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Abstract

Word associations are commonly applied in
psycholinguistics to investigate the nature and
structure of the human mental lexicon, and at
the same time an important data source for mea-
suring the alignment of language models with
human semantic representations.

Taking this view, we compare the capacities of
different language models to model collective
human association norms via five word asso-
ciation tasks (WATs), with predictions about
associations driven by either word vector sim-
ilarities for traditional embedding models or
prompting large language models (LLMs).

Our results demonstrate that neither approach
could produce human-like performances in all
five WATs. Hence, none of them can suc-
cessfully model the human mental lexicon yet.
Our detailed analysis shows that static word-
type embeddings and prompted LLMs have
overall better alignment with human norms
compared to word-token embeddings from pre-
trained models like BERT. Further analysis sug-
gests that the performance discrepancies may
be due to different model architectures, espe-
cially in terms of approximating human-like
associative reasoning through either semantic
similarity or relatedness evaluation1.

1 Introduction

Artificial intelligence, particularly large language
models (LLMs), functionally emulates the way we
humans perceive and conceptualize the physical
reality, as well as how we understand and process
multifaceted information (Löhn et al., 2024). Yet a
pivotal open question remains unsolved: to what ex-
tent do LLMs align with the conceptual knowledge
hierarchically encoded in human cognition as their
capabilities advance? This is where the “machine
psychology” comes into play to scrutinize LLMs’
“behavioral traits” and “thinking patterns” through

1Our codes and data are publicly available at
https://github.com/florethsong/word_association
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Figure 1: Illustration of Common Word Association
Tasks. These tasks evaluate semantic alignment between
computational models (word embeddings vs. LLM
prompting) and human-like associative reasoning.

psychological tests adapted from interpretable re-
search on human (Hagendorff, 2023).

Successful modeling of the human mental lexi-
con can be viewed as an essential step in verifying
human-like intelligence. Human mental lexicon,
in contrast to electronic lexica, is extremely versa-
tile in supporting the association and generation of
new concepts. Indeed word association norms is
a typical method of investigation: a stimulus word
is presented to a human participant, who is sim-
ply required to produce the first word coming to
mind (McRae et al., 2012; De Deyne et al., 2019).
Semantic similarities and relatedness that underlie
the core of human mental lexicon is hereby quan-
tified as collective linguistic norms. Since distri-
butional similarity between words is an important
factor explaining associations, traditional studies
extensively adopted Distributional Semantic Mod-
els (DSMs) and word embeddings to predict human
word associations (Mandera et al., 2017; Evert and
Lapesa, 2021; Kwong et al., 2022; A et al., 2024).
On the other hand more recent studies, based on
LLMs, proved that such systems can align, to a
considerable extent, with human patterns of asso-
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ciating words (De Deyne et al., 2024; Abramski
et al., 2025; Bai et al., 2025). An open question
arisen is which one of these methods delivers better
results in approximating human norms.

Besides the theoretical interest of the problem,
the results are relevant to the problem of reverse
dictionary, where a user tries to retrieve a word
given a set of associates or a dictionary definition
(Almeman and Espinosa-Anke, 2024). Reverse
dictionary applications, which can be seen as the
information retrieval modeling side of human lexi-
cal access (the so-called tip-of-the-tongue, anomia
or dysnomia problem, see Zock (2002) and Rapp
and Zock (2014)) can be helpful tools for writers
and translators, and in this sense, generative LLMs
show a lot of promise, as they could help a user by
retrieving and generating a target word simply on
the basis of a prompt with some lexical cues. From
a psychological standpoint, word associations are
also a fundamental indicator for human creativ-
ity and divergent thinking, as research indicates a
consistent positive correlation between high levels
of human creativity and the capacity to generate
word associates that are distant in the lexical net-
work (Kenett and Faust, 2019; Yang et al., 2022;
Johnson and Hass, 2022; Wang et al., 2024).

As illustrated by the task types in Figure 1 fo-
cusing on semantic similarity and relatedness, this
study designs a protocol of five-stage word asso-
ciation tasks (WATs) to evaluate models against
human norms. By taking the majority of human
responses across various WATs as a main proxy
of human mental lexicon, this study compare the
word association abilities of vectors from tradi-
tional static word-type embedding models (WEMs),
mean-pooled word-token embeddings from repre-
sentative pretrained language models (PLMs), and
prompting strategies with mainstream LLMs. Re-
sults show that although none of these models align
fully with human mental lexicon and hence model
effectively the versatility of the human cognitive
ability, WEMs and LLMs can better mimic hu-
man associations than PLMs: LLMs outperform
competitors in word retrieval tasks (with a focus
on capturing semantic similarities, i.e., lexical in-
terchangeability), while WEMs perform better in
concept pairing (emphasizing the identification of
semantic relatedness, that is, detecting mutual con-
ceptual relations). While scaling-up and contextual-
ization often helps embedding models, PLMs show
more architecture- and task-dependent trade-offs.

2 Related Work

WATs with Humans Word associations are
grounded in Firthian’s “word in company” tradi-
tion that lexemes with resembling behavioral pro-
files (like, shared collocational patterns or syntactic
structures) encode similar paradigmatic or syntag-
matic relations in meaning and cognition (Firth,
1957; Church and Hanks, 1990). They function as
prototypical and advantageous tools in psycholin-
guistics to tap directly into semantic memory and
conceptual knowledge reflected in human think-
ing, reasoning, and language use. As a classical
paradigm, the free word association task and its
variants based on word clustering or relationship
identification accelerate quantitative exploration
of human cognitive phenomena, such as language
acquisition (Citraro et al., 2023), metaphor and
analogy comprehension (Lu et al., 2022), and cre-
ativity (Beaty and Kenett, 2023; Wang et al., 2024).

Various human association norms originally de-
signed to access preexisting word knowledge in
the human mind and detect different aspects of
cognitive development and competencies, such as
EAT (the Edinburgh Associative Thesaurus, Kiss
et al., 1973), USF (the University of South Florida
Free Association Norms, Nelson et al., 2004), and
SWOW (the Small World of Words, De Deyne
et al., 2019), can be applied in conjunction as a
comprehensive benchmark for facilitating the mea-
surement of the alignment between human internal
semantic cognition and external word embeddings.

WATs with Word Embeddings WATs have sig-
nificantly contributed to benchmarking models’ se-
mantic representations and conceptual structures
against human mental lexicon shown in diverse
human-generated norms, both in theory and prac-
tice (Rapp and Zock, 2014; De Deyne et al., 2016).
They provide a powerful means to probe into two
fundamental dimensions of distributional seman-
tics: similarity (interchangeability of words, e.g.,
car/van) and relatedness (shared conceptual rela-
tions between words, e.g., car/wheel) (Fodor et al.,
2023). Existing work (Lenci et al., 2022; Fodor
et al., 2023; A et al., 2024, etc.) has been exten-
sively devoted to thorough comparisons across a
wide spectrum of DSMs from count (e.g., Dissect
PPMI, Baroni et al., 2014) and predict models (e.g.,
word2vec, Mikolov et al., 2013) at early static-
embedding generation to recent transformer-based
contextual embedding models (e.g., BERT, Devlin
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et al., 2019). These studies consistently demon-
strated the superior performance of static embed-
dings in out-of-context WATs, while highlighting
contextual embeddings’ advantages in tasks requir-
ing contextual sensitivity. Collectively, they re-
vealed the nuanced interplay between model de-
sign, task requirements, and cognitive plausibility
of language representations.

