FRIDA to the Rescue! Analyzing Synthetic Data Effectiveness in
Object-Based Common Sense Reasoning for Disaster Response

Mollie Shichman'!, Claire Bonial?, Austin Blodgett?, Taylor Pellegrin®,
Francis Ferraro?, Rachel Rudinger!'
'University of Maryland, College Park, 2Army Research Lab
30ak Ridge Associated Universities, *University of Maryland, Baltimore County
mshich@umd.edu, claire.n.bonial.civ@army.mil,
ferraro@umbc. edu, rudinger@umd. edu

Abstract

During Human Robot Interactions in disas-
ter relief scenarios, Large Language Models
(LLMs) have the potential for substantial phys-
ical reasoning to assist in mission objectives.
However, these reasoning capabilities are often
found only in larger models, which are not cur-
rently reasonable to deploy on robotic systems
due to size constraints. To meet our problem
space requirements, we introduce a dataset and
pipeline to create Field Reasoning and Instruc-
tion Decoding Agent (FRIDA) models. In our
pipeline, domain experts and linguists combine
their knowledge to make high-quality, few-shot
prompts used to generate synthetic data for fine-
tuning. We hand-curate datasets for this few-
shot prompting and for evaluation to improve
LLM reasoning on both general and disaster-
specific objects. We concurrently run an abla-
tion study to understand which kinds of syn-
thetic data most affect performance. We fine-
tune several small instruction-tuned models and
find that ablated FRIDA models only trained on
objects’ physical state and function data outper-
formed both the FRIDA models trained on all
synthetic data and the base models in our evalu-
ation. We demonstrate that the FRIDA pipeline
is capable of instilling physical common sense
with minimal data.

1 Introduction

Which of the following would be most dangerous
if it collapsed? This question, as seen in Figure 1,
is fairly trivial for humans to answer, but requires
several types of semantic knowledge. One must
know the general size of these items and their other
functions to fully assess the danger the item poses.
A collapse is also a change of state that fundamen-
tally shifts the use of these objects; a collapsed
chair could be more likely to cut or scrape some-
one, but it could also mean the chair can now be
carried if the chair folds. All of this knowledge
is needed to answer this question, and all of it is
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Figure 1: An example of how a FRIDA-tuned LLM
outperforms its base model on questions combining an
object’s affordances and physical characteristics.

FRIDA Ministray

embedded in our semantic understanding of objects
that can cause danger and objects that can collapse,
both intentionally and unintentionally.

The ability to reason about objects is especially
important in the context of human-robot interac-
tion in disaster relief scenarios (Bonial et al., 2024).
For example, during search and rescue after an
earthquake, a robot needs to know how to navigate
partially collapsed buildings and how to use the
many tools required to free people from the rubble.
However, using robots to aid in disaster relief intro-
duces many constraints. Because of the destruction
a disaster can wreak, consistent internet connectiv-
ity cannot be assumed. For human safety, robots
must be handled via radio in a secure location. This
low-bandwidth communication means limited im-
age data can be transmitted to the handlers, which
rules out remote piloting (Bonial et al., 2024). We
therefore need an autonomous system that can
reason about its environment and the relief tasks
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required.

As LLMs have improved dramatically, their abil-
ities at semantic reasoning about objects have im-
proved as well. LLMs have long been proven able
to encode physical world knowledge (Petroni et al.,
2019), and their embeddings can improve physical
understanding of an environment and its objects
both within and beyond a fine-tuned domain (Co-
hen et al., 2024).

