
Proceedings of the 16th International Conference on Computational Semantics, pages 189–207
September 22-23, 2025, Licensed under the Creative Commons Attribution 4.0 International License

Computational Semantics Tools for Glue Semantics

Mark-Matthias Zymla
University of Konstanz
mark-matthias.zymla
@uni-konstanz.de

Mary Dalrymple
University of Oxford
mary.dalrymple

@ling-phil.ox.ac.uk

Agnieszka Patejuk
Institute of Computer Science
Polish Academy of Sciences

aep@ipipan.waw.pl

Abstract

This paper introduces a suite of computational
semantic tools for Glue Semantics, an approach
to compositionality developed in the context of
Lexical Functional Grammar (LFG), but appli-
cable to a variety of syntactic representations,
including Universal Dependencies (UD). The
three tools are: 1) a Glue Semantics prover, 2)
an interface between this prover and a platform
for implementing LFG grammars, and 3) a sys-
tem to rewrite and add semantic annotations to
LFG and UD syntactic analyses, with a native
support for the prover. The main use of these
tools is computational verification of theoreti-
cal linguistic analyses, but they have also been
used for teaching formal semantic concepts.

1 Introduction

This paper introduces a suite of tools related to
Glue Semantics (Dalrymple 1999, Asudeh 2022,
2023), an approach to compositionality based on
the idea of resource sensitivity, for a wider com-
putational semantic audience.1 On this approach,
the compositional process is not necessarily de-
termined directly by phrasal constituency (as in,
for example, Heim and Kratzer 1998), but is rather
guided by pairing (partial) semantic representations
with linear logic formulas referring to parts of syn-
tactic representations. While Glue Semantics has
been most extensively applied in the context of
Lexical Functional Grammar (LFG; Kaplan and
Bresnan 1982, Bresnan et al. 2015, Dalrymple et al.
2019, Dalrymple 2023), it has also been success-
fully combined with other syntactic formalisms,
including Universal Dependencies (e.g., Gotham
and Haug 2018), Lexicalized Tree Adjoining Gram-
mar (Frank and van Genabith 2001), Head-driven
Phrase Structure Grammar (Asudeh and Crouch

1Early versions of two of these tools have been presented
LFG-internally, the third is presented here for the first time.

2002), and Minimalism (Gotham 2018). It is com-
patible with various formal meaning representa-
tions, including predicate logic with lambdas and
DRT (Kamp and Reyle 1993).

Within LFG, computational research evolves
around the Xerox Linguistics environment (XLE;
Crouch et al. 2017), a platform that has been pri-
marily tailored towards the modeling of syntax.
Although XLE grammars are being developed all
across the world, the investigation of semantic is-
sues in LFG from a computational perspective re-
ceived impetus with the introduction of an early
version of the Glue Semantics Workbench (GSWB;
Meßmer and Zymla 2018).2 This paper presents
new contributions to GSWB and two recently de-
veloped resources that make use of it.3

The central resource presented in this paper is
the Glue Semantics Workbench (GSWB), a modu-
lar system for calculating Glue Semantics (hence-
forth, Glue) proofs. It provides three different Glue
provers and is designed to permit the implementa-
tion of additional provers based on varying linear
logic fragments and meaning languages (e.g., pred-
icate logic with lambdas, DRT, etc.).

The second tool, XLE+Glue, implements an in-
terface between GSWB and XLE.4 This tool allows
users to specify semantic contributions of lexical
items and syntactic rules in XLE grammars, which
can then be fed into GSWB for semantic calcula-
tion. The system has been mainly developed to
explore what is called a “co-descriptive approach”
to Glue (explained in §2.2). XLE+Glue also il-
lustrates the possibility of GSWB to work with
different meaning languages.

2Earlier works in computational semantics related to LFG
include Asher and Wada 1988, Crouch 2005, Crouch and King
2006, Bobrow et al. 2007, Lev 2007.

3See §3 for links to Github repositories of these resources.
4The original idea is presented in Dalrymple et al. 2020.

This paper presents further developments.

189

https://creativecommons.org/licenses/by/4.0/

The third tool presented in this paper is a sys-
tem for linguistic graph expansion and rewriting
(LiGER). It is inspired by the original XLE transfer
system, which was initially used for machine trans-
lation (Frank 1999) and later mainly for semantic
parsing (Crouch 2005, Crouch and King 2006), but
also as a full-fledged reasoning engine (Bobrow
et al. 2007), indicating its versatility. LiGER has
been developed because the original transfer com-
ponent of XLE is no longer supported by XLE.
Like the original transfer system, LiGER can be
used to enrich XLE analyses with information from
other linguistic resources. With respect to semantic
analysis, it provides the possibility of exploring the
second major approach to deriving Glue represen-
tations, “description-by-analysis” (see §2.2), and
thus complements XLE+Glue.

Overall, the tools presented here allow re-
searchers to experiment with different settings
within the Glue framework, including the choice
of a suitable linear logic fragment, the choice of
meaning language, and the choice of co-description
vs. description-by-analysis approaches to deriving
meaning representations. The goal of this paper is
to illustrate the capabilities of these tools and how
they can be used for verifying theoretical analyses
and for exploring formal semantic concepts. Sec-
tion 2 explains the LFG architecture, focusing on
two aspects: the projection structure and Glue. Sec-
tion 3 describes the three tools in more detail, while
§4 mentions some use cases. Section 5 concludes.

2 Background

Within the LFG community, the development of
XLE grammars, as well as associated resources
such as treebanks, is carried out mainly in the
scope of the Parallel Grammar (ParGram) project
(Butt et al. 2002, Sulger et al. 2013). Such gram-
mars have been developed for a wide variety of
typologically diverse languages, demonstrating the
cross-linguistic and formal validity of LFG’s (mor-
pho)syntactic component.5 The work presented in
this paper aims to facilitate extending such syntac-

5Some of the grammars that are publicly available for test-
ing via INESS (https://clarino.uib.no/iness/xle-web;
Rosén et al. 2012), and some that are not yet publicly available
(in parentheses), are:
(i) Larger grammars for English, German, French, Nor-

wegian, and Polish (as well as Chinese and Japanese)
(ii) Smaller grammars for Georgian, Indonesian, Mala-

gasy, Turkish, Welsh, Wolof, and Urdu (as well as
Greek and Hungarian)

John loves Mary.
(input)

IP

I′

NP

Mary

I

loves

NP

John

(c-structure)




PRED ‘LOVE⟨SUBJ,OBJ⟩’
SUBJ

[
PRED ‘JOHN’

]

OBJ
[

PRED ‘MARY’
]




(f-structure)

π

π
−1

ϕ

ϕ−1

ϕ ◦ π

π −1◦ ϕ −1

Figure 1: LFG correspondence structure as imple-
mented in XLE

tic work to semantics. This section first describes
the underlying concepts of the LFG formalism, and
then the LFG approach to semantics.

2.1 LFG projection architecture
LFG is developed around the idea of mutually con-
straining parallel representations. The two syn-
tactic representations, implemented in XLE, are
c(onstituent)-structure and f(unctional)-structure
(cf. Figure 1). While c-structure encodes the
surface structure in terms of a constituent parse
that preserves linear word order, f-structure en-
codes functional information, primarily grammati-
cal functions and morphosyntactic features, in an
attribute-value matrix. Grammars encode both
structures simultaneously. C-structures are con-
strained by phrase structure rules (as in the first
row in (1)), with categories specified in lexical en-
tries (see “N” in (2)). F-structures are constrained
using functional annotations (usually equations) in
phrase-structure rules and lexical entries.

(1) IP → NP I′

(↑ SUBJ) = ↓ ↑ = ↓
(2) John N (↑ PRED) = ‘JOHN’

This simultaneous specification of two levels is
called local co-description (Bresnan et al. 2015). In
this architecture, the different structures are related
via projection functions. This ensures structural
correspondence between different levels of analysis
and entails mutual accessibility of projections.

Consider Figure 1. The c-structure is generated
from the input via the π-projection – a constituent
parse. The f-structure is specified based on con-
straints that are annotated on c-structure nodes and
specified in the lexicon. The corresponding map-
ping function from c- to f-structure is encoded in
the ϕ-projection. The mapping from the input to

190

https://clarino.uib.no/iness/xle-web

f-structure is a combination of the two projections:
the ϕ ◦ π mapping.6 LFG also assumes an inverse
of each mapping function; while such inverse map-
pings are less often discussed, they play a role in
the possibility of generation, as explored in early
work within XLE.7

The next section discusses two ways of integrat-
ing semantics into the LFG projection architecture.

2.2 Semantics in LFG
Adding any projection that preserves the kind of
bi-directionality described in the previous section
to this framework is a challenge, and this also holds
for the semantic projection. It is beyond the scope
of this paper to delve into all the fine details of se-
mantics in LFG, but we briefly address some of the
main challenges that the tools presented here may
help address. For this purpose, we first provide
a quick introduction to Glue, which is a seman-
tic formalism that has been developed for LFG
but is generally applicable to different linguistic
frameworks, making the present tools interesting
for projects that go beyond LFG as well.