WATs with LLMs Recent work expanded the
use of WATs into dissecting the behaviors of LLMs
as black-box systems to better understand their
advantages and limitations in semantic-aware rea-
soning. Abramski et al. (2025) established LLM-
generated free association norms by prompting
popular LLMs and found that LLM-generated
associations exhibit weaker concreteness effects
and stronger societal biases compared to human
norms. Cazalets and Dambre (2025) demonstrated
GPT-series’ ability to synchronize with human
players in game-like free association interactions.
Beyond free association tasks, structured variants
such as ontological classification (De Deyne et al.,
2024), connection tasks (Samdarshi et al., 2024),
and similarity judgments on triads (Linhardt et al.,
2025) have assessed LLMs’ ability to identify
underlying internal relations or cluster words by
shared characteristics. Increasing interest has been
in using WATs to reveal both explicit and implicit
societal biases encoded in LLMs. For example,
studies by Ethayarajh et al. (2019), Abramski et al.
(2025), and Bai et al. (2025) presented how WATs
can uncover attitude disparities between model out-
puts and human responses, highlighting their utility
in addressing ethical issues of language models.

Such studies stress WATs’ dual role in illuminat-
ing human and models’ semantic networks; how-
ever, existing work mainly relied either on prompt-
based strategies with LLMs or on embedding simi-
larity, without any systematic comparison between
the two. Also, previous studies were limited in
scope, focusing only on one type of WAT, therefore
a more comprehensive evaluation is necessary.

3 Experimental Settings

According to Abramski et al. (2025), probing into
the conceptual knowledge encoded within language
models by examining the embedding space works
well for traditional models, but it is less effective
and practical for LLMs. This is due to the fact that
embeddings from LLMs exhibit severe anisotropy
in their vector spaces, which can significantly dis-

tort similarity estimates (e.g., Ethayarajh, 2019;
Zhang et al., 2020; Biś et al., 2021; Timkey and
van Schijndel, 2021; Nie et al., 2025; Feng et al.,
2025). Therefore, a shift from the conventional
approach of accessing the embedding space to a
top-down approach in the context of LLMs was
proposed, which means directly prompting LLMs
with specific tasks and using their outputs to infer
the knowledge in their vector spaces.

Therefore, we examine the capabilities of dif-
ferent models by employing two methodologies:
embedding and prompting, which align with their
default typical approaches to WATs at hand. A ba-
sic assumption of embedding-based tests is that the
strength of word associations increases with the
cosine similarity of their embeddings (Clark, 2015;
Fodor et al., 2023), reflecting graded semantic re-
lationships in vector spaces. For WEMs, we ex-
tracted static word-type embeddings and calculated
the cosine similarities as the basis for their out-
puts. In terms of PLMs, both non-contextualized
and contextualized word embeddings were mean-
pooled from the last hidden layers and cosine simi-
larities were computed. Regarding LLMs, we uti-
lized zero-shot prompts to obtain direct responses.

3.1 Task Design

We tested our models on five complementary and
progressively challenging tasks built on the well-
established datasets, as summarized in Table 1.
Each task stresses distinct capabilities of language
models in terms of processing semantic similar-
ity versus relatedness, with extended discussion
provided in Appendix A.

Task 1: Multiple-Choice Associations FAST
dataset (Evert and Lapesa, 2021) is leveraged in
this task, which provides quadruples of a stimulus
and three candidate words: “FIRST, HAPAX, RAN-
DOM” where FIRST is the most frequent associate
response from humans, HAPAX is a response that
has been mentioned only once, and RANDOM is
a randomly selected control candidate with mini-
mal semantic association strength to the stimulus.
For each stimulus, a model has to choose the most
strongly associated word (i.e., for embedding mod-
els, the one with the largest semantic similarity). It
is worth noticing that HAPAX is also a word with
weak semantic association with the stimulus, and
thus it works as a strong distractor.

Performance is measured using Accuracy, i.e.,
the percentage of items in which the model cor-
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Table 1: Overview of Datasets for the Five Association Tasks. In the “Structure” column, underlined elements
indicate the information presented to the evaluated models, while bolded elements are used as the ground truth.

Task Dataset Structure Size2 Word List Metrics3

1 FAST
<stimulus, FIRST, HAPAX, RANDOM>

(e.g., accept, receive, love, souls)
11,431 (12,329) Accuracy

2 FAST
<stimulus, FIRST, HAPAX, RANDOM>

(e.g., achievement, success, degree, round)
11,431 (12,329) ✓ Top-1 Accuracy, Mean Rank (threshold = 4)

3 CogALex
<Target, a1, a2, a3, a4, a5>

(e.g., air, plane, fresh, water, breathe, force)
3,650 (4,000) ✓ Top-1 Accuracy, Mean Rank (threshold = 4)

4 Concrete-Abstract Triad
<A, B, C> (PAB, PAC, PBC)

(concrete e.g., banana, cherry, pineapple (0.18, 0.65, 0.18))
(abstract e.g., darling, hero, thinker (0.48, 0.13, 0.40))

100 + 100 Accuracy (Total, Concrete, Abstract)

5 Remote Triad
<A, B, C> (PAB, PAC, PBC)

(e.g., fence, mask, salt (0.80, 0.05, 0.15))
100 Accuracy

rectly picks the FIRST associate ([0%, 100%]),
with a random-choice baseline of 33.3%. To miti-
gate potential positional bias, the elements in each
candidate list were shuffled during LLM prompt-
ing.

Task 2: Open-Vocabulary Associations This
task also relies on the FAST dataset but differs in
that it presents no fixed set of candidates. Instead,
models are asked to generate the most associated
word in an open-vocabulary setup which further
simulates the way humans access their mental lexi-
con in a natural association task.

In the current study, we create a “pseudo-open
vocabulary” condition for WEMs and PLMs where
models are tasked with ranking associations for a
given stimulus over a large-scale word list, which
covers all FIRST words and restricts the range of
potential choices. The tailored word list applied in
this study is a concatenation of vocabularies from
word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and FastText (Joulin et al., 2017)
models, totaling 101,607 word types, effectively
serving the goals of the task. While LLMs are

2Since word2vec, GloVe, and FastText models underper-
form when faced with out-of-vocabulary words, we manually
excluded any missing items if a word in our specific word set
is not included in any of these three baseline models. As a
result, we obtained 11,431 out of 12,329 items from the orig-
inal FAST dataset for Tasks 1 and 2, and 3,650 out of 4,000
items from the original CogALex dataset for Task 3. For both
triad datasets corresponding to Tasks 4 and 5, no items were
removed from the original datasets.

3To ensure reliable and effective comparisons, we con-
ducted two types of significance tests, depending on the eval-
uation metrics. For accuracy scores in Tasks 1–5, we ap-
plied McNemar’s test (McNemar, 1947) corrected with Ben-
jamini–Hochberg procedure (Benjamini and Hochberg, 1995)
across all model pairs to determine whether the observed ac-
curacy differences are statistically significant. For mean rank
results in Tasks 2 and 3, we used the Wilcoxon signed-rank
test (Wilcoxon, 1945) to evaluate whether the rankings of the
FIRST or Target words in the given instances produced by
different models differed significantly. More details can be
found in Figures 8-12 in the Appendices.

asked to directly provide 30 words associated with
the stimulus, ordered by their association strength.