However, much of this improvement is found
only in larger models trained on more data (Wei
et al., 2022a; Kaplan et al., 2020). This makes
these essential semantic capabilities less accessible
to our use case. Our robot cannot rely on an internet
connection to make API calls. We instead must uti-
lize the robot’s limited on-board computing power,
which can be as little as 16 GB of virtual RAM on
an array of GPUs (Osteen, 2025). That amount of
GPU RAM can only reasonably run inference on
a 13 Billion parameter model given the heuristics
described in Anthony et al. (2023). Furthermore,
this heuristic assumes that our robot is not running
other processes in parallel, which is fairly unrea-
sonable. We thus wanted to answer: Given our
constraints, how can we imbue all the physical
common sense and semantics needed for smaller
LLMs to be more capable at understanding a
disaster environment?

To answer our research question, we first tested
the effectiveness of fine-tuning smaller models on
disaster relief data. However, available data proved
to be an additional constraint. Most publicly avail-
able data on disasters is social media-based reac-
tions (Godinho, 2024), which do not pertain much
to our subdomain of disaster relief efforts. Fur-
thermore, the specific knowledge (and to a lesser
extent, the general knowledge) required for each
mission varies by disaster. For example, after an
earthquake, a robot needs to find survivors, while
after a chemical spill, a robot needs to sample the
environment for hazardous materials. Therefore,
we need a method for generating training data
for specific disasters, and we need to evaluate
which data are most effective at improving robot
performance.

We present a pipeline to create Field Reasoning
and Instruction Decoding Agent (FRIDA) mod-
els as a proof of concept for LLM viability in the
disaster relief domain. For FRIDA, we leveraged
both disaster and linguistic expertise to create gold-
standard instructions that, in turn, are used as a
basis for synthetic data generation, as seen in Fig-
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ure 2. These synthetic data are then used to fine-
tune smaller models that fit our memory constraints.
Like its rescue dog eponym,' our FRIDA models
were initially developed and tested for earthquake
disaster relief, based on expert knowledge pertain-
ing to the February 6th, 2023 earthquakes in Turkey
and Syria (Arranz et al., 2023). Thus, the resulting
models are small enough to effectively operate
onboard a robot and are fine-tuned on special-
ized and inexpensive data, satisfying all of our
use case constraints.

To investigate which synthetic data most influ-
enced model performance, we ran an ablation study
where we fine-tuned the same small LLMs on sub-
sets of our synthetic data corresponding to specific
types of object-based reasoning. We call these re-
sulting models the ablated FRIDA (aFRIDA) mod-
els. We found that aFRIDA models trained on
general semantics and physical common sense had
stronger overall performances than models trained
on only domain-specific knowledge. Additionally,
the best performing aFRIDA models scored better
than their corresponding base models and FRIDA
models trained on the entire synthetic dataset. We
posit that FRIDA succeeds in improving object-
related general common sense, but that small LLMs
struggle with disaster-specific equipment usage.

Our contributions are as follows:

1. An expert-in-the-loop pipeline (Figure 2) for
generating specific and high-quality synthetic
data that can be used for fine-tuning when
man-made data are not feasible to obtain, as
well as the resulting gold-standard datasets.

A synthetic dataset of 25,000 instructions re-
lating to object reasoning and earthquake re-
sponse with accompanying analysis.

. The FRIDA model, fine-tuned on Mistral AI’s
Ministral 8B model with the above synthetic
data, which investigates small LLM potential.

A series of ablated FRIDA (aFRIDA) models
trained on subsets of the synthetic dataset to
investigate which synthetic data were most
effective.

. An in-depth analysis investigating the chal-
lenges of imbuing physical common sense
and complex object reasoning into LL.Ms.

"https://en.wikipedia.org/wiki/Frida_(dog)
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Our datasets, code, and a complete walkthrough of
the FRIDA pipeline are currently available.”

2 Related Work
2.1 LLMs Reasoning about the World

There are a wide variety of methods for leverag-
ing LLMs for reasoning in a physical environment
based on Chain of Thought prompting (Wei et al.,
2022b). These include variants like re-prompting
(Raman et al., 2022), which prompts the LLM to
regenerate a plan if certain criteria aren’t met at
certain steps, or Tree of Thought (Yao et al., 2023),
which generates a tree of potential steps and evalu-
ates each potential path via either a breadth-first or
depth-first search.