The formalism of Glue is modeled around the
idea of resource sensitivity (Dalrymple 1999). Re-
source management is ensured by the use of a frag-
ment of the resource-sensitive linear logic (Girard
1987) that is paired with a meaning representa-
tion, forming a meaning constructor. Example
(3) shows meaning constructors for all words in
John loves Mary. In this example, each word in
the sentence introduces a single meaning construc-
tor.8 In (3), the meaning representation j of the
subject John is associated with the resource g, the
meaning m of the object Mary is associated with
the resource h, and the more complex meaning of
the verb loves is associated with the linear logic
formula g ⊸ (h ⊸ f). This formula uses the

6The projection structure is usually depicted in linear or-
der on a form-to-meaning mapping (Kaplan 1995, Asudeh
2006); however, to avoid directionality, we present the projec-
tion structure as a (complete) graph, with no order between
nodes since the order might well change depending on specific
processing tasks (Jackendoff 2010).

7Both parsing and generation are in principle undecidable
in LFG and require additional constraints on the formalism to
be made workable (Kaplan and Bresnan 1982). See Wedekind
1988 for early LFG work on generation from a separate se-
mantic structure, i.e., involving an inverse of the mapping
from semantics to the surface string, and Wedekind and Ka-
plan 2020 and Kaplan and Wedekind 2019 for more recent
work. Such work motivates the existence of inverse projection
mappings, and such mappings are assumed in this paper.

8This is not a rule; a word can introduce any number of
meaning constructors, and meaning constructors may also be
introduced by syntactic rules.

linear implication ⊸ to indicate that it requires
the resource in its antecedent to produce the re-
source in its consequent. Thus, by consuming the
subject resource g, we can produce the resource
(h ⊸ f), which in turn consumes the object re-
source h to produce the final result f correspond-
ing to the meaning of the full sentence; see the full
Glue proof in (4). In line with the Curry-Howard
isomorphism (CHI), modus ponens on the linear
logic side corresponds to function application on
the meaning side.

(3) John j : g
Mary m : h
loves λx.λy.love(x, y) : g ⊸ (h ⊸ f)

(4) λx.λy.love(x, y) : g ⊸ (h ⊸ f) j : g

λy.love(j, y) : h ⊸ f m : h

love(j,m) : f

This relation between resource consumption and
semantic composition is the foundation of Glue. As
long as the CHI is preserved, different fragments
of linear logic can be paired with different mean-
ing representations, resulting in two dimensions of
variation.

Additionally, as mentioned above, Glue has been
combined with different syntactic theories, assum-
ing different approaches to the syntax/semantics
interface. In this paper, we briefly discuss the
two main such approaches explored in LFG: co-
description (Kaplan and Wedekind 1993) and de-
scription by analysis (Halvorsen and Kaplan 1988).

In the co-descriptive approach, particular to LFG,
meaning constructors are introduced in lexical en-
tries (and, possibly, grammatical rules), in parallel
with categorical and functional information. This
is illustrated on the left-hand side of Figure 2. The
lexical entries use the ↑-variable to refer to specific
elements in the f-structure. The nominal entries
specify the semantics for the substructures they
contribute (corresponding to g and h at the bottom
of the figure). The inflected verb uses the func-
tional descriptions (↑ SUBJ) and (↑ OBJ) to retrieve
these substructures via their indices to form the
meaning constructor of the verb.

On the other hand, description-by-analysis uses a
fully assembled f-structure as input to derive mean-
ing constructors. This is usually done by rules that
match partial f-structure descriptions and introduce
corresponding meaning constructors; see the right-
hand side of Figure 2. There, #f, #g, and #h are
variables referring to f-structures (see the corre-
sponding f , g, and h at the bottom of Figure 2),

191

co-description:

John N (↑ PRED) = ‘JOHN’
j : ↑

Mary N (↑ PRED) = ‘MARY’
m : ↑

loves I (↑ PRED) = ‘LOVE⟨SUBJ,OBJ⟩’
λx.λy.love(x, y) :

(↑ SUBJ) ⊸ ((↑ OBJ) ⊸ ↑)

description-by-analysis:

#f SUBJ #g PRED %g ==> #g GLUE %g : #g.

#f OBJ #h PRED %h ==> #h GLUE %h : #h.

#f SUBJ #g & #f OBJ #h & #f PRED %f
==> #f GLUE %f : #g -o (#h -o #f).

result (for both approaches):

f




PRED ‘LOVE⟨SUBJ,OBJ⟩’
SUBJ g

[
PRED ‘JOHN’

]

OBJ h
[

PRED ‘MARY’
]




j : g
m : h
λx.λy.love(x, y) : g ⊸ (h ⊸ f)

Figure 2: Co-descriptive lexicon vs. description-by-analysis rules

used as resources in the linear logic side of the in-
troduced meaning constructors, while %f, %g, and
%h refer to the corresponding PRED values and are
used in the meaning sides. The first two rules intro-
duce resources for the subject and the object, while
the rule for the verb specifies the meaning construc-
tor in a way similar to the co-descriptive approach.
This means that both approaches generally map the
same kind of nodes onto meaning constructors as
indicated by the f-structure and the corresponding
instantiated meaning constructors to its right (see
the indices g, h, and f there).

Both co-description and description-by-analysis
are currently in use in theoretical LFG work; it
might well be the case that it is best to combine
the two approaches to deal with different kinds of
semantic phenomena.9 The present tool suite is
designed to allow for this.

2.3 Semantic autonomy
The flexibility in modeling the syntax/semantics
interface is due to one of the key advantages of
Glue Semantics: a high level of semantic auton-
omy (Asudeh 2004). As Figure 2 suggests, seman-
tic composition does not rely on word order – it
relies instead on more general concepts such as
grammatical functions. Furthermore, semantic au-
tonomy provides a purely semantic treatment of
quantification, one that is independent of syntactic
considerations such as, for instance, quantifier rais-
ing (Heim and Kratzer 1998). This is illustrated in
Figure 3 on the basis of quantifier scope ambiguity.
For a more in-depth discussion on quantifier scope,

9It seems that description-by-analysis may be more suit-
able for the semantic interpretation of functional features,
whereas phenomena involving information structure are more
suitably encoded in a co-descriptive fashion (Andrews 2008).

see, e.g., Gotham (2019, 2021), Dalrymple et al.
(1999). Semantic autonomy provides a unique view
on formal semantics that can be explored using the
tools presented in this paper.

2.4 Related work

The tools presented here are inspired by work in
grammar engineering (e.g., Flickinger et al. 2017)
and semantic annotation (e.g., Basile et al. 2012).
There is also some overlap with toolkits such as the
NLTK (Bird et al. 2009). The main difference is
a focus on Glue Semantics and its compositional
properties, as well as its relation to various syn-
tactic approaches, especially LFG and Universal
Dependencies (UD). The present tools have not yet
been employed in large-scale grammar engineering
efforts, but rather at the interface between formal
and computational linguistics to verify analyses
(but see Zymla et al. 2025, Findlay et al. 2023).

3 The tools

The ParGram project provided a cross-
linguistically informed approach to syntactic
and semantic parsing, though the latter was
mostly worked out for English, while concrete
implementations for other languages were of
limited scope. This is largely due to the fact that
the semantics relied heavily on various external re-
sources that were not available cross-linguistically.
Semantic parsing relied on ordered rewriting
rules implemented as part of a transfer system
in XLE (Crouch and King 2006, Bobrow et al.
2007). Another important issue addressed with the
present tools is that the existing transfer system
is neither publicly available nor compatible with
the currently available XLE releases provided by

192

Every monkey likes a banana.

a. λx.λy.like(x, y) :
mσ ⊸ (bσ ⊸ fσ)

b. λP.∀x[monkey(x) → P (x)] :
(mσ ⊸ fσ) ⊸ fσ

c. λQ.∃y[banana(y) ∧ Q(y)] :
(bσ ⊸ fσ) ⊸ fσ

λP.∀x[monkey(x) → P (x)] :
(me ⊸ ft) ⊸ ft

[X : me]
1 λx.λy.like(x, y) :

me ⊸ (be ⊸ ft) ⊸E
λy.like(X, y) : be ⊸ ft

λQ.∃y[banana(y) ∧ Q(y)] :
(be ⊸ ft) ⊸ ft ⊸E∃y[banana(y)∧ like(X, y)] : ft ⊸I,1

λx.∃y[banana(y)∧ like(x, y)] :
me ⊸ ft ⊸E∀x[monkey(x)→ ∃y[banana(y)∧ like(x, y)]] : ft

Figure 3: Quantification in Glue: Quantifier scope falls out naturally from the properties of linear logic, giving
appropriate typings. Implication introduction (lambda abstraction) allows to capture flexible scope configurations
(the alternative reading for this example is shown in Figure 7 in appendix A).

the University of Konstanz.10 The tools described
below are open source and compatible with various
systems, including XLE, and they are designed to
be useful in theoretical linguistic work as well as
in investigation of general issues of integrating
semantics into the LFG projection architecture.