Two statistical metrics are reported based on the
word ranking list for each stimulus (i.e., the word
list sorted by decreasing cosine similarity based on
embedding-based models, and the ranked word list
generated by LLMs): 1) Top-1 Accuracy: how fre-
quently a model ranks the FIRST human response
as the top 1 result ([0%, 100%]), positively corre-
lated with model-human semantic alignment; and
2) Mean Rank (threshold = 4): the average posi-
tion of the FIRST word in the rankings by a certain
model. We set 4 as the threshold, that is, if the rank
of the FIRST word in a given ranking list is 3 or
lower, we assign this actual rank as the score for
the given instance, otherwise we assign a score of 4.
This is in line with the convention of shared tasks
using mean rank to mitigate excessive penalty on in-
stances with high-rank outliers (Camacho-Collados
et al., 2018; Mansar et al., 2021). The final scores
are mean ranks falling in [1, 4], which are nega-
tively correlated with the performance of models
in lexical alignment with humans.

Task 3: Reverse Associations Based on the Co-
gALex shared task dataset (Rapp and Zock, 2014),
this task evaluates the models’ ability to simul-
taneously integrate multi-layered relations across
multiple stimuli. The logic of this task is closely
related to the tip-of-the-tongue phenomenon. Each
item features a Target word defined as the human-
generated response to five given cue words, which
are all interconnected with the Target at a certain
conceptual level.

The objective is to retrieve the Target word that
semantically connects the five cue words, within a
pseudo-open vocabulary of candidates. For WEMs
and PLMs, we compute the average vector of the
five cue words and measure the association strength
(i.e., cosine similarity) between it and each candi-
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date word in a list of 101,607 words (identical to
that used in Task 2) to produce a ranked list of
target words, while LLMs are required to directly
generate a list of 30 potential targets. Performance
is evaluated using the same two metrics as in Task
2. This task emphasizes reverse reasoning ability
and tests whether models can reconstruct a unifying
concept from distributed cues.

Task 4: Concrete-Abstract Association Triads
This task presents triads of words to models, where
any two can be paired based on varying semantic
features. The goal is to select the most semanti-
cally related pair in each triad. The dataset, in-
troduced by De Deyne et al. (2021) is employed,
which can be split into two subsets: 1) Concrete
Triad Dataset focusing on physical entities and
events; 2) Abstract Triad Dataset focusing on
psychological and conceptual relationships.

Models’ outputs are compared against human
preferences with percentages provided in the
dataset. Specifically, for each instance, WEMs and
PLMs select the word pair with the highest cosine
similarity among the three candidate pairs based
on their word embeddings, whereas the top-ranked
pair from all three pairs is regarded as LLMs’ final
choice. We report respectively the accuracies on
total, concrete, and abstract triads, all ranging in
[0%, 100%] and positively correlated with model-
human alignment. In cases where humans do not
produce a single dominant pairing (e.g., two pair-
ings have equal frequencies chosen by humans), a
model’s choice is considered correct if it matches
one of the most frequent human choices.

Task 5: Remote Association Triads Similar
to the structure in Task 4 but significantly more
challenging, this task utilizes the Remote Triad
dataset (De Deyne et al., 2016) and requests mod-
els to identify the most related pairing with more
distant and creative semantic links among words.
As in Task 4, we measure accuracy based on human
preferences provided in the original dataset. Due to
the subtlety of the associations involved, this task
offers deeper and informative insights into the ex-
tent to which models can capture latent and implicit
conceptual relations beyond immediate meaning
similarity between words.

3.2 Model Selection
We evaluate representative and state-of-the-art lan-
guage models across three architectural paradigms
and development stages, further dividing them into

“Smaller” (with around 1B or fewer parameters)
and “Larger” (with over 1B parameters) categories
based on parameter scale. No post hoc modifica-
tions were conducted to the vanilla models and
their embeddings with the intention to assess the
intrinsic quality of their representations.

The first group covers five static WEMs:
word2vec (Mikolov et al., 2013) pretrained on
100B tokens of Google News, GloVe (Pennington
et al., 2014) trained on 6B tokens of Wikipedia
2014 and newspapers as well as GloVe-CC on 840B
tokens of Common Crawl (CC) Web data, and Fast-
Text (Joulin et al., 2017) trained on 16B tokens of
Wikipedia 2017 and other webbase corpus as well
as FastText-CC on 600B tokens of CC. All models
were tested with 300-dimensional embeddings.

The second group includes six PLMs: BERT-
base and -large (Devlin et al., 2019), GPT-2 and
-xl (Radford et al., 2019), and T5-small and -
3B (Raffel et al., 2020), from which we extracted
non-contextualized (the input is a single word, like
“accept”) as well as contextualized (the input is a
fixed simple sentence containing the key word, like
“My target word is accept”) word embeddings by
mean-pooling the subword representations in the
last layers.

The third group composes three LLMs, i.e.,
GPT-4.13, DeepSeek-V3 (-0324) (DeepSeek-AI,
2024), and Qwen3 (-238B-A22B) (Yang et al.,
2025). We ran additional experiments (cf. Ap-
pendix G) to test how different temperature settings
(0.01 vs. 0.5 vs. 1), prompt strategies (simple zero-
shot vs. enhanced few-shot), and reasoning modes
(standard vs. reasoning) impact LLM effectiveness
across different WATs. While results indicate that
most LLMs achieve marginally better performance
at temperature 0.5 using detailed few-shot prompts
with reasoning, optimal configurations vary across
tasks and models. To obtain consistent and com-
parable patterns from LLMs, we standardized our
configurations: temperature was maintained at 0.01
using zero-shot prompts, and reasoning ability was
not activated for the reasoning model—Qwen3.

4 Results and Analysis

This section reports the empirical results and find-
ings obtained from operationalizing the series of
tasks and metrics defined in Section 3.1. The statis-
tics corresponding to each task and significance
test results are displayed in Appendices B-F.

2https://openai.com/index/gpt-4-1/
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4.1 Multiple-Choice Association

Figure 2 illustrates the performance of various lan-
guage models in Task 1, that is, identifying the
most interchangeable word or near-synonyms to
a given cue from a restricted set of candidates.
With the only exception of GPT-2 (non-ctx), all
models achieve an accuracy vastly better than the
chance-level baseline. Notably, WEMs and LLMs
significantly outperform PLMs proved by Figure 8,
frequently reaching accuracies of 80% or higher.
This suggests that static word-type representations
derived from WEMs and prompted LLMs are more
effective at capturing direct semantic similarities
between near-synonyms or conceptually related
words. In contrast, token-level embeddings mean-
pooled from PLMs show substantially reduced ef-
fectiveness, indicating a difficulty in abstracting a
type-level representation, which would be neces-
sary for this task. Our findings are consistent with
Lenci et al. (2022), Apidianaki (2023), and A et al.
(2024), who claimed that word-token representa-
tions complicate the investigation of lexical seman-
tic knowledge anchored at the word-type level.

Figure 2: Plot of Model Accuracies in the Multiple-
Choice Association Task. Fillings and shapes are used
to distinguish the context types and the magnitudes of
models. Hollow markers indicate smaller models, while
solid ones represent larger ones. Non-contextualized
(non-ctx) PLMs are shown as circles, in contrast to
contextualized (ctx) PLMs marked with triangles. Note:
the visual markers in the subsequent figures maintain
consistent meanings throughout this paper.

Additionally, when comparing the efficiency of
non-contextualized embeddings to contextualized
ones within PLMs, it is interesting to note that
extra contexts benefit both GPT-2 and T5, though
to varying degrees, while BERT-base and BERT-
large models do not display the same enhancement.

Comparisons between smaller and larger models
reveal that, for most WEMs and PLMs, increasing
parameter count correlates with improved model-
ing of lexical semantics and conceptual relation-
ships. Larger models tend to outperform smaller
ones, aligning with established Scaling Laws (Ka-
plan et al., 2020), with the exception of BERT,
whose larger variant is worse than the smaller one,
pointing to its potential architectural or training-
related limitations in preserving word-type knowl-
edge during scaling-up.