There are also methods that allow the LLM to
take in environmental feedback in response to its
output. For Inner-Monologue (Huang et al., 2023),
the LLM is given the option to ask for more scene
descriptors from a human handler, which it then in-
corporates into its prompts, improving task comple-
tion and decreasing hallucination. Another exam-
ple is SayPlan (Rana et al., 2023), which uses 3D
scene plans to iterate on proposed strategies until
an effective path is discovered. Xie and Zou (2024)
get feedback from LLMs themselves by using a
wide variety of LLM agents to do various sub-tasks
for planning, including generating a general out-
line, using external tools to gain information, and
evaluating which plan is best.

One resource for improving LLM understanding
of an object’s functions, also known as the object’s
affordances, is Adak et al. (2024), who curate a
dataset of naturally occurring sentences and corre-
sponding images. They then transform them into
inference, probing, and masking tasks for LLMs
and Visual Language Models (VLMs). Their evalu-
ation shows that VLMs do not have straightforward
understandings of object affordances, but few-shot
fine-tuning improves LLM and VLM performance
on identifying object affordances. This work fo-
cuses on building a stronger basis in LLMs to im-
prove these downstream tasks, as well as under-
stand which data are most important for a robot’s
success.

2.2 Disaster Work and Natural Language
Processing

Godinho (2024) completed a systematic search and
analysis of over 100 peer-reviewed papers relating

2https://github.com/mshich1/FRIDA/
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to Natural Language Processing (NLP) tools being
applied to disasters. 85 of the 107 papers found
were analyzing social media, and the majority of
papers focused on sentiment analysis, text classifi-
cation, and information extraction tasks. Both the
data sources and NLP tasks do not have a clear
parallel with our objective.

While robots have been successfully deployed in
disaster relief missions, the current state of the art
is a human tele-handler in complete control of the
robot (Chiou et al., 2022; Kanazawa et al., 2023).
This puts all of the cognitive burden on said tele-
handler, and does not allow for the re-tasking and
pivoting required in such a high-stakes, fast chang-
ing scenario (Bonial et al., 2024). To move the
state of the art from tele-handling to human-robot
dialogue, Lukin et al. (2024) provide a corpus of
simulated dialogues in a disaster scenario that are
annotated for semantic meaning, dialogue structure,
and visual common ground. However, this corpus
works with a robot with limited abilities and does
not touch on creating a system to reason about a
wide variety of objects and disasters.

2.3 Synthetic Data Generation

Synthetic data, or data generated by an LLM, has
become increasingly popular as an inexpensive
and relatively proficient method of data collection.
While cyclically fine-tuning LLMs on the synthetic
data they generate denigrates the models’ perfor-
mance (Alemohammad et al., 2023), fine-tuning
on synthetic data has nevertheless improved short
term performance in instruction following and so-
cial common sense (Eldan and Li, 2023; Wang
et al., 2022).

This paper is inspired in particular by the
pipeline developed by Wang et al. (2022), who
hand crafted 175 “seed” instructions. These seed in-
structions were used for 8-shot prompting of GPT’s
text-davinci-001 model to generate more than
50,000 instructions for a generic and ungrounded
Al assistant. These synthetic instructions were then
used to fine-tune text-davinci-@@1. The authors
found that their method and resulting fine-tuned
model performed comparably to OpenAl’s GPTIn-
struct (Wang et al., 2022). Taori et al. (2023) in-
novated on Wang et al. (2022) by fine-tuning a
separate, smaller language model with a different
architecture, as opposed to fine-tuning on the same
model that generated the data. They subsequently
found that their resulting model’s answers were
rated as highly as GPT’s text-davinci-003.
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Figure 2: The pipeline to create the FRIDA suite of models. A search and rescue expert fills out a survey on the
relevant tasks and objects used in disaster response, then a semantics expert adds those terms to the ontology and
fills in the templates to generate new seed instructions for a variety of different disasters. These seed sentences are
utilized to generate synthetic data for fine-tuning an LLM with the necessary expertise on the specific disaster.