3.1 The Glue Semantics Workbench

The Glue Semantics Workbench (GSWB)11 is a
modular system for deriving Glue proofs. To this
end, it provides the possibility of using different
provers as well as different input formats for mean-
ing languages, with a built-in parser for formulas
based on typed lambda-calculus, and support for
meaning representations written in Prolog (in par-
ticular, those developed on the basis of Blackburn
and Bos 2005, i.e., untyped lambda calculus and
λ-DRT). Furthermore, functionality was recently
added that allows users to interface GSWB with
NLTK’s (Bird et al. 2009) semantic capabilities
(Klein 2006).

GSWB uses a string format for linear logic and
semantic representations that is close to actual Glue
semantic representations, as illustrated in (5).

(5) john : g
mary : h
[/x_e.[/y_e.love(x,y)]] :

(g -o (h -o f))

There, the meaning side is on the left of :, and the
linear logic side is on the right. The entry for the
verb shows the encoding of complex linear logic
formulas and lambda expressions which can be
computed using the basic tools for function appli-

10ling.sprachwiss.uni-konstanz.de/pages/xle/
11https://github.com/Mmaz1988/GlueSemWorkbench_

v2

cation (Blackburn and Bos 2005).
To ensure flexibility, the meaning side of a mean-

ing constructor can be replaced with any semantic
representation that can be encoded as a string. In
this case, users can specify procedures that pre-
serve CHI, by implementing function application
directly in GSWB or by feeding the output to a sep-
arate system.12 The latter option is used to integrate
GSWB with a modified version of the DRT part
of Boxer tools (Bos 2008; based on Blackburn and
Bos 2005) and with NLTK (Findlay et al. 2023).

GSWB contains three different provers for the
implicational fragment of linear logic: one with
linear quantification (prover 1) and two variants of
a prover without linear quantification (prover 2).
Both variants of prover 2 are based on Hepple 1996
and Lev 2007, but one is extended with a notation
for conducting multistage proving (Findlay and
Haug 2022), a process that essentially allows for
the grouping of meaning constructors to constrain
the order of application. This is one way of account-
ing for restrictions on scope-taking expressions like
quantifiers, embedding verbs, etc.

These provers provide separate additional func-
tionalities for exploring the resulting Glue deriva-
tions, including reasons why a derivation might fail.
Specifically, prover 1 has two functionalities. First,
it allows for a depth-first search of intermediate
results in a failed proof, extracting those partial
solutions that would need to be combined to find a
successful proof. Second, it allows the proofs to be
given in natural deduction form. This is illustrated
in Figure 4 based on (5).

The two variants of prover 2 also allow users
to visualize a derivation. More specifically, they

12For a string a corresponding to a function and an argument
string b, the default procedure produces the string a(b).

193

ling.sprachwiss.uni-konstanz.de/pages/xle/
https://github.com/Mmaz1988/GlueSemWorkbench_v2
https://github.com/Mmaz1988/GlueSemWorkbench_v2

[/ x e . [/ y e . l o v e (x , y)]] : (g −o (h −o f)) j ohn : g
−−E

[/ x e . [/ y e . l o v e (x , y)]] (j ohn) : (h −o f) mary : h
−−−E

[/ x e . [/ y e . l o v e (x , y)]] (j ohn) (mary) : f

Figure 4: Natural deduction proof by GSWB, based on meaning constructors in (5)

Figure 5: Successful derivation graph for the proof in (4) and an alternative failed derivation graph: The
graph on the left presents input meaning constructors and combination steps as blue nodes and highlights the goal
category in yellow. The graph on the right is based on an erroneous input that is superficially similar to (4) . Missing
resources (leaves of the graph) and failed derivation steps are marked in red so as to make it easier to debug the
proof. The proof fails since h is required by the verb as a resource corresponding to the object. However, in this
unsuccessful proof the object was assigned the resource i, which is a dangling node since it has no consumer.

produce a derivation graph. This graph roughly
corresponds to a proof tree but highlights cyclic el-
ements in the derivation (indicating compositional
ambiguities), if present (cf. Lev 2007: ch. 6). Fig-
ure 5 illustrates the visualization. (The derivation
there does not have any cyclic elements.)13

Current and future developments of GSWB are
mainly geared toward the interpretability of the out-
put of GSWB, as illustrated in Figures 4–5, as well
as the integration in broader processing pipelines.
This is illustrated by reference to the next two tools,
which use the capabilities presented above.

3.2 XLE+Glue

XLE+Glue has been developed as an inter-
face between XLE and GSWB corresponding to
LFG+Glue in the theoretical literature. It is inte-
grated into the XLE user interface and can be used
out of the box.

The original version14 consists of a specification
for Glue meaning constructors in terms of attribute-
value matrices that can be represented as part of

13While this example is trivial, finding errors in more com-
plex proofs can be difficult, especially when manually working
with the GSWB.

14https://github.com/Mmaz1988/
xle-glueworkbench-interface

f-structures (Dalrymple et al. 2020).

Example (7) illustrates the encoding of the Glue
meaning constructor in (6) as an AVM in an f-
structure. As shown there, linear logic resources
are added via the GLUE attribute, whose value is
a set of semantic representations. These are de-
scribed in terms of AVMs encoding their MEANING

side (simply a string corresponding to the meaning)
and their linear logic side. The latter uses nested
expressions to reflect linear implication: ARG1 and
ARG2 refer to linear logic resources (not semantic
arguments) that need to be consumed to produce
the resource f with type t.

(6) love : ge ⊸ (he ⊸ ft)

(7) f




PRED ‘LOVE<SUBJ,OBJ>’
SUBJ g []

OBJ h []

GLUE








MEANING LOVE

ARG1
[

RESOURCE g

TYPE e

]

ARG2
[

RESOURCE h
TYPE e

]

RESOURCE f

TYPE t











194

https://github.com/Mmaz1988/xle-glueworkbench-interface
https://github.com/Mmaz1988/xle-glueworkbench-interface

More recently, a version with an alternative nota-
tion for meaning constructors has been developed15

that is closer to their representation in formal se-
mantic theory. The alternative notation is similar
to that of GSWB but uses references to f-structure
nodes, as in Figure 2 on the left. This is illustrated
in (8).

(8) [/x_e.[/y_e.P(x,y)]]:
((^SUBJ)_e -o ((^OBJ)_e -o ^_t))

While the notation is different, the implementation
boils down to the idea of the original XLE+Glue.
However, now, when loading a grammar in XLE,
meaning constructors written as in (8) are auto-
matically translated into AVM representations by
a script, making the grammars leaner. Further-
more, such meaning constructors may be easier to
read than the nested templates necessary to encode
meaning constructors in the original approach.

This approach is, in principle, an implementa-
tion of the co-descriptive approach to Glue since
the templates are generally called from the lexicon.
The XLE+Glue repository provides several sample
XLE grammars containing templates that produce
the corresponding meaning constructors. These
grammars exhibit the various parameters along
which XLE+Glue can be tweaked: it allows for
exploring different meaning languages (currently,
first-order logic and λ-DRT), and it enables the user
to specify meaning constructors in the f-structure
or in a separate semantic structure. Furthermore,
although the current paper presents XLE+Glue as
a venue for exploring co-descriptive approaches to
Glue, it is, in fact, more flexible, since the Glue
AVMs corresponding to meaning constructors need
not be specified in the lexicon. They could be spec-
ified via rewrite rules or, possibly, in other ways.
However, since it is the only resource in this paper
making a concrete proposal for exploring semantic
co-description, it is unique in this regard.

On the technical side, XLE+Glue consists of an
extension to the XLE user interface and a transla-
tion component that rewrites the specified mean-
ing constructors into a format compatible with
GSWB.16 Thus, XLE+Glue is, essentially, an inter-
face between XLE and GSWB.

15https://github.com/Mmaz1988/xleplusglue
16The original translation component was written in Prolog.

For the new system, the scripts have been moved to a Java
implementation.

3.3 Linguistic Graph Expansion and
Rewriting

The Linguistic Graph Expansion and Rewriting
(LiGER)17 tool allows for the specification of rules
that rewrite and expand f-structure nodes, as shown
in Figure 2 on the right. The system is based
on graph matching techniques, but also provides
tools to check for certain LFG-specific relations
such as (inside-out) functional uncertainty. The
graphs are described in terms of queries inspired
by corpus search engines, in particular the one de-
signed for LFG within INESS (Rosén et al. 2012;
https://clarino.uib.no/iness/). Before querying,
the system translates f-structures into more general
graph structures. This mechanism is inspired by the
original XLE transfer system (Crouch et al. 2017,
Ide and Bunt 2010), but it is applicable beyond the
annotations provided by the XLE. For example, it
provides an interface to the Stanford Universal De-
pendency parser (Manning et al. 2014). Generally
speaking, it is mainly geared towards the analy-
sis of directed (acyclic) graphs that underlie many
syntactic analyses.