Figure 3 reveals distinct error patterns across dif-
ferent model types. The errors align with overall
accuracy trends: WEMs and LLMs predominantly
select HAPAX, indicating a relatively strong sensi-
tivity to weak associations, while making few RAN-
DOM selections. This suggests that such models
can at least effectively distinguish between weak
and non-existent associations, while in contrast
PLMs and particularly GPT-2 (non-ctx) are more
frequently misled by RANDOM distractors. Fur-
thermore, LLMs occasionally encountered OTHER
errors, particularly involving incorrect formats or
range misinterpretations under zero-shot prompt-
ing. For example, LLMs may output stock in
response to garters with the candidate list [lace,
sweaters, stockings], reflecting possible failures
in instruction following that manifest as hallucina-
tions or misalignment with task requirements.

4.2 Open-Vocabulary Association

Task 2 introduces a more demanding evaluation
scenario, placing models under empirically unre-
stricted “free” association conditions, therefore re-
sulting in universally lower performance across
all models as evidenced in Figure 4. This task
probes the models’ global semantic organization
and broader vector space in that they mirror human-
like associative knowledge. Remarkably, the stark
disparities in top-1 accuracies and mean ranks
between WEMs/PLMs and LLMs (the majority
of these differences are statistically significant as
shown in Figure 9) highlight that LLMs can more
reliably identify human-preferred associative tar-
gets by frequently retrieving and prioritizing near-
synonyms of high-frequency co-occurring lexemes
for the given stimulus (e.g., really for actually, de-
parture for arrival).

Interestingly, the effect of model size is heteroge-
neous and model-dependent. Specially, scaling-up
yields marginal performance gains for GloVe, Fast-
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Figure 3: Error Percentages for Various Types of Wrong Hits in the Multiple-Choice Association Task. Blue bars
show the percentage of HAPAX models deemed the most associated word with the stimulus, orange bars represent
RANDOM hits, and green bars indicate other error types (e.g., multiple-word or out-of-choice generations).

Text, and GPT-2, but not for BERT or T5. This
indicates that semantic-cognitive alignment relies
more on architecture than on scale. It further sug-
gests that parametric scaling laws interact differ-
ently with task-specific requirements.

Figure 4: Top-1 Accuracies (above) and Mean Ranks
(below) in the Open-Vocabulary Association Task.

4.3 Reverse Association

Task 3 requires two-step reasoning: first identify-
ing the conceptual commonality among five related
hint words, and then finding the target word con-
necting them from a broad candidate pool.

As shown in Figure 5 and 10, the results largely
mirror the overall performance trends observed
in Tasks 1 and 2, while further confirming that
LLMs exhibit better alignment with human seman-
tic knowledge. Specifically, LLMs achieve over

25% top-1 accuracies and demonstrate consistently
lower mean ranks for the correct Target words as
judged by humans. This suggests that LLMs are
better equipped to handle tasks requiring abstract
generalization and lexical retrieval.

Notably, static embeddings from WEMs also
show relatively strong performance, achieving
higher accuracy and lower average ranks compared
to all PLMs. As for the vector representations from
the latter type of models, it is possible that they
are just too context-specific for tasks requiring to
capture the semantics of word types.

Figure 5: Top-1 Accuracies (above) and Mean Ranks
(below) in the Reverse Association Task.

4.4 Concrete-Abstract Association
This task probes semantic space by comparing
the strengths of inter-word semantic relationships
within triads. As shown in Figure 6 and 11,
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Figure 6: Accuracies in the Concrete-Abstract Association Task on Total, Concrete, and Abstract Datasets.

experimental results highlight the superior per-
formance of WEMs, which significantly outper-
form embeddings from most PLMs, regardless of
whether the word pairs are concrete or abstract.
Moreover, regarding LLMs, the results also reveal
that employing prompt-based methods on GPT-
4.1 in this task achieves accuracy comparable to
static embeddings derived from WEMs. In con-
trast, both DeepSeek-V3 and Qwen3 perform sig-
nificantly worse—especially compared to larger
WEMs, namely, GloVe-CC and FastText-CC, and
their performance aligns more closely with that of
T5 models among PLMs.

Interestingly, WEMs and LLMs show somewhat
stronger performance on concrete triads than on
abstract ones, while PLMs (like BERT and T5)
exhibit the opposite pattern. This contrast may re-
flect their differing sensitivities to concreteness ef-
fects (Hill et al., 2014; Knupleš et al., 2023; Abram-
ski et al., 2025), which describes that concrete
words tend to evoke stronger but fewer associations,
whereas abstract words elicit weaker but more dif-
fuse associations. In this light, WEMs and LLMs
are more effective at leveraging the focused, robust
relationships typical of concrete concepts, whereas
token-based embeddings from PLMs show fairly
poor capability of adapting to such associations.

At last, we observe that incorporating contex-
tual information during embedding extraction from
PLMs leads to little performance degradation in
BERT models but a slight improvement in GPT-2
and T5 models. However, these differences stem-
ming from their distinct model architectures (Qiu
et al., 2020) are not significant in this task. Besides,
while scaling has minimal impact on PLMs’ per-
formance, it significantly enhances that of WEMs.

4.5 Remote Association

Contrary to expectations, the increased concep-
tual distances for the triads in Task 5, which
may present greater challenges for human partic-
ipants, have only a limited impact on the accu-
racies achieved by most language models when
compared to the baseline results in Task 4. The
results in Figure 12 indicate that significant accu-
racy differences arise only between WEMs and
two types of PLMs (BERT and GPT-2), as well
as two LLMs (DeepSeek-V3 and Qwen3). The
top-performing models in each group remain con-
sistent with those identified in other tasks, namely,
FastText-CC among WEMs, T5-3B among PLMs,
and GPT-4.1 among LLMs.

Figure 7: Accuracies in the Remote Association Task.

For this task, neither model size nor contextual-
ization substantially affects the ability of WEMs
and PLMs to identify intricate relational abstrac-
tions. Two primary factors may explain this finding.
The first is the limited dataset size of 100 items,
which may restrict generalization and robust sta-
tistical analysis. Second, theoretically, the remote
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associations present in these triads generate sce-
narios that extend beyond textual information by
incorporating not only perceptual but multimodal
concerns, which may reduce the influence of dif-
ferences in textual data. For instance, in the triad:
A-fear, B-guest, C-price (PAB=0.275, PAC=0.425,
PBC=0.300), models with limited abstraction ca-
pabilities fail to identify the most human-like con-
nection between fear and price, a subtle relation-
ship that likely reflects real-world consumption and
market experiences but is uncommon in training
data. In such cases, evaluating atypicality by an-
alyzing the distribution of model choices across
both typical and atypical human responses, rather
than relying solely on accuracy based on the most
frequent human response, may yield a more infor-
mative comparison.

5 Conclusion

This study systematically evaluates the intrinsic
semantic capabilities of diverse language models,
including WEMs, PLMs, and LLMs, by leveraging
their typical operational modes (e.g., word embed-
dings vs. prompt-based generation). Through the
adaptation and integration of five kinds of classical
psycholinguistic WATs, we assess how well these
models perform on cognitively motivated bench-
marks. The results reveal distinct performance and
limitations across architectures and configurations.