3 Methods
3.1 FRIDA Seed Data

We developed an expert-in-the-loop pipeline to gen-
erate high-quality seed data that leverage expertise
on both disaster-relief and semantics. The pur-
pose of this pipeline is to enable quick and efficient
fine-tuning of small LLMs to be capable of critical
reasoning in specific disaster environments. The
details of this pipeline are described in Shichman
et al. (2024), here we provide a brief overview. We
developed a series of templates that can be filled in
with vocabulary from an affordance ontology based
on the Rich Event Ontology (Kazeminejad et al.,
2018). This affordance ontology is extended to
serve as an ontology of disaster-related objects and
their functionalities, as defined by the objects’ Prop-
Bank semantic roles labels (Palmer et al., 2005).
To fill in these templates with proper data, a dis-
aster expert first provides information about the
relevant objects and situations encountered in their
work. For this paper, the authors simulated this
step by gathering existing resources authored by ex-
perts on the Turkey-Syria Earthquake recovery ef-
forts (Arranz et al., 2023). After gathering domain-
specific data, linguists go through a template-filling
pipeline. Summarily, the linguists select the rele-
vant vocabulary from the expert knowledge to add
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to the aforementioned affordance ontology. They
then use this ontology and template-specific gener-
ation instructions to fill in the templates to create
“seed” instructions. These templates are format-
ted as multiple choice questions with semantically
distinct answers. Some examples of this process,
as well as some of the synthetic instructions that
result, can be seen in Table 1.

Although some related work leverages the same
seed sentences used for generating synthetic data to
also evaluate the data (Wang et al., 2022), we used
this same pipeline to develop a separate and unique
evaluation to ensure that our evaluation was not
present in any training data. The seed and evalua-
tion instructions include multiple choice answers,
enabling more efficient evaluation and comparison
of models.

3.2 Synthetic Dataset Generation and
Analysis

The dataset we use in this work focused on search
and rescue operations in the aftermath of the
Turkey-Syria Earthquake (Arranz et al., 2023). We
had 26 templates grouped into 8 categories based
on the type of knowledge they query as defined by
the Generative Lexicon Qualia (Pustejovsky and
Jezek, 2016). For all categories and examples, see
Table 4 of Appendix A. For each template, expert



Template What state should OBJECT be
in to easily use it: X STATE or
Y STATE?

Seed In- What state should a drawbridge

struction be in for cars to cross a river? A)
Lowered or B) Raised

Synthetic ~ What state should a door be in to

Instruction easily enter a room? A) Open B)
Closed

Template What role does OBJECT play in
DISASTER-RELATED TASK

Seed In- What role do hydraulic lifts

struction play in rescuing people after an
earthquake?

Synthetic How is a crowbar typically used

Instruction  during earthquake rescue oper-

ations?

Table 1: Two Examples of templates and their corre-
sponding gold standard and synthetic instructions. Note
that the blanks in the first template can only be filled
in by objects with multiple states (i.e. linguistic knowl-
edge), while the blanks in the second template can only
be filled in with specific tools (i.e. disaster expert knowl-
edge).

annotators hand-made 5 seed instructions for syn-
thetic data generation (130 total instructions) and a
minimum of 4 evaluation instructions (119 exam-
ples). All resulting instructions were examined by
a second author for correctness.