Figure 6 illustrates normalization from syntac-
tic representations to directed graphs. Given this
kind of normalization, the system can be combined
with various linguistic resources to either specify
structural correspondences or expand graphs with
additional information. The primary use of the
system is currently the specification of semantic
rules inspired by the description-by-analysis tra-
dition in Glue (Kaplan and Wedekind 1993). It
combines insights from computational approaches,
e.g., Crouch 2005 and Crouch and King 2006, with
more recent theoretical approaches (Andrews 2008,
2010). The former employ a destructive approach
during which a given f-structure is taken as input
to a set of ordered rewrite rules. These rules incre-
mentally consume parts of the f-structure to pro-
duce semantic constraints, sometimes involving
intermediate representations and access to external
resources (e.g., for lexical semantics). Thus, the
inverse mapping from semantics to syntax is not
trivially recoverable.18 By contrast, the theoreti-
cal approach involves working towards a structure-
preserving implementation, i.e., a monotonic ap-
proach to description-by-analysis, more clearly
maintaining LFG’s bi-directionality. This choice is

17https://github.com/Mmaz1988/
abstract-syntax-annotator-web

18See Zarrieß and Kuhn (2010) for discussion.

195

https://github.com/Mmaz1988/xleplusglue
https://clarino.uib.no/iness/
https://github.com/Mmaz1988/abstract-syntax-annotator-web
https://github.com/Mmaz1988/abstract-syntax-annotator-web

UD structure:

John loves Mary
NNP/1/g VBD/2/f NNP/3/h

objnsubj

root

LFG structure:

f




PRED ‘LOVE⟨SUBJ,OBJ⟩’
SUBJ g

[
PRED ‘JOHN’

]

OBJ h
[

PRED ‘MARY’
]




Abstract syntactic graph:

2

1 3

subject object

Figure 6: Parallelized syntax for: John loves Mary

not constrained by LiGER, but rather by how the
system is used. Thus, it is well-suited to explore
the notion of description-by-analysis.

LiGER is implemented in Java as an application
and a web service in parallel, so it can be used in
web-based applications and more traditional anno-
tation pipelines. As indicated above, it is compati-
ble with Universal Dependencies (as provided by
Stanford CoreNLP) and XLE representations. It
can also be used to call the corresponding parsers
from their respective resources.

4 Use cases

At this stage of development, XLE+Glue and
LiGER have not been widely used for broad cover-
age semantic parsing (but see Findlay et al. 2023
for a broad coverage use of the GSWB). However,
they have already been employed for verification
of theoretical LFG+Glue analyses (see §4.1), for
a teaching grammar (see §4.2), and for research on
ambiguity management (see §4.3).

4.1 Verification of theoretical analyses

The tools described above have been used to ver-
ify theoretical analyses. For example, GSWB has
been employed in an investigation of scope inter-
actions between nominal and verbal quantifiers
(Zymla and Sigwarth 2019), LiGER in an anal-
ysis of Greek tense and aspect (Zymla and Fiotaki
2021), and XLE+Glue in an account of gapping
(Przepiórkowski and Patejuk 2023).

In particular, Przepiórkowski and Patejuk 2023
propose a theoretical LFG+Glue analysis of gap-
ping, as in English Marge saw Lisa and Homer
Bart, with the second conjunct meaning ‘Homer
saw Bart’. The analysis crucially relies on Cham-
pollion’s (2015) compositional treatment of event
semantics and is relatively complex, to the extent
that it is not trivial to manually verify its predic-
tions for more complex cases, such as (9), which is
expected to have the two readings in (10)–(11).

(9) Tracy introduced Lisa to Marge and Bart to
Homer.

(10) [∃e. introduce(e) ∧ agent(e, t) ∧
theme(e, l) ∧ beneficiary(e,m)] ∧

[∃e. introduce(e) ∧ agent(e, t) ∧
theme(e, b) ∧ beneficiary(e, h)]

‘Tracy introduced Lisa to Marge and Tracy
introduced Bart to Homer.’

(11) [∃e. introduce(e) ∧ agent(e, t) ∧
theme(e, l) ∧ beneficiary(e,m)] ∧

[∃e. introduce(e) ∧ agent(e, b) ∧
theme(e, l) ∧ beneficiary(e, h)]

‘Tracy introduced Lisa to Marge and Bart
introduced Lisa to Homer.’

However, using XLE+Glue, the formal analysis
was implemented as an XLE grammar and all read-
ing were derived automatically. In the case of (9),
they all turned out to be equivalent to (10) or (11).

4.2 Teaching grammar

A different application of the presented suite of
Glue tools concerns a teaching grammar imple-
menting analyses of some phenomena encountered
in a grammar development class, especially tense
and aspect.

Using GSWB and LiGER, the grammar pro-
duces DRT representations based on the Boxer
tools exemplifying a Neo-Davidsonian event se-
mantics. An example is shown in (12). There, x1
refers to an event with two arguments, x2 and x3.
These are enumerated based on an argument hierar-
chy (Bresnan and Kanerva 1989). For the purpose
of this paper, arg1 generally refers to an agentive
role, arg2 refers to a theme/patient role, and arg3
generally refers to a recipient/goal role.19

(12) Mary hugged a bear.

19Thus, the argument roles are comparable to those in the
PropBank (Palmer et al. 2005), but they are not verb-specific.

196

x2 x3 x1
bear(x2)
x3 = Mary
hug(x1)
arg1(x1 ,x3)
arg2(x1 ,x2)

Appendix B contains additional examples of DRSs
produced by the grammar on the basis of meaning
constructors derived by LiGER from f-structures.

For example, we have added to the grammar
some basic LiGER rules for tense/aspect interpre-
tation. In this case, the importance of LiGER lies
in contextualizing tense/aspect features according
to their morphosyntactic context and beyond. This
is illustrated in example (13) below, where the in-
terpretation of the embedded tense is constrained
by the matrix tense. To put it concisely, the embed-
ded tense must be evaluated relative to the matrix
tense and it may only be evaluated as simultaneous
or anterior to it as indicated by the two readings
of (13) shown in (14)–(15). This is explained in
more detail in Zymla 2017, 2018. Furthermore, this
example illustrates differences between perfective
(bounded) and imperfective (ongoing) grammatical
aspect in the matrix clause and embedded clause
respectively (see Zymla 2019 for details).

(13) Mary said that Susan was hugging a bear.

(14) Mary said: Susan is hugging a bear.

(15) Mary said: Susan was hugging a bear.
__

| x9 x8 x7 x6 |
|−−|
| x9 = now |
| b e f o r e (x8 , x9) |
| x7 = Mary |
| bounded (x6 , x8) |
| s ay (x6) |
| a r g1 (x6 , x7) |
| __ |
	x5 x4 x2					
	−−					
s ay	b e a r (x5)					
	x4 = Susan					
	n o n f u t (x2 , x6)					
	________________ _______________					
		x1		x3		
		−−−−−−−−−−−−−−−−		−−−−−−−−−−−−−−−		
		ongo ing (x1 , x2)	==>	p a r t O f (x3 , x1)		
		________________		hug (x3)		
		a rg2 (x3 , x5)				
		a rg1 (x3 , x4)				

	__					
__						

As these examples show, the teaching grammar
combined with LiGER allows us to capture im-
portant syntactic and semantic generalizations and,
thus, explore substantial insights into the interplay
between syntax and semantics. Importantly, the
grammar also illustrates the distinction between

co-description and description-by-analysis pointed
out in the previous sections.

4.3 Exploring the cross-linguistic variability
of semantic ambiguities

Moot and Retoré (2012) point out that semantic
composition does not fall into one neatly catego-
rized logic but rather moves on a spectrum of con-
strainedness of the underlying logic. Works like
Gotham 2019, 2021, building on Barker 2022, ex-
plore subtle cross-linguistic differences in the flexi-
bility of scope-taking semantic operators that high-
light this issue. Constraints on semantic composi-
tion have been explored in the context of computa-
tional grammars and Glue semantics in Findlay and
Haug 2022 and Zymla 2024 using the GSWB. This
research not only improves the formal adequacy of
LFG, but potentially also allows for more precise
statements about the logic of composition more
generally and its interaction with other modules
of grammar, particularly, from a cross-linguistic
perspective. Relatedly, Butt et al. (2024) present an
approach to disambiguating questions via prosodic
information that is computationally implemented
in combination with XLE+Glue.

5 Summary

This paper has presented a suite of computational
tools for Glue Semantics. It has established their
relevance for exploring various important concepts,
particularly how to embed a semantic component
in the LFG projection architecture as implemented
within XLE. In this regard, both a co-descriptive
and a description-by-analysis approach have been
presented, covering the two major proposals for
semantic analysis in LFG.

The tools presented in this paper contribute to a
growing ecosystem of LFG-based CL tools which
are actively developed on multiple fronts. They
receive regular updates and new features.

However, it is not only the LFG community that
may benefit from these tools. Glue Semantics is
compatible with various kinds of syntactic and se-
mantic analyses. From the perspective of NLP,
one of the most interesting prospects may be its
compatibility with Universal Dependencies (Haug
and Findlay 2023), but even beyond that, the tools
presented in this paper provide an exciting avenue
for research on formal semantics in computational
linguistics.

197

References
Avery D Andrews. 2008. The role of PRED in LFG

+ Glue. In Proceedings of the LFG08 Conference,
pages 47–67.

Avery D Andrews. 2010. Propositional glue and the
correspondence architecture of LFG. Linguistics and
Philosophy, 33(3):141–170.

Nicholas Asher and Hajime Wada. 1988. A computa-
tional account of syntactic, semantic and discourse
principles for anaphora resolution. Journal of Seman-
tics, 6(1):309–344.

Ash Asudeh. 2004. Resumption as resource manage-
ment. Ph.D. thesis, Stanford University.

Ash Asudeh. 2006. Direct compositionality and the
architecture of LFG. Intelligent linguistic architec-
tures: Variations on themes by Ronald M. Kaplan,
pages 363–387.

Ash Asudeh. 2022. Glue semantics. Annual Review of
Linguistics, 8:321–341.

Ash Asudeh. 2023. Glue semantics. In (Dalrymple
2023), pages 651–697.

Ash Asudeh and Richard Crouch. 2002. Glue semantics
for HPSG. In Proceedings of the 8th international
HPSG conference, Stanford, CA. CSLI Publications.

Chris Barker. 2022. Rethinking scope islands. Linguis-
tic Inquiry, 53(4):633–661.

V. Basile, J. Bos, K. Evang, and N. Venhuizen. 2012.
A platform for collaborative semantic annotation. In
Proceedings of the Demonstrations at the 13th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL), pages 92–96,
Avignon, France.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural Language Processing — Analyzing text with
Python and the Natural Language Toolkit. O’Reilly.

Patrick Blackburn and Johannes Bos. 2005. Represen-
tation and inference for natural language: A first
course in computational semantics. Center for the
Study of Language and Information Amsterdam.

Daniel G. Bobrow, Bob Cheslow, Cleo Condoravdi,
Lauri Karttunen, Tracy Holloway King, Rowan
Nairn, Valeria de Paiva, Charlotte Price, and An-
nie Zaenen. 2007. PARC’s bridge and question an-
swering system. In Proceedings of the GEAF 2007
Workshop, pages 1–22.

Johan Bos. 2008. Wide-coverage semantic analysis
with Boxer. In Semantics in text processing. step
2008 conference proceedings, pages 277–286.

Joan Bresnan, Ash Asudeh, Ida Toivonen, and Stephen
Wechsler. 2015. Lexical-functional syntax, vol-
ume 16. John Wiley & Sons.

Joan Bresnan and Jonni M Kanerva. 1989. Locative
inversion in Chicheŵa: A case study of factorization
in Grammar. Linguistic inquiry, pages 1–50.

Miriam Butt, Tina Bögel, Mark-Matthias Zymla, and
Benazir Mumtaz. 2024. Alternative questions in
Urdu: From the speech signal to semantics. In Pro-
ceedings of the LFG’24 Conference, Konstanz. Pub-
liKon.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The
parallel grammar project. In Proceedings of the 2002
Workshop on Grammar Engineering and Evaluation,
volume 15, pages 1–7. Association for Computa-
tional Linguistics.

Lucas Champollion. 2015. The interaction of compo-
sitional semantics and event semantics. Linguistics
and Philosophy, 38(1):31–66.

Dick Crouch, Mary Dalrymple, Ronald M. Kaplan,
Tracy Holloway King, John T. Maxwell III, and Paula
Newman. 2017. XLE Documentation. Palo Alto Re-
search Center.

Richard Crouch. 2005. Packed rewriting for mapping
semantics to KR. In Proceedings of the Sixth In-
ternational Workshop on Computational Semantics
(IWCS-6), pages 103–114, Tilburg.

Richard Crouch and Tracy Holloway King. 2006. Se-
mantics via f-Structure rewriting. In Proceedings
of the LFG06 Conference, pages 145–165, Stanford,
CA. CSLI Publications.

Mary Dalrymple. 1999. Semantics and syntax in Lexical
Functional Grammar: The resource logic approach.
MIT Press.

Mary Dalrymple, editor. 2023. Handbook of Lexi-
cal Functional Grammar. Language Science Press,
Berlin.

Mary Dalrymple, John Lamping, Fernando Pereira, and
Vijay Saraswat. 1999. Quantification, anaphora, and
intensionality. In Mary Dalrymple, editor, Semantics
and Syntax in Lexical Functional Grammar – The
Resource Logic Approach, pages 39–89.

Mary Dalrymple, John J. Lowe, and Louise Mycock.
2019. The Oxford reference guide to Lexical Func-
tional Grammar. Oxford University Press, Oxford.

Mary Dalrymple, Agnieszka Patejuk, and Mark-
Matthias Zymla. 2020. XLE+Glue – A new tool
for integrating semantic analysis in XLE. In Proceed-
ings of the LFG’20 Conference, Australian National
University, Stanford, CA. CSLI Publications.

Jamie Findlay and Dag Haug. 2022. Managing scope
ambiguities in Glue via multistage proving. In Pro-
ceedings of the Lexical Functional Grammar Confer-
ence, pages 144–163.

198

https://doi.org/https://doi.org/10.1146/annurev-linguistics-032521-053835
https://langsci-press.org/catalog/book/312
https://lfg-proceedings.org
https://lfg-proceedings.org
https://doi.org/https://doi.org/10.1007/s10988-014-9162-8
https://doi.org/https://doi.org/10.1007/s10988-014-9162-8
https://langsci-press.org/catalog/book/312
https://langsci-press.org/catalog/book/312
https://doi.org/https://doi.org/10.1093/oso/9780198733300.001.0001
https://doi.org/https://doi.org/10.1093/oso/9780198733300.001.0001

Jamie Y Findlay, Saeedeh Salimifar, Ahmet Yıldırım,
and Dag TT Haug. 2023. Rule-based semantic inter-
pretation for Universal Dependencies. In Proceed-
ings of the Sixth Workshop on Universal Dependen-
cies (UDW, GURT/SyntaxFest 2023), pages 47–57.

Dan Flickinger, Stephan Oepen, and Emily Bender.
2017. Sustainable development and refinement of
complex linguistic annotations at scale. In Nancy
Ide and James Pustejovsky, editors, Handbook of
Linguistic Annotation, pages 353–377. Springer.

Anette Frank. 1999. From parallel grammar de-
velopment towards machine translation. A project
overview. Proceedings of Machine Translation Sum-
mit VII” MT in the Great Translation Era, pages
134–142.

Anette Frank and Josef van Genabith. 2001. GlueTag:
Linear logic based semantics for LTAG – and what it
teaches us about LFG and LTAG. In The Proceedings
of the LFG’01 Conference, pages 104–126, Univer-
sity of Hong Kong. CSLI Publications.

Jean-Yves Girard. 1987. Linear logic. Theoretical
Computer Science, 50(1):1 – 101.

Matthew Gotham. 2018. Making logical form type-
logical: Glue Semantics for minimalist syntax. Lin-
guistics and Philosophy 41(5), pages 411–556.

Matthew Gotham. 2019. Constraining scope ambiguity
in LFG+Glue. In Proceedings of the LFG’19 Confer-
ence, pages 111–129, Stanford, CA. CSLI Publica-
tions.

Matthew Gotham. 2021. Approaches to scope islands
in LFG+Glue. In Proceedings of the LFG’21 Confer-
ence, pages 146–166, Stanford, CA. CSLI Publica-
tions.

Matthew Gotham and Dag Trygve Truslew Haug. 2018.
Glue semantics for Universal Dependencies. In The
Proceedings of the LFG’18 Conference, pages 208–
226, Stanford, CA. CSLI Publications.

Per-Kristian Halvorsen and Ronald M. Kaplan. 1988.
Projections and semantic description in Lexical-
Functional Grammar. In Proceedings of the Inter-
national Conference on Fifth Generation Computer
Systems, FGCS 1988, Tokyo, Japan, November 28-
December 2, 1988, pages 1116–1122. OHMSHA Ltd.
Tokyo and Springer-Verlag.

Dag TT Haug and Jamie Y Findlay. 2023. Formal se-
mantics for dependency grammar. In Proceedings of
the Seventh International Conference on Dependency
Linguistics (Depling, GURT/SyntaxFest 2023), pages
22–31.

Irene Heim and Angelika Kratzer. 1998. Semantics in
Generative Grammar. Blackwell, Malden, MA.

Mark Hepple. 1996. A compilation-chart method for
linear categorial deduction. In Proceedings of the
16th conference on Computational linguistics-Volume

1, pages 537–542. Association for Computational
Linguistics.

Nancy Ide and Harry Bunt. 2010. Anatomy of anno-
tation schemes: Mapping to GrAF. In Proceedings
of the Fourth Linguistic Annotation Workshop, pages
247–255.

Ray Jackendoff. 2010. The parallel architecture and its
place in cognitive science. In Bernd Heine and Heiko
Narrog, editors, The Oxford Handbook of Linguistic
Analysis, pages 583–605. Oxford: Oxford University
Press.

Hans Kamp and Uwe Reyle. 1993. From discourse to
logic: Introduction to modeltheoretic semantics of
natural language, formal logic and Discourse Rep-
resentation Theory, volume 42. Springer Science &
Business Media.

Ronald M Kaplan. 1995. Three seductions of compu-
tational psycholinguistics. Formal Issues in Lexical-
Functional Grammar, 47.

Ronald M. Kaplan and Joan Bresnan. 1982. Lexical-
Functional Grammar: A formal system for grammati-
cal representation. In Joan Bresnan, editor, The Men-
tal Representation of Grammatical Relations, pages
173–281. MIT Press, Cambridge, MA.

Ronald M Kaplan and Jürgen Wedekind. 1993. Restric-
tion and correspondence-based translation. In Sixth
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Ronald M Kaplan and Jurgen Wedekind. 2019.
Tractability and discontinuity. In Proceedings of the
International Lexical-Functional Grammar Confer-
ence, pages 130–148.

Ewan Klein. 2006. Computational semantics in the
Natural Language Toolkit. In Proceedings of the
Australasian Language Technology Workshop 2006,
pages 26–33.

Iddo Lev. 2007. Packed computation of exact meaning
representations. Ph.D. thesis, Stanford University.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
annual meeting of the association for computational
linguistics: system demonstrations, pages 55–60.

Moritz Meßmer and Mark-Matthias Zymla. 2018. The
Glue Semantics Workbench: A Modular Toolkit for
Exploring Linear Logic and Glue Semantics. In Pro-
ceedings of the LFG’18 Conference, University of
Vienna, pages 249–263, Stanford, CA. CSLI Publica-
tions.

Richard Moot and Christian Retoré. 2012. The logic of
categorial grammars: A deductive account of natural
language syntax and semantics. Number 6850 in
Lecture Notes in Computer Science. Springer, Hei-
delberg.

199

http://cslipublications.stanford.edu/LFG/6/lfg01.html
http://cslipublications.stanford.edu/LFG/6/lfg01.html
http://cslipublications.stanford.edu/LFG/6/lfg01.html
https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2019/lfg2019-gotham.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2019/lfg2019-gotham.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2021/lfg2021-gotham.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2021/lfg2021-gotham.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2018/
http://cslipublications.stanford.edu/LFG/2018/lfg2018-messmer-zymla.pdf
http://cslipublications.stanford.edu/LFG/2018/lfg2018-messmer-zymla.pdf
http://cslipublications.stanford.edu/LFG/2018/lfg2018-messmer-zymla.pdf

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71–
106.

Adam Przepiórkowski and Agnieszka Patejuk. 2023.
Filling gaps with Glue. In The Proceedings of the
LFG’23 Conference, pages 223–240. PubliKon.

Victoria Rosén, Koenraad De Smedt, Paul Meurer, and
Helge Dyvik. 2012. An open infrastructure for ad-
vanced treebanking. In META-RESEARCH Work-
shop on Advanced Treebanking at LREC2012, pages
22–29.

Sebastian Sulger, Miriam Butt, Tracy Holloway King,
Paul Meurer, Tibor Laczkó, György Rákosi, Cheikh
M Bamba Dione, Helge Dyvik, Victoria Rosén, Koen-
raad De Smedt, Agnieszka Patejuk, Özlem Çetinŏglu,
I Wayan Arka, and Meladel Mistica. 2013. ParGram-
Bank: The ParGram parallel treebank. In ACL, pages
550–560.

Jurgen Wedekind. 1988. Generation as structure driven
derivation. In Coling Budapest 1988 Volume 2: Inter-
national Conference on Computational Linguistics.

Jürgen Wedekind and Ronald M Kaplan. 2020.
Tractable Lexical-Functional Grammar. Computa-
tional Linguistics, 46(3):515–569.

Sina Zarrieß and Jonas Kuhn. 2010. Reversing f-
structure rewriting for heneration from meaning rep-
resentations. In Proceedings of the 15th Interna-
tional Conference on Lexical-Functional Grammar
(LFG10), pages 479–499, Ottawa, Canada. CSLI Pub-
lications.

Mark-Matthias Zymla. 2017. Comprehensive annota-
tion of cross-linguistic variation in the category of
Tense. In 12th International Conference on Compu-
tational Semantics.

Mark-Matthias Zymla. 2018. Annotation of the syn-
tax/semantics interface as a bridge between deep lin-
guistic parsing and TimeML. In Proceedings 14th
Joint ACL-ISO Workshop on Interoperable Semantic
Annotation, pages 53–59.

Mark-Matthias Zymla. 2019. Aspectual reasoning in
LFG – A computational approach to grammatical
and lexical aspect. In Proceedings of the LFG’19
Conference, Australian National University, pages
353–373, Stanford, CA. CSLI Publications.

Mark-Matthias Zymla. 2024. Ambiguity management
in computational Glue semantics. In Proceedings of
the LFG’24 Conference, pages 285–310, Konstanz,
Germany. PubliKon.

Mark-Matthias Zymla and Alexandra Fiotaki. 2021.
Perfective non-past in Modern Greek. In Proceedings
of the LFG’21 Conference, On-Line, pages 332–352,
Stanford, CA. CSLI Publications.

Mark-Matthias Zymla, Kascha Kruschwitz, and Paul
Zodl. 2025. Semantic parsing and reasoning in LFG
– the case of gradable adjectives. In Proceedings of
the BriGap-2 Workshop: Bridges and Gaps between
Formal and Computational Linguistics. To appear.

Mark-Matthias Zymla and Gloria Sigwarth. 2019. On
the syntax/semantics interface in computational Glue
Semantics: A case study. In Proceedings of the
LFG’19 Conference, Australian National University,
pages 374–392, Stanford, CA. CSLI Publications.

200

https://ling.auf.net/lingbuzz/007778
http://www.aclweb.org/anthology/W17-6817
http://www.aclweb.org/anthology/W17-6817
http://www.aclweb.org/anthology/W17-6817
http://cslipublications.stanford.edu/LFG/2019/lfg2019-zymla.pdf
http://cslipublications.stanford.edu/LFG/2019/lfg2019-zymla.pdf
http://cslipublications.stanford.edu/LFG/2019/lfg2019-zymla.pdf
http://cslipublications.stanford.edu/LFG/2021/lfg2021-zymla-fiotaki.pdf
http://cslipublications.stanford.edu/LFG/2019/lfg2019-zymla-sigwarth.pdf
http://cslipublications.stanford.edu/LFG/2019/lfg2019-zymla-sigwarth.pdf
http://cslipublications.stanford.edu/LFG/2019/lfg2019-zymla-sigwarth.pdf

A Additional proofs

λP.∀x[monkey(x) → P (x)] : (me ⊸ ft) ⊸ ft

[X : me]
1 λx.λy.like(x, y) : me ⊸ (be ⊸ ft) ⊸E

λy.like(X, y) : be ⊸ ft [Y : be]
2

⊸E
like(X,Y) : ft ⊸I,1

λx.like(x, Y) : me ⊸ ft ⊸E∀x[monkey(x) → like(x, Y)] : ft ⊸I,2
λy.∀x[monkey(x) → like(x, y)] : be ⊸ ft λQ.∃y[banana(y) ∧ Q(y)] : (be ⊸ ft) ⊸ ft ⊸E∃y[banana(y) ∧ ∀x[monkey(x)→ like(x, y)]] : ft

Figure 7: Glue proof: Every monkey likes a banana inverse scope

B Worked out examples

(16) Mary hugged a bear.

| x2 x3 x1 |
|−−−−−−−−−−−−−|
| b e a r (x2) |
| x3 = Mary |
| hug (x1) |
| a r g1 (x1 , x3) |
| a r g2 (x1 , x2) |
| _____________ |

Produced meaning constructors:

{
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg2 , E ,X)]))))) :

((6 _v −o 6 _ t) −o (4 _e −o (6 _v −o 6 _ t))) | | noscope
lam (X, d r s ([] , [eq (X, ' Mary ')])) : (8 _e −o 8 _ t)
lam (X, d r s ([] , [p r ed (bear ,X)])) : (4 _e −o 4 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg1 , E ,X)]))))) :

((6 _v −o 6 _ t) −o (8 _e −o (6 _v −o 6 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((8 _e −o 8 _ t) −o ((8 _e −o 5 _ t) −o 5 _ t)) | | noscope
lam (V, d r s ([] , [p r ed (hug ,V)])) : (6 _v −o 6 _ t)
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((4 _e −o 4 _ t) −o ((4 _e −o 5 _ t) −o 5 _ t))
lam (V, merge (d r s ([E] , []) , app (V, E))) : ((6 _v −o 6 _ t) −o 5 _ t)
}

F-structure:

"Mary hugged a bear"

'hug<[1:Mary], [26:bear]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

68

66

1

SUBJ

'bear'PRED

'a'PREDDETSPEC

CASE acc, DEF -, NTYPE count, NUM sg, PERS 3

104

34

26

102

35

OBJ

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

-PASSIVE124

122

108

78

14

201

(17) Mary was hugged by a bear.

| x3 x2 x1 |
|−−−−−−−−−−−−−|
| b e a r (x3) |
| x2 = Mary |
| hug (x1) |
| a r g1 (x1 , x3) |
| a r g2 (x1 , x2) |
| _____________ |

Produced meaning constructors:

{
lam (V, merge (d r s ([E] , []) , app (V, E))) : ((6 _v −o 6 _ t) −o 5 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg2 , E ,X)]))))) :

((6 _v −o 6 _ t) −o (8 _e −o (6 _v −o 6 _ t))) | | noscope
lam (X, d r s ([] , [eq (X, ' Mary ')])) : (8 _e −o 8 _ t)
lam (X, d r s ([] , [p r ed (bear ,X)])) : (4 _e −o 4 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg1 , E ,X)]))))) :

((6 _v −o 6 _ t) −o (4 _e −o (6 _v −o 6 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((8 _e −o 8 _ t) −o ((8 _e −o 5 _ t) −o 5 _ t)) | | noscope
lam (V, d r s ([] , [p r ed (hug ,V)])) : (6 _v −o 6 _ t)
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((4 _e −o 4 _ t) −o ((4 _e −o 5 _ t) −o 5 _ t))
}

F-structure:

"Mary was hugged by a bear"

'hug<[38:bear], [1:Mary]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

89

87

1

SUBJ

'bear'PRED

'a'PREDDETSPEC

DEF -, NTYPE count, NUM sg, PERS 3, PFORM by, PTYPE nosem

138

46

38

134

55

47

132

56

OBL-AG

PERF -_, PROG -_, TENSE pastTNS-ASP

PARTICIPLE past, PASSIVE +152

150

140

15

14

101

26

202

(18) Susan was given the bear by Mary.

| x2 x3 x4 x1 |
|−−−−−−−−−−−−−|
| b e a r (x2) |
| x3 = Mary |
| x4 = Susan |
| g i v e (x1) |
| a r g3 (x1 , x4) |
| a r g1 (x1 , x3) |
| a r g2 (x1 , x2) |
| _____________ |

Produced meaning constructors:

{
lam (V, merge (d r s ([E] , []) , app (V, E))) : ((4 _v −o 4 _ t) −o 3 _ t)
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((6 _e −o 6 _ t) −o ((6 _e −o 3 _ t) −o 3 _ t)) | | noscope
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg3 , E ,X)]))))) :

((4 _v −o 4 _ t) −o (8 _e −o (4 _v −o 4 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((2 _e −o 2 _ t) −o ((2 _e −o 3 _ t) −o 3 _ t)) | | noscope
lam (X, d r s ([] , [p r ed (bear ,X)])) : (2 _e −o 2 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg2 , E ,X)]))))) :

((4 _v −o 4 _ t) −o (2 _e −o (4 _v −o 4 _ t))) | | noscope
lam (X, d r s ([] , [eq (X, ' Susan ')])) : (8 _e −o 8 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg1 , E ,X)]))))) :

((4 _v −o 4 _ t) −o (6 _e −o (4 _v −o 4 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((8 _e −o 8 _ t) −o ((8 _e −o 3 _ t) −o 3 _ t)) | | noscope
lam (V, d r s ([] , [p r ed (g ive ,V)])) : (4 _v −o 4 _ t)
lam (X, d r s ([] , [eq (X, ' Mary ')])) : (6 _e −o 6 _ t)
}

F-structure:

"Susan was given the bear by Mary"

'give<[87:Mary], [53:bear], [1:Susan]>'PRED

'Susan'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

127

125

1

SUBJ

'bear'PRED

DEF +, NTYPE count, NUM sg, PERS 3

165

71

53

163

72

OBJ2

'Mary'PRED

GEND fem, NTYPE name, NUM sg, PERS 3, PFORM by, PTYPE nosem

183

95

87

179

177

96

OBL-AG

pastTENSETNS-ASP

DATIVE-SHIFT +, PARTICIPLE past, PASSIVE +204

202

188

15

14

139

26

203

(19) Mary hugged herself.

| x2 x3 x1 |
|−−−−−−−−−−−−−|
| hug (x3) |
| a r g2 (x3 , x2) |
| a r g1 (x3 , x1) |
| f e ma le (x2) |
| x1 = x2 |
| x1 = Mary |
| _____________ |

Produced meaning constructors:

{
lam (X, d r s ([] , [eq (X, ' Mary ')])) : (6 _e −o 6 _ t)
lam (A, a l f a (B , r e f l , p r ed (female , B) , merge (app (A, C) , d r s ([C] ,

[p r ed (female , C) , eq (B , C)])))) : ((2 _e −o 3 _ t) −o 3 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg1 , E ,X)]))))) :

((4 _v −o 4 _ t) −o (6 _e −o (4 _v −o 4 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((6 _e −o 6 _ t) −o ((6 _e −o 3 _ t) −o 3 _ t))
lam (V, d r s ([] , [p r ed (hug ,V)])) : (4 _v −o 4 _ t)
lam (V, merge (d r s ([E] , []) , app (V, E))) : ((4 _v −o 4 _ t) −o 3 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg2 , E ,X)]))))) :

((4 _v −o 4 _ t) −o (2 _e −o (4 _v −o 4 _ t))) | | noscope
}

F-structure:

"Mary hugged herself"

'hug<[1:Mary], [23:herself]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

63

61

1

SUBJ

'herself'PRED

CASE acc, NTYPE pron, NUM sg, PERS 3, PRON-TYPE pers

86

24

23

OBJ

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

-PASSIVE105

102

88

73

14

204

(20) Mary tried to hug a bear.

| x3 |
|−−−−−−−−−−−−−−−−−−−−−|
| x3 = Mary |
| _____________ |
	x2 x1	
	−−−−−−−−−−−−−	
t r y	b e a r (x2)	
	hug (x1)	
	a r g1 (x1 , x3)	
	a r g2 (x1 , x2)	

Produced meaning constructors:

{
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg2 , E ,X)]))))) :

((1 1 _v −o 11 _ t) −o (9 _e −o (11 _v −o 11 _ t))) | | noscope
lam (X, d r s ([] , [p r ed (bear ,X)])) : (9 _e −o 9 _ t)
lam (X, d r s ([] , [eq (X, ' Mary ')])) : (2 _e −o 2 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg1 , E ,X)]))))) : (

(11 _v −o 11 _ t) −o (2 _e −o (11 _v −o 11 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((2 _e −o 2 _ t) −o ((2 _e −o 3 _ t) −o 3 _ t)) | | noscope
lam (V, d r s ([] , [p r e d (hug ,V)])) : (11 _v −o 11 _ t)
lam (X, lam (P , d r s ([] , [t r y (app (P ,X))]))) : (2 _e −o ((2 _e −o 10 _ t) −o 3 _ t))
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((9 _e −o 9 _ t) −o ((9 _e −o 10 _ t) −o 10 _ t))
lam (V, merge (d r s ([E] , []) , app (V, E))) : ((1 1 _v −o 11 _ t) −o 10 _ t)
}

F-structure:

"Mary tried to hug a bear"

'try<[1:Mary], [29:hug]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

97

95

1

SUBJ

'hug<[1:Mary], [55:bear]>'PRED

[1:Mary]SUBJ

'bear'PRED

'a'PREDDETSPEC

CASE acc, DEF -, NTYPE count, NUM sg, PERS 3

150

63

55

148

64

OBJ

PASSIVE -, VFORM inf168

37

29

154

124

39

XCOMP

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

infVFORM175

173

170

107

14

205

(21) Mary saw the bear with the telescope

| x2 x3 x4 x1 |
|−−−−−−−−−−−−−−−|
| b e a r (x2) |
| x3 = Mary |
| t e l e s c o p e (x4) |
| w i t h (x1 , x4) |
| s e e (x1) |
| a rg1 (x1 , x3) |
| a rg2 (x1 , x2) |
| _______________ |

| x3 x2 x4 x1 |
|−−−−−−−−−−−−−−−|
| b e a r (x3) |
| x2 = Mary |
| t e l e s c o p e (x4) |
| w i t h (x3 , x4) |
| s e e (x1) |
| a r g2 (x1 , x3) |
| a r g1 (x1 , x2) |
| _______________ |

Produced meaning constructors:
{
lam (X, d r s ([] , [p r ed (t e l e s c o p e ,X)])) : (4 _e −o 4 _ t)
lam (V, merge (d r s ([E] , []) , app (V, E))) : ((6 _v −o 6 _ t) −o 5 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg2 , E ,X)]))))) :

((6 _v −o 6 _ t) −o (9 _e −o (6 _v −o 6 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((4 _e −o 4 _ t) −o ((4 _e −o 5 _ t) −o 5 _ t)) | | noscope
lam (X, d r s ([] , [eq (X, ' Mary ')])) : (11 _e −o 11 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg1 , E ,X)]))))) :

((6 _v −o 6 _ t) −o (11 _e −o (6 _v −o 6 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((1 1 _e −o 11 _ t) −o ((1 1 _e −o 5 _ t) −o 5 _ t)) | | noscope
lam (X, d r s ([] , [p r ed (bear ,X)])) : (9 _e −o 9 _ t)
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((9 _e −o 9 _ t) −o ((9 _e −o 5 _ t) −o 5 _ t)) | | noscope
lam (Y, lam (X, d r s ([] , [r e l (wi th , X,Y)]))) :

(4 _e −o (6 _v −o 7 _ t))
lam (U, lam (V, lam (E , merge (d r s ([] , []) , merge (app (U, E) , app (V, E)))))) :

((6 _v −o 7 _ t) −o ((6 _v −o 6 _ t) −o (6 _v −o 6 _ t)))
lam (V, d r s ([] , [p r ed (see ,V)])) : (6 _v −o 6 _ t)
}

{
lam (X, d r s ([] , [p r ed (t e l e s c o p e ,X)])) : (5 _e −o 5 _ t)
lam (V, merge (d r s ([E] , []) , app (V, E))) : ((7 _v −o 7 _ t) −o 6 _ t)
lam (U, lam (V, lam (E , merge (d r s ([] , []) , merge (app (U, E) , app (V, E)))))) :

((9 _e −o 8 _ t) −o ((9 _e −o 6 _ t) −o (9 _e −o 6 _ t))) | | noscope
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg2 , E ,X)]))))) :

((7 _v −o 7 _ t) −o (9 _e −o (7 _v −o 7 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((5 _e −o 5 _ t) −o ((5 _e −o 6 _ t) −o 6 _ t)) | | noscope
lam (X, d r s ([] , [eq (X, ' Mary ')])) : (11 _e −o 11 _ t)
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg1 , E ,X)]))))) :

((7 _v −o 7 _ t) −o (11 _e −o (7 _v −o 7 _ t))) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((1 1 _e −o 11 _ t) −o ((1 1 _e −o 6 _ t) −o 6 _ t)) | | noscope
lam (X, d r s ([] , [p r ed (bear ,X)])) : (9 _e −o 9 _ t)
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((9 _e −o 9 _ t) −o ((9 _e −o 6 _ t) −o 6 _ t)) | | noscope
lam (Y, lam (X, d r s ([] , [r e l (wi th , X,Y)]))) : (5 _e −o (9 _e −o 8 _ t))
lam (V, d r s ([] , [p r ed (see ,V)])) : (7 _v −o 7 _ t)
}

F-structures:
"Mary saw the bear with the telescope"

'see<[1:Mary], [37:bear]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

138

136

1

SUBJ

'bear'PRED

CASE acc, DEF +, NTYPE count, NUM sg, PERS 3

174

55

37

172

56

OBJ

'with<[86:telescope]>'PRED

'telescope'PRED

CASE acc, DEF +, NTYPE count, NUM sg, PERS 3

195

104

86

193

105

OBJ

semPTYPE199

85

71

ADJUNCT

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

-PASSIVE220

218

204

148

14

"Mary saw the bear with the telescope"

'see<[1:Mary], [37:bear]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

138

136

1

SUBJ

'bear'PRED

'with<[86:telescope]>'PRED

'telescope'PRED

CASE acc, DEF +, NTYPE count, NUM sg, PERS 3

195

104

86

193

105

OBJ

semPTYPE199

85

71

ADJUNCT

CASE acc, DEF +, NTYPE count, NUM sg, PERS 3201

55

37

172

56
OBJ

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

-PASSIVE220

218

204

148

14

206

(22) Mary said that Susan was hugging a bear.
__

| x9 x8 x7 x6 |
|−−|
| x9 = now |
| b e f o r e (x8 , x9) |
| x7 = Mary |
| bounded (x6 , x8) |
| s ay (x6) |
| a r g1 (x6 , x7) |
| __ |
	x5 x4 x2					
	−−					
s ay	b e a r (x5)					
	x4 = Susan					
	n o n f u t (x2 , x6)					
	________________ _______________					
		x1		x3		
		−−−−−−−−−−−−−−−−		−−−−−−−−−−−−−−−		
		ongo ing (x1 , x2)	==>	p a r t O f (x3 , x1)		
		________________		hug (x3)		
		a r g2 (x3 , x5)				
		a r g1 (x3 , x4)				

	__					
__						

Produced meaning constructors:
{
/ / L i g e r
lam (S , lam (T , d r s ([] , [r e l (ongoing , T , S)]))) : (207 _s −o (209 _s −o 205 _ t))
lam (S , lam (T , d r s ([] , [r e l (bounded , T , S)]))) : (208 _s −o (210 _s −o 206 _ t))
lam (M, lam (P , lam (S , d r s ([] , [imp (merge (d r s ([Z] , []) , app (app (M, S) , Z)) , app (P , Z))])))) :

((2 0 7 _s −o (209 _s −o 205 _ t)) −o ((1 0 _s −o 6 _ t) −o (11 _s −o 6 _ t)))
lam (M, lam (P , lam (S , merge (d r s ([Z] , []) , merge (app (app (M, S) , Z) , app (P , Z)))))) :

((2 0 8 _s −o (210 _s −o 206 _ t)) −o ((1 9 _s −o 18 _ t) −o (8 _s −o 18 _ t)))
lam (T , lam (T2 , d r s ([] , [r e l (b e f o r e , T , T2)]))) : (8 _s −o (9 _s −o 8 _ t))
lam (T , lam (T2 , d r s ([] , [r e l (non fu t , T , T2)]))) : (11 _s −o (12 _s −o 11 _ t))
lam (T , lam (P , lam (S , merge (d r s ([R] , []) , merge (app (app (T , R) , S) , app (P , R)))))) :

((1 1 _s −o (12 _s −o 11 _ t)) −o ((1 1 _s −o 6 _ t) −o (12 _s −o 6 _ t)))
lam (T , lam (P , lam (S , merge (d r s ([R] , []) , merge (app (app (T , R) , S) , app (P , R)))))) :

((8 _s −o (9 _s −o 8 _ t)) −o ((8 _s −o 18 _ t) −o (9 _s −o 18 _ t)))
/ / Grammar
lam (X, d r s ([] , [eq (X, ' Susan ')])) : (14 _e −o 14 _ t)
lam (X, d r s ([] , [eq (X, ' Mary ')])) : (17 _e −o 17 _ t)
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((5 _e −o 5 _ t) −o ((5 _e −o 6 _ t) −o 6 _ t))
lam (X, d r s ([] , [p r ed (bear ,X)])) : (5 _e −o 5 _ t)
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((1 7 _e −o 17 _ t) −o ((1 7 _e −o 18 _ t) −o 18 _ t)) | | noscope
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg2 , E ,X)]))))) :

((7 _v −o 7 _ t) −o (5 _e −o (7 _v −o 7 _ t))) | | noscope
lam (P , merge (d r s ([T] , [eq (T , now)]) , app (P , T))) :

((9 _s −o 18 _ t) −o 18 _ t) | | noscope
lam (P , lam (Q, merge (d r s ([X] , []) , merge (app (P ,X) , app (Q,X))))) :

((1 4 _e −o 14 _ t) −o ((1 4 _e −o 6 _ t) −o 6 _ t)) | | noscope
lam (V, lam (X, lam (E , merge (app (V, E) , d r s ([] , [r e l (arg1 , E ,X)]))))) :

((7 _v −o 7 _ t) −o (14 _e −o (7 _v −o 7 _ t))) | | noscope
lam (V, d r s ([] , [p r ed (hug ,V)])) : (7 _v −o 7 _ t)
lam (P , lam (X, lam (S , merge (d r s ([] , [p r ed (say , S) , r e l (arg1 , S ,X)]) , d r s ([] , [say (app (P , S))]))))) :

((1 2 _s −o 6 _ t) −o (17 _e −o (19 _s −o 18 _ t)))
lam (V, lam (S , merge (d r s ([E] , [r e l (pa r tOf , E , S)]) , app (V, E)))) :

((7 _v −o 7 _ t) −o (10 _s −o 6 _ t))
}

F-structure:

"Mary said that Susan hugged a bear"

'say<[1:Mary], [23:hug]>'PRED

'Mary'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

125

123

1

SUBJ

'hug<[58:Susan], [83:bear]>'PRED

'Susan'PRED

CASE nom, GEND fem, NTYPE name, NUM sg, PERS 3

157

155

58

SUBJ

'bear'PRED

'a'PREDDETSPEC

CASE acc, DEF -, NTYPE count, NUM sg, PERS 3

193

91

83

191

92

OBJ

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

COMP-FORM that, PASSIVE -213

57

23

211

197

167

71COMP

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

+ROOT220

218

215

135

14

207