First, WEMs and LLMs demonstrate better
alignment with human association norms com-
pared to PLMs, particularly in tasks requiring sta-
ble type-level semantic representations. Notably,
LLMs outperform the other models in word re-
trieval (Tasks 1–2, similarity-dominant; Task 3,
considering both similarity and relatedness), while
WEMs do better in concept pairing (Tasks 4–5,
relatedness-dominant), highlighting their comple-
mentary strengths across model architectures and
the fact that human mental lexicon is good at syner-
gizing similarity and relatedness, but not artificial
systems. For WMEs, increasing model size gen-
erally improves performance. However, PLMs ex-
hibit architecture-dependent behaviors in terms of
scaling and contextualization: encoder-only mod-
els like BERT often degrade with larger scales and
added contexts but decoder-only models (e.g., GPT-
2) tend to benefit from both. For encoder–decoder
models (e.g., T5), the impacts are task-specific.
Their performance notably improves in Tasks 1
and 3 in these two settings but declines in Task 2.

LLMs’ partial success in some WATs by mim-
icking human semantic behaviors demystifies the
claim of their human-like intelligence. Yet they
still struggle to fully replicate the versatility of the
human mental lexicon, particularly in associating
remote or abstract concepts. This suggests a ten-
sion between accuracy and creativity in language
modeling, warranting deeper exploration. Together,
these findings provide comprehensive insights into
the alignment between language models and hu-
man cognition and highlight the value of psycholin-
guistic data for diagnosing model capabilities and
biases.

Limitations

While this work provides broad insights into the
semantic quality of different language models, it is
limited by a few reasons for further improvement
in the future.

A primary limitation of this study is the use of
different evaluation methods across model types:
cosine similarity for WEMs and PLMs, versus
prompting for LLMs. While these approaches re-
flect typical usage patterns, the inconsistency chal-
lenges the validity of direct comparisons. Embed-
ding similarity may capture relations beyond asso-
ciative knowledge in some cases, whereas prompt-
ing can advantage LLMs by providing task-specific
guidance. Consequently, some performance differ-
ences may reflect evaluation methods rather than in-
trinsic disparities in model knowledge. Future work
should seek to standardize protocols, for example,
by incorporating embedding-based measures for
LLMs.

Additionally, while cosine distances are the most
commonly used method for measuring semantic
similarity between vectors, it has been criticized for
potentially yielding arbitrary and meaningless “sim-
ilarities” (Steck et al., 2024). Meanwhile, it may
underestimate the actual similarity between con-
textualized embeddings (Wannasuphoprasit et al.,
2023; Ijebu et al., 2025) and does not reliably in-
dicate human associations due to its symmetric
nature (Abramski et al., 2025). This limitation may
impact our findings regarding the alignment be-
tween human assessments and the embeddings of
WEMs and PLMs. Therefore, alternative methods,
such as the soft cosine similarity proposed by Ijebu
et al. (2025) or rank-based metrics (Santus et al.,
2016, 2018; Zhelezniak et al., 2019), could be ex-
plored for a more robust investigation.
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Also, our analysis of PLM models focused only
on final-layer embeddings obtained through mean
pooling, overlooking potential variations across
transformer layers. Previous research suggested
that intermediate layers may better capture lexical
semantics (Ormerod et al., 2024). Additionally, it
could be the case that our generic contexts were
not informative enough to create robust represen-
tations, and better results might be achieved by
sampling random sentence contexts with the target
word from a large-scale corpus to represent and by
averaging the corresponding embeddings (Bom-
masani et al., 2020; A et al., 2024; Nie et al., 2025).
We will examine more layer-wise semantic proper-
ties and assess methods for distilling contextualized
embeddings into static ones in the future. On the
other hand, we also believe that this issue confirms
that PLMs are probably not the best choice for the
automatic collection of word associations, com-
pared to WEMs and LLMs, given that researchers
would have to perform the additional steps of con-
text sampling and selection of the optimal layers.

Furthermore, the current study primarily focused
on English WATs and did not adequately address
advanced reasoning models and better configura-
tions for prompting LLMs, which require further
examination and comparison, including in multilin-
gual and low-resource language contexts.

Finally, this study was conducted solely on
semantic-level word associations. To gain a more
in-depth understanding of language associations,
future work can incorporate perspectives from
other linguistic dimensions, such as morphological
and phonological associations.
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A Discussion on the Properties of
Different WATs

Studies of semantic knowledge in vector spaces
typically use two key metrics: semantic similarity
and semantic relatedness (Fodor et al., 2023). The
former means the degree of interchangeability be-
tween words based on their core meanings (Miller
and Charles, 1991), as exemplified by accept and
receive due to their overlapping meanings. In con-
trast, the latter encompasses broader conceptual
connections, including functional, contextual, or
psychological associations, even when words ex-
hibit minimal semantic overlap (Gladkova et al.,
2016). For instance, air and plane demonstrate
high relatedness despite low similarity. These di-
mensions are rooted in lexical networks together,
with different word association tasks highlighting
distinct aspects.

Tasks 1 and 2 primarily assess semantic simi-
larity, as they require models to identify the most
semantically proximate word to a given stimulus.
In Task 1, the FIRST response exhibits high in-
terchangeability with the given stimulus (e.g., re-
ceive for accept), conforming to Miller and Charles
(1991)’s definition of semantic similarity. While
Task 2 employs an open-vocabulary paradigm, it
requires the generation or selection of maximally
similar words, maintaining its focus on direct mean-
ing alignment. Both tasks prioritize paradigmatic
relations (synonymy or near-synonymy).

Tasks 4 and 5 are relatedness-focused ones due
to their emphasis on detecting implicit conceptual
connections beyond semantic interchangeability.
The triad tasks (Concrete-Abstract and Remote)
evaluate models’ ability to identify word pairs
based on latent relational features. For instance,
[banana, cherry, pineapple] in Task 4 (banana and
pineapple are regarded as the most related con-
cepts, but they have totally different denotations),
and [fence, mask, salt] in Task 5 (the first two words
are most related but non-interchangeable).

Different from the aforementioned tasks, Task
3 requires models to simultaneously make judg-
ments on semantic similarity and relatedness, as
illustrated through examples from the CogALex
dataset (Rapp and Zock, 2014). The case of [plenty,
many, lots, around, leap → abound] demonstrates
similarity-driven processing, where identifying the
Target depends on recognizing shared core mean-
ings of quantitative abundance. In contrast, the
example [plane, fresh, water, breathe, force → air]
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reveals their internal relatedness through its web of
diverse associations, including functional, ecologi-
cal, physical, and perceptual connections.

Our findings echo prior work (Lenci et al., 2022;
A et al., 2024) on the semantic representation ca-
pabilities of WEMs versus contextualized models
(PLMs/LLMs). We found that the distinction be-
tween association tasks via semantic similarity and
relatedness is highly significant as it offers a clearer
framework for comparing architectures, emphasiz-
ing that human cognition seamlessly combines sim-
ilarity and relatedness, while language models lag
behind and show different limitations.

B Results of Multiple-Choice Association

Table 2: Accuracies (Acc.) and Frequencies of Incorrect
Responses (HAPAX, RANDOM, and OTHER) in Task 1.