For each template, we used its corresponding
seed instructions for 5-shot prompting with Gemini-
1.5-flash to generate 980 synthetic instructions
based on the given template (Team, 2024a). We
chose Gemini as our synthetic data generator for
its accessible and affordable API, as well as its
high scores on our evaluation (93.9% average Sem-
score, see section 3.4). We prompted Gemini to
return 40 instructions per API call. To ensure our
synthetic data were unique, we used ROUGE scor-
ing (Lin, 2004) to ensure Gemini was not giving
us duplicates of previously generated instructions.
Depending on the template, the cut-off ROUGE
score went from 0.8 for templates with more varied
language to 0.97 for templates with very structured
wording. We also increased model temperature for
the more structured templates to increase diversity
of responses.

We get a sense of the resulting synthetic dataset
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Figure 3: The distribution of the synthetic data’s instruc-
tion length (top) and maximum ROUGE score (bottom).
Averages are shown as black dashed lines. Our high av-
erage instruction length and general distribution shows
synthetic instructions are sufficiently complex, and our
average over each instruction’s top ROUGE score shows
the instructions are sufficiently unique for this to be a
challenging task.

from the histograms in Figure 3. We automatically
evaluated for instruction length and each instruc-
tion’s maximum pairwise ROUGE score. We found
we had substantial average instruction length, and
reasonable ROUGE scores given that our data are
template-based. There was a large range in both
metrics across the different template categories,
which we attribute to the overall complexity of the
individual templates. Some templates require short
instructions with binary answers, while others have
longer instructions where all answers are sentences.

Category Training / Dev split
Relative Size 3620/403
Object Functions 4460 / 496
Objects Causing Harm 26757298
Earthquakes 882/99
Specialized Equipment 2679 /298
Instruction Understanding 1792 /200
Differences 4458 / 496
Non-functional Object Facts 2662 /296
Total Instructions 23232 /2582

Table 2: The number of instructions in the training and
development datasets used for fine-tuning FRIDA and
its ablations.



3.3 FRIDA Model construction

We used our synthetic dataset to fine-tune the 1
Billion, 3 Billion, and 8 Billion parameter Instruct
models from the LLaMa 3 herd (Team, 2024b) as
well as the Mistral AI’'s Ministral 8B Instruction
tuned model (Team, 2024¢). We chose to use the
LLaMa suite due to it having multiple small instruc-
tion tuned models of different sizes, with strong
performance (Team, 2024b). We chose Ministral
8B to serve as a comparison, since it is trained
with sliding window attention, unlike the LL.aMa
models trained with full attention (Team, 2024c).
Additionally, Ministral 8B was released after the
LLaMa 3 herd and outperformed the LLaMa mod-
els on a variety of metrics (Team, 2024c). We chose
to fine-tune the instruct variations of these models
because our task is based on answering questions.
All models were trained with the performance en-
hanced fine-tuning model LoRA (Hu et al., 2021)
with full precision.

Of the four fine-tuned models, the strongest fine-
tuned model performance on our evaluation was
from models trained on Ministral 8B. We hypothe-
size that this is due to the architectural differences
between Mistral Al and Meta Al models. Specif-
ically, sliding attention could be helpful in focus-
ing the model’s attention on the instruction con-
tent instead of the multiple choice answers. Ad-
ditionally, Ministral 8B’s sliding attention mech-
anism is more memory and time efficient, mak-
ing it more practical for deployment on a robot
(Team, 2024c). As such, we focused our analysis
on FRIDA and aFRIDA models based on Ministral
8B, since they are the most conceivable models to
work in a robotic system in the near term. Results
for the LLaMa models can be found in our github.
Fine-tuning specifics can be found in Appendix B.

3.4 Evaluation

As described in section 3.2, we used the same
pipeline for creating seed data to create a custom
evaluation, with at least four evaluation questions
per template for a total of 119 evaluation instruc-
tions.

Although we leverage multiple choice questions
and answers for evaluation, we required a less rigid
method than exact match so that formatting er-
rors (e.g., writing “A” instead of “A)”, or forget-
ting punctuation) would have less impact. Thus,
we used SemScore (Aynetdinov and Akbik, 2024;
Geronimo and Lera, 2024), which is a scoring met-
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ric that uses cosine similarity to compare a model’s
embedding vectors of the gold standard and FRIDA
responses.

3.5 Ablation Study

To better understand the effectiveness of the types
of physical reasoning represented in our synthetic
data, we ran an ablation study where we fine-tuned
our base model on subsets of the synthetic fine-
tuning data, which can be seen in Table 2. We made
an ablated model for each category of data, where
each model is fine-tuned only on the synthetic data
generated by templates in said category. For exam-
ple, the “Relative Sizes and Shapes” ablation model
is trained on data generated from 4 templates test-
ing size, weight, objects fitting in containers, and
objects changing state. We refer to these ablated
models as ablated-FRIDA (or aFRIDA) models.

The resulting name for a FRIDA model trained
only on data from the Relative Sizes and Shapes cat-
egory would thus be, “aFRIDA: relative sizes and
shapes”, where “relative sizes and shapes” refers to
the subset of data used (see Appendix Table 4 for
data categories). The ablated models were tuned
with the same hyper-parameters and hardware as
the full FRIDA model.

A model suite for a given base model contains
FRIDA, trained on the full dataset, as well as 8
aFRIDA models trained on the categorical subsets
of the data: relative sizes and shapes, object func-
tion, object differences, specialized equipment, ob-
jects causing harm, non-function object facts, earth-
quake knowledge, and instruction understanding.
Examples of data for each category can be found
in Table 4 in the appendix.

4 Results

As seen in Table 3, the Ministral 8B FRIDA model
had a higher SemScore Aacuracy than its base
model. However, the aFRIDA models for the “Rel-
ative Size and Shape” and “Object Functions” cat-
egories outperformed both the unablated FRIDA
model and the base model. These models also out-
performed Gemini-1.5-flash’s SemScore of 93.9 in
a zero shot setting.

We assessed each model’s capability on each
type of reasoning tested in the evaluation dataset.
To show the overall trend across models, we present
the SemScore results for the FRIDA and aFRIDA
models in Figure 4. Overall, when observing model
performance in the Figure 4’s columns, models



Model SemScore
Accuracy (%)
Ministral 8B Instruct 93.5
FRIDA 94.6
Ablated Model SemScore
Fine-Tuning Data Subset ~ Accuracy (%)
relative sizes and shapes 95.0
object functions 94.7
object differences 93.4
objects causing harm 93.3
specialized equipment 93.8
non-functional obj facts 93.2
earthquake knowledge 91.7
instruction understanding 85.0

Table 3: The SemScore Accuracy on all evaluation
data for the base model Ministral 8B Instruct, the fine-
tuned FRIDA model trained on all synthetic data, and
the fine-tuned models trained on ablated subsets of the
synthetic data (aFRIDA). The FRIDA model trained on
all data improved performance over its corresponding
base model. The best overall performance came from
the aFRIDA model trained on a subset of the synthetic
dataset involving comparing objects by their physical
state.

fine-tuned only on objects’ basic size and shape
characteristics or only on object functionality per-
formed more strongly across most evaluation cate-
gories. This was despite these synthetic data cover-
ing straightforward physical semantics that don’t
require any highly specific knowledge or creativity
like the “specialized equipment” or “objects caus-
ing harm” categories. These models also had the
strongest performance with far less training data
than the full FRIDA model (see Table 2).

Looking at evaluation data types represented in
the rows, it is clear that the more difficult evalu-
ations are “specialized equipment”, the category
querying about the specialized objects used in earth-
quake search and rescue, and “earthquake”, the cat-
egory evaluating scientific knowledge about earth-
quakes. Both of these evaluations are highly spe-
cific and technical. The easier evaluation categories
are “object functions” and “differences”, which
pertain to understanding the basic semantics of ob-
jects’ abilities and the differences between objects,
respectively.

Another key observation from Figure 4 can
be found by comparing evaluation performance
between FRIDA and Ministral 8B. FRIDