashant Jayannavar, Anjali Narayan-Chen, and Julia
Hockenmaier. 2020. Learning to execute instructions
in a Minecraft dialogue. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2589–2602, Online. Association
for Computational Linguistics.

Prashant Jayannavar, Liliang Ren, Marisa Hudspeth,
Charlotte Lambert, Ariel Cordes, Elizabeth Kaplan,
Anjali Narayan-Chen, and Julia Hockenmaier. 2025.
Bap v2: An enhanced task framework for instruction
following in minecraft dialogues. arXiv preprint
arXiv:2501.10836.

John E Laird, Kevin Gluck, John Anderson, Kenneth D
Forbus, Odest Chadwicke Jenkins, Christian Lebiere,
Dario Salvucci, Matthias Scheutz, Andrea Thomaz,

171

https://doi.org/10.18653/v1/2021.eacl-main.41
https://doi.org/10.18653/v1/2021.eacl-main.41
https://aclanthology.org/2024.findings-emnlp.374
https://aclanthology.org/2024.findings-emnlp.374
https://doi.org/10.18653/v1/2024.emnlp-main.643
https://doi.org/10.18653/v1/2024.emnlp-main.643
https://doi.org/10.18653/v1/2024.emnlp-main.643
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://www.aclweb.org/anthology/2020.acl-main.232
https://www.aclweb.org/anthology/2020.acl-main.232


Greg Trafton, et al. 2017. Interactive task learning.
IEEE Intelligent Systems, 32(4):6–21.

Chuyuan Li, Yuwei Yin, and Giuseppe Carenini.
2024. Dialogue discourse parsing as generation: A
sequence-to-sequence LLM-based approach. In Pro-
ceedings of the 25th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
1–14, Kyoto, Japan. Association for Computational
Linguistics.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
Yang, Denny Zhou, et al. 2024. Best practices and
lessons learned on synthetic data. arXiv preprint
arXiv:2404.07503.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
Minecraft. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5405–5415, Florence, Italy. Association for
Computational Linguistics.

Virgile Rennard, Guokan Shang, Michalis Vazirgiannis,
and Julie Hunter. 2024. Leveraging discourse struc-
ture for extractive meeting summarization. arXiv
preprint arXiv:2405.11055.

Rimvydas Rubavicius, Peter David Fagan, Alex Las-
carides, and Subramanian Ramamoorthy. 2024. Se-
cure: Semantics-aware embodied conversation un-
der unawareness for lifelong robot learning. arXiv
preprint arXiv:2409.17755.

Emanuel A Schegloff. 1992. Repair after next turn: The
last structurally provided defense of intersubjectiv-
ity in conversation. American journal of sociology,
97(5):1295–1345.

Krish Sharma, Niyar R Barman, Akshay Chaturvedi,
and Nicholas Asher. 2025. Dimsum: Discourse in
mathematical reasoning as a supervision module.

Mollie Frances Shichman, Claire Bonial, Taylor A. Hud-
son, Austin Blodgett, Francis Ferraro, and Rachel
Rudinger. 2024. PropBank-powered data creation:
Utilizing sense-role labelling to generate disaster sce-
nario data. In Proceedings of the Fifth International
Workshop on Designing Meaning Representations
@ LREC-COLING 2024, pages 1–10, Torino, Italia.
ELRA and ICCL.

Andrea L Thomaz, Elena Lieven, Maya Cakmak,
Joyce Y Chai, Simon Garrod, Wayne D Gray,
Stephen C Levinson, Ana Paiva, and Nele Russ-
winkel. 2019. Interaction for task instruction and
learning. In Interactive task learning: Humans,
robots, and agents acquiring new tasks through natu-
ral interactions, pages 91–110. MIT Press.

Kate Thompson, Akshay Chaturvedi, Julie Hunter, and
Nicholas Asher. 2024a. Llamipa: An incremental
discourse parser. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
6418–6430, Miami, Florida, USA. Association for
Computational Linguistics.

Kate Thompson, Julie Hunter, and Nicholas Asher.
2024b. Discourse structure for the Minecraft cor-
pus. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 4957–4967, Torino, Italia. ELRA and ICCL.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
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A Model Parameters

GPUs

4 NVIDIA Volta V100

Hyperparameters

Training epochs 3
batch size 4
optimizer Adam
learning rate 2e-4

learning rate scheduler linear warm-up and
cosine annealing

warm-up ratio 0.03
gradient clipping 0.3
lora r 64
lora (alpha) 16
lora dropout ratio 0.1

lora target modules Only Attention Blocks
(q proj, v proj)

quantization for Llama3 4-bit NormalFloat

Table 3: Details on computing resources and hyperpa-
rameters for finetuning Llamipa.

Table 3 gives the hyperparameters used for fine-
tuning Nebula and Nebulipa, along with the com-
puting resources. We adapt the finetuning code
from the following repository4.

4https://github.com/mlabonne/
llm-course/blob/main/Fine_tune_Llama_
2_in_Google_Colab.ipynb

B MDC sample

Figure 4: MDC sample where the predicted sequence
is the RESULT of Architect CORRECTION in 65 and a
CORRECTION of the action sequence in 63. The full
discourse structure is given with CORRECTIONS high-
lighted. The Correction Triangles are superimposed on
the context for reference.
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C MDC data

MDC test MDC validation

# samples F1 # samples F1 # Correction samples F1

Nebula 1615 0.39 1335 0.39 149 0.57
Nebulipa 1471 0.37 1194 0.355 149 0.50
Nebulipa-E 1471 0.37 1194 0.363 149 0.52

Table 4: Number of samples and model F1 for the MDC test and validation splits. The Correction set discussed in
Section 4 is a subset of the validation set.

The Nebula language-to-action model predicts Builder actions given the entire previous dialogue
context. We prepared the MDC dialogues for training and testing Nebula by dividing it into dialogue-
action pairs. Thus the number of data samples in a split is equal to the total number of Builder actions
across all dialogues in that split. The 100 validation dialogues contain 1335 action sequences, and the 101
test dialogues contain 1615 action sequences—the dialogues in test were on average longer (had greater
number of utterances) than those in validation (Thompson et al., 2024b).

The MSDC 5 provides complete dialogue structure annotations for all MDC dialogues. Adding structure
from the MSDC to the MDC samples for Nebulipa training was not straightforward. During the MSDC
annotation campaign, some of the Builder action sequences were fused together into Complex Discourse
Units (see Figure 1 in Thompson et al. (2024b)), which lead to a reduction in the overall number of
separate action sequences, as can be seen in Table 4. When the action sequences were combined, the
dialogue moves between them also shifted. As a result, the MDC data used for Nebulipa is not identical
to the data used for Nebula (ignoring the addition of structure to the Nebulipa data). However, the overlap
between them is large enough to warrant their comparison: 116 of the 1194 ( ∼ 9%) samples in the
Nebulipa validation set were not present in the Nebula set, and 99 out of 1471 ( ∼ 7%) of samples in the
test set.

In Section 4 we isolated the samples in the validation set where the action sequence to be predicted was
the target of a CORRECTION relation. There were 182 such samples in the Nebulipa data, but only 149 of
these were also present in the Nebula data.

5https://huggingface.co/datasets/linagora/MinecraftStructuredDialogueCorpus
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