Types Settings Models Acc. (%) HAPAX RANDOM OTHER

WMEs embeddings

word2vec 77.90 2,203 322
GloVe 79.31 2,072 292
GloVe-CC 80.28 2,092 161
FastText 82.07 1,904 145
FastText-CC 83.34 1,783 120

PLMs

non-contextualized
embeddings

BERT-base 58.26 3,150 1,621
BERT-large 52.81 3,409 1,985
GPT-2 34.23 3,215 4,303
GPT-2-xl 52.42 3,094 2,344
T5-small 65.89 2,801 1,097
T5-3B 67.05 2,944 822

contextualized
embeddings

BERT-base 52.01 3,352 2,134
BERT-large 45.46 3,374 2,860
GPT-2 52.25 3,203 2,255
GPT-2-xl 62.55 2,666 1,615
T5-small 67.47 2,583 1,135
T5-3B 71.34 2,373 903

LLMs prompt
GPT-4.1 86.77 1,408 80 24
DeepSeek-V3 86.72 1,420 84 14
Qwen3 79.53 2,077 233 30

Figure 8: Pairwise McNemar’s Tests on Task 1 (p <
0.05). Colored cells denote the significantly stronger
models based on accuracies: red for Model_A and blue
for Model_B. Dashes indicate non-significant differ-
ences.

C Results of Open-Vocabulary
Association

Table 3: Top-1 Accuracies (Top-1 Acc.) and Mean
Ranks with the Threshold of 4 (MR/4) in Task 2.

Types Settings Models Top-1 Acc. (%) MR/4

WMEs embeddings

word2vec 4.59 3.76
GloVe 5.78 3.69
GloVe-CC 4.79 3.71
FastText 5.14 3.70
FastText-CC 5.49 3.66

PLMs

non-contextualized
embeddings

BERT-base 3.19 3.85
BERT-large 2.13 3.90
GPT-2 0.78 3.97
GPT-2-xl 0.86 3.96
T5-small 4.99 3.76
T5-3B 4.17 3.79

contextualized
embeddings

BERT-base 2.74 3.89
BERT-large 2.13 3.90
GPT-2 1.84 3.92
GPT-2-xl 2.41 3.89
T5-small 4.11 3.77
T5-3B 2.12 3.87

LLMs prompt
GPT-4.1 30.07 2.85
DeepSeek-V3 35.56 2.69
Qwen3 32.40 2.81

Figure 9: Pairwise McNemar’s Tests (above) and
Wilcoxon Signed-Rank Tests (below) on Task 2 (p <
0.05). For the plot above, colored cells denote the signif-
icantly stronger models based on top-1 accuracies: red
for Model_A and blue for Model_B. For the below one,
colored cells denote significant differences on FIRST
ranks. Dashes indicate non-significant differences.

221



D Results of Reverse Association

Table 4: Top-1 Accuracies (Top-1 Acc.) and Mean
Ranks with the Threshold of 4 (MR/4) in Task 3.

Types Settings Models Top-1 Acc. (%) MR/4

WMEs embeddings

word2vec 16.99 3.28
GloVe 16.27 3.34
GloVe-CC 18.52 3.26
FastText 21.26 3.14
FastText-CC 24.14 3.03

PLMs

non-contextualized
embeddings

BERT-base 5.53 3.78
BERT-large 3.04 3.87
GPT-2 0.25 3.99
GPT-2-xl 1.04 3.95
T5-small 10.90 3.57
T5-3B 12.11 3.52

contextualized
embeddings

BERT-base 2.38 3.90
BERT-large 3.34 3.87
GPT-2 0.63 3.97
GPT-2-xl 2.08 3.91
T5-small 14.14 3.44
T5-3B 13.51 3.43

LLMs prompt
GPT-4.1 35.53 2.73
DeepSeek-V3 29.37 2.95
Qwen3 27.45 3.03

Figure 10: Pairwise McNemar’s Tests (above) and
Wilcoxon Signed-Rank Tests (below) on Task 3 (p <
0.05). For the plot above, colored cells denote the signif-
icantly stronger models based on top-1 accuracies: red
for Model_A and blue for Model_B. For the below one,
colored cells denote significant differences on Target
ranks. Dashes indicate non-significant differences.

E Results of Concrete-Abstract
Association

Table 5: Accuracies (Acc.) on Total (T), Concrete (C),
and Abstract (A) datasets in Task 4.

Types Settings Models T-Acc. (%) C-Acc. (%) A-Acc. (%)

WMEs embeddings

word2vec 62.00 67.00 57.00
GloVe 60.50 64.00 57.00
GloVe-CC 66.50 77.00 56.00
FastText 61.50 65.00 58.00
FastText-CC 69.00 74.00 64.00

PLMs

non-contextualized
embeddings

BERT-base 44.00 40.00 48.00
BERT-large 41.50 39.00 44.00
GPT-2 37.00 38.00 36.00
GPT-2-xl 44.00 45.00 43.00
T5-small 47.50 45.00 50.00
T5-3B 46.50 43.00 50.00

contextualized
embeddings

BERT-base 41.00 34.00 48.00
BERT-large 36.00 32.00 40.00
GPT-2 37.50 38.00 37.00
GPT-2-xl 54.00 54.00 54.00
T5-small 52.00 47.00 57.00
T5-3B 48.50 45.00 52.00

LLMs prompt
GPT-4.1 62.00 65.00 59.00
DeepSeek-V3 51.00 57.00 45.00
Qwen3 51.50 54.00 49.00

Figure 11: Pairwise McNemar’s Tests on Task 4 (p <
0.05). Colored cells denote the significantly stronger
models based on t-accuracies: red for Model_A and
blue for Model_B. Dashes indicate non-significant dif-
ferences.

F Results of Remote Association

G Ablation Studies on Prompting LLMs

We conducted exploratory experiments to examine
how external (prompt design) and internal factors
(temperature settings, reasoning modes) influence
LLM performance across different WATs. Datasets
applied here were randomly sampled from our main
evaluation data as introduced in Table 1, with 200
items per task for Tasks 1-3, and full sets for Task
4 (200 items) and Task 5 (100 items).
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Table 6: Accuracies (Acc.) in Task 5.

Types Settings Models Acc. (%)

WMEs embeddings

word2vec 62.00
GloVe 65.00
GloVe-CC 64.00
FastText 66.00
FastText-CC 63.00

PLMs

non-contextualized
embeddings

BERT-base 36.00
BERT-large 36.00
GPT-2 44.00
GPT-2-xl 48.00
T5-small 49.00
T5-3B 51.00

contextualized
embeddings

BERT-base 34.00
BERT-large 34.00
GPT-2 42.00
GPT-2-xl 53.00
T5-small 58.00
T5-3B 57.00

LLMs prompt
GPT-4.1 63.00
DeepSeek-V3 46.00
Qwen3 38.00

Figure 12: Pairwise McNemar’s Tests on Task 5 (p <
0.05). Colored cells denote the significantly stronger
models based on t-accuracies: red for Model_A and
blue for Model_B. Dashes indicate non-significant dif-
ferences.

G.1 Different Prompts: Zero-shot vs.
Few-shot

Two sets of prompt instructions were designed by
referring to those in the study of De Deyne et al.
(2024), namely, 1) simple zero-shot prompts and
2) enhanced few-shot ones, detailed in Figures 13
to 18. The exemplars for few-shot prompts were
sourced from established association norms such as
EAT (Kiss et al., 1973), USF (Nelson et al., 2004),
and SWOW (De Deyne et al., 2019), excluding any
items overlapping with our evaluation datasets to

prevent contamination. The temperature for this
subexperiment was fixed at 0.01 and the reasoning
mechanism was disabled to isolate prompt efficacy.

Results in Table 7 exhibit that detailed few-shot
prompts consistently enhance LLM performance
except in Task 2. For instance, GPT-4.1 achieves
over 5% accuracy gains in Tasks 3 and 4, and
DeepSeek-V3 and Qwen3 show even more than
10% improvements. However, the benefits of de-
tailed few-shot prompting are model- and task-
dependent, as evidenced by GPT-4.1’s performance
in Task 2, where such prompts had marginal or even
negative effects.

G.2 Different Temperatures: 0.01 vs. 0.5 vs. 1
The temperature is a built-in parameter of LLMs
to control the randomness and the so-called cre-
ativity of their outputs (Peeperkorn et al., 2024). It
spans [0, 2] with higher values corresponding to
increased diversity, while lower values yield more
focused and deterministic outputs. It is assumed to
have effects on models’ semantic association capa-
bilities, potentially mapping cognitive factors in hu-
man associative behavior. Therefore, we conducted
subexperiment on comparing three temperatures:
0.01, 0.5, and 1 with simple zero-shot prompts and
without the thinking mode.

Although the current test was limited to half of
the full temperature range, Table 8 demonstrates
two key observations: 1) Temperature effects vary
across models and tasks, such as, GPT-4.1 achieves
optimal performance at 0.01 and 0.5, DeepSeek-V3
benefits most from 0.5, Qwen3 performs better at
0.5 and 1, and Tasks 2 and 3 show robustness to
0.5 compared to other tasks; 2) Performance dif-
ferences induced by different temperatures remain
subtle (less than 5%) across all assessed models
and tasks.

G.3 Different Modes: Standard vs. Reasoning
To investigate potential advantages of reasoning
mechanisms, we conducted a subexperiment on
Qwen3 with reasoning activation as the only vari-
able, using zero-shot prompts and a fixed temper-
ature of 0.01. Surprisingly, the reasoning is not
advantageous in all WATs. Notably, in Tasks 2 and
4—abstract word pairing, enabling reasoning may
lead to overthinking and hence misjudgments in
semantic similarity and relatedness assessments.

Together above results unveil the versatility of
the human associative ability, which cannot be fully
reproduced by LLM configurations.
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Table 7: Comparisons of LLM Results across Different Prompt Strategies. Boldface values indicate the highest
performance achieved by the model on a given task across all strategies.

Tasks Metrics GPT-4.1 DeepSeek-V3 Qwen3

zero-shot few-shot zero-shot few-shot zero-shot few-shot

Task 1 Acc. (%) 90.00 91.00 89.50 90.50 84.50 89.50

Task 2 Top-1 Acc. (%) 31.00 30.50 35.50 36.50 32.50 35.00
MR/4 2.75 2.76 2.68 2.53 2.78 2.61

Task 3 Top-1 Acc. (%) 32.50 37.00 26.00 37.50 23.00 34.00
MR/4 2.86 2.72 3.03 2.71 3.19 2.82

Task 4
T-Acc. (%) 62.00 67.50 50.50 75.00 51.50 61.50
C-Acc. (%) 65.00 66.00 56.00 80.00 54.00 58.00
A-Acc. (%) 59.00 69.00 45.00 70.00 49.00 65.00

Task 5 Acc. (%) 63.00 68.00 46.00 60.00 38.00 43.00

Table 8: Comparisons of LLM Results across Different Temperature Settings. Boldface values indicate the highest
performance achieved by the model on a given task across all settings.

Tasks Metrics GPT-4.1 DeepSeek-V3 Qwen3

0.01 0.5 1 0.01 0.5 1 0.01 0.5 1

Task 1 Acc. (%) 90.00 89.50 88.50 89.50 88.50 88.50 84.50 86.50 86.00

Task 2 Top-1 Acc. (%) 31.00 32.00 30.00 35.50 37.00 34.50 32.50 35.00 32.00
MR/4 2.80 2.78 2.81 2.68 2.60 2.66 2.78 2.71 2.71

Task 3 Top-1 Acc. (%) 32.50 36.00 33.00 26.00 31.50 29.00 23.00 26.50 26.50
MR/4 2.83 2.76 2.80 3.03 2.93 2.98 3.19 3.11 3.06

Task 4
T-Acc. (%) 62.00 57.00 59.00 51.00 51.50 51.00 51.50 52.50 52.50
C-Acc. (%) 65.00 58.00 63.00 57.00 56.00 57.00 54.00 55.00 52.00
A-Acc. (%) 59.00 56.00 55.00 45.00 47.00 45.00 49.00 50.00 53.00

Task 5 Acc. (%) 63.00 67.00 63.00 46.00 43.00 45.00 38.00 39.00 35.00

Table 9: Comparisons of Qwen3 Results with Different
Thinking Modes. Boldface values indicate the highest
performance achieved by the model on a given task
within two modes.

Tasks Metrics Qwen3

standard reasoning

Task 1 Acc. (%) 84.50 89.00

Task 2 Top-1 Acc. (%) 32.50 28.50
MR/4 2.78 2.84

Task 3 Top-1 Acc. (%) 23.00 28.00
MR/4 3.19 3.01

Task 4
T-Acc. (%) 51.50 52.00
C-Acc. (%) 54.00 57.00
A-Acc. (%) 49.00 47.00

Task 5 Acc. (%) 38.00 45.00
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*** Simple Zero-Shot Prompt ***

System: You are a native speaker of English participating in a psycholinguistic test about word meaning.

User:

** Task 1 **
- You will be presented with a list of words separated by "-" that consists of a cue (the first one) and three

candidates.
- You are asked to choose one target candidate from the three given candidates that is most closely associated

with the cue.
- Remember to only respond with one target candidate word and do not further elaborate on your response.
- Format your response as json: {cue-candidate1-candidate2-candidate3: target candidate}.
----------
- Input:{input}
- Output:

** Task 2 **
- You will be presented with a cue word.
- You are asked to output a list consisting of thirty words that are most closely associated with the cue word.
- Rank all thirty words according to their strength of association with the cue words in descending order.
- Remember to only respond with one list of ranked words and do not further elaborate on your response.
- Format your response as json: {cue: [response1, response2, ..., response30]}.
----------
- Input:{input}
- Output:

** Task 3 **
- You will be presented with five hint words seperated by "-".
- You are asked to output a list consisting of thirty words that are most closely associated with the given five

hint words
- Rank all thirty words according to their strength of association with all five hint words in descending order.
- Remember to only respond with one list of ranked words and do not further elaborate on your response.
- Format your response as json: {word1-word2-word3-word4-word5: [response1, response2, ..., response30]}.
----------
- Input:{input}
- Output:

** Task 4 **
- You will be presented with a triplet of words that can be marked as "A", "B", "C" in sequence.
- You are asked to output a list consisting of three alphabetic pairs that are ranked with the strength of word

association within their corresponding word pairs.
- Remember to only respond with one list of ranked pairs and do not further elaborate on your response.
- Format your response as json: {wordA-wordB-wordC:["AB", "BC", "AC"]}.
----------
- Input:{input}
- Output:

** Task 5 **
- You will be presented with a triplet of words that can be marked as "A", "B", "C" in sequence.
- You are asked to output a list consisting of three alphabetic pairs that are ranked with the strength of word

association within their corresponding word pairs.
- Remember to only respond with one list of ranked pairs and do not further elaborate on your response.
- Format your response as json: {wordA-wordB-wordC:["AB", "BC", "AC"]}.
----------
- Input:{input}
- Output:

Figure 13: Simple Zero-shot Prompt Instructions for LLMs across Five WATs.
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*** Enhanced Few-Shot Prompt – Task 1 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Multiple-Choice Word Association”, designed to measure your ability to associate words with each

other from a restricted list.

- You will be presented with a list of words separated by "-" that consists of a cue (priming lexical item) in the first

position and three candidates (a triplet of potential association targets) in the second to fourth positions.

- You are asked to choose one target candidate from the three given candidates that is most closely associated with the

cue in consideration of semantic (denotative overlap), conceptual (connotative alignment) and cognitive (co-

occurrence frequency) association strengths.

- Remember to only respondwith one target candidate word and do not further elaborate on your response.

- Format your response as json: {cue-candidate1-candidate2-candidate3: target candidate}.

----------

- Here are some examples:

- {

- "input": "fibre-moral-glass-cries",

- "output": {"fibre-moral-glass-cries": "glass"}

- },

- {

- "input": "alert-jagger-inactive-awake",

- "output": {"alert-jagger-inactive-awake": "awake"}

- },

- {

- "input": "poison-arsenic-milford-shakespeare",

- "output": {"poison-arsenic-milford-shakespeare": "arsenic"}

- }

----------

- Input:{input}

- Output:

Figure 14: Extended Few-shot Prompt Instructions for LLMs in Task 1: Multiple-Choice Association.
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*** Enhanced Few-Shot Prompt – Task 2 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Open-Vocabulary Word Association", designed to measure your ability to perform deep semantic

network traversal.

- You will be presented with a cue word.

- You are asked to output a list consisting of thirty words that are most closely associated with the cue word in

consideration of semantic (denotative overlap), conceptual (connotative alignment) and cognitive (co-occurrence

frequency) association strengths.

- Rank all thirty words according to their strength of associationwith the cue words in descending order.

- Remember to only respondwith one list of ranked words and do not further elaborate on your response.

- Format your response as json: {cue: [response1, response2, ..., response30]}.

----------

- Here are some examples:

- {

- "input": "fibre",

- "output": {{"fibre":["food", "cloth", "cereal", "fabric", "optic", "diet", "cotton", "glass", "poop", "internet", "bread",

"bran", "optics", "material", "hair", "thread", "health", "strength", "rope", "wheat", "clothes", "grain", "wool", "clothing",

"textile", "wire", "healthy", "paper", "digestion", "laxative"]}

- },

- {

- "input": "alert",

- "output": {{"alert":["awake", "alarm", "red", "aware", "fire", "siren", "warning", "ready", "warn", "danger",

"attention", "attentive", "coffee", "light", "notice", "conscious", "morning", "observant", "sharp", "tense", "lights", "know",

"keen", "emergency", "high", "caution", "mind", "tell", "reminder", "vigilant"]}

- },

- {

- "input": "poison",

- "output": {{"poison":["death", "Ivy", "kill", "apple", "arsenic", "liquid", "bottle", "bad", "snake", "drink", "venom",

"deadly", "green", "rat", "dart", "dangerous", "chemical", "frog", "danger", "sickness", "mushroom", "murder", "toxic",

"food", "fish", "band", "die", "rats", "evil", "crossbones"]}

- }

----------

- Input:{input}

- Output:

Figure 15: Extended Few-shot Prompt Instructions for LLMs in Task 2: Open-Vocabulary Association.
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*** Enhanced Few-Shot Prompt – Task 3 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Reverse Word Association", designed to measure your ability to address the word access problem

by predicting the trigger based on the commonality between given words.

- You will be presented with five hint words separated by "-".

- You are asked to output a list consisting of thirty words that are most closely associated with the given five hint words

in consideration of semantic (denotative overlap), conceptual (connotative alignment) and cognitive (co-occurrence

frequency) association strengths.

- Rank all thirty words according to their strength of associationwith all five hint words in descending order.

- Remember to only respondwith one list of ranked words and do not further elaborate on your response.

- Format your response as json: {word1-word2-word3-word4-word5: [response1, response2, ..., response30]}.

----------

- Here are some examples:

- {

- "input": "together-joined-effort-harvester-honours",

- "output": {{"together-joined-effort-harvester-honours":["combined", "mixed", "mix", "added", "two", "bound",

"sum", "multiple", "joint", "total", "linked", "stuck", "join", "harvester", "pair", "words", "with", "connected", "baking",

"score", "paired", "grouped", "eggs", "combine", "associated", "amalgamation", "amalgamated", "one", "attached",

"integration"]}}

- },

- {

- "input": "centre-end-earth-East-man",

- "output": {{"centre-end-earth-East-man":["middle", "child", "average", "central", "between", "median", "name",

"age", "school", "class", "finger", "top", "last", "bottom", "waist", "road", "medium", "ages", "half", "ground",

"compromise", "start", "stuck", "sister", "surrounded", "sandwich", "muddle", "first", "amid", "inside"]}}

- },

- {

- "input": "to-should-not-must-nought",

- "output": {{"to-should-not-must-nought":["ought", "zero", "need", "will", "would", "obligation", "might", "guilt",

"obligated", "eight", "right", "could", "require", "shall", "thought", "responsibility", "proper", "old", "fashioned",

"nothing", "can", "caught", "grandfather", "go", "duty", "supposed"]}}

- }

----------

- Input:{input}

- Output:

Figure 16: Extended Few-shot Prompt Instructions for LLMs in Task 3: Reverse Association.
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*** Enhanced Few-Shot Prompt – Task 4 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Concrete and Abstract Word Association", designed to measure your ability to capture and bridge

the meaning and relationship between the given concrete or abstract words.

- You will be presented with a triplet of words separated by "-", which can be marked as "A", "B", "C" in sequence.

- You are asked to output a list consisting of three alphabetic pairs that are ranked with the strength of word association

within their corresponding word pairs in consideration of semantic (denotative overlap), conceptual (connotative

alignment) and cognitive (co-occurrence frequency) association strengths.

- Remember to only respondwith one list of ranked pairs and do not further elaborate on your response.

- Format your response as json: {wordA-wordB-wordC:["AB", "BC", "AC"]}.

----------

- Here are some examples:

- {

- "input": "apple-fruit-pie",

- "output": {{"apple-fruit-pie":["AB", "AC", "BC"]}}

- }

- {

- "input": "vibe-aura-felling",

- "output": {{"vibe-aura-felling":["AC", "AB", "BC"]}}

- }

- {

- "input": "foresight-intuition-cognition",

- "output": {{"foresight-intuition-cognition":["BC", "AB", "AC"]}}

- }

----------

- Input:{input}

- Output:

Figure 17: Extended Few-shot Prompt Instructions for LLMs in Task 4: Concrete-Abstract Association.
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*** Enhanced Few-Shot Prompt – Task 5 ***

System: You are functioning as a native English speaker with unimpaired lexical access capabilities participating in a

controlled psycholinguistic experiment. Your task requires making semantic association judgments through systematic

cognitive operations.

User:

- This test is called "Remote Word Association", designed to measure your ability to capture and bridge the meaning and

relationship between the given weakly-related words.

- You will be presented with a triplet of words separated by "-", which can be marked as "A", "B", "C" in sequence.

- You are asked to output a list consisting of three alphabetic pairs that are ranked with the strength of word association

within their corresponding word pairs in consideration of semantic (denotative overlap), conceptual (connotative

alignment) and cognitive (co-occurrence frequency) association strengths.

- Remember to only respondwith one list of ranked pairs and do not further elaborate on your response.

- Format your response as json: {wordA-wordB-wordC:["AB", "BC", "AC"]}.

----------

- Here are some examples:

- {

- "input": "hate-morning-test",

- "output": {{"hate-morning-test":["BC", "AC", "AB"]}}

- }

- {

- "input": "bear-hat-angel",

- "output": {{"bear-angel-hat":["BC", "AB", "AC"]}}

- }

- {

- "input": "shot-heat-darkness",

- "output": {{"shot-heat-darkness":["AB", "AC", "BC"]}}

- }

----------

- Input:{input}

- Output:

Figure 18: Extended Few-shot Prompt Instructions for LLMs in Task 5: Remote Association.
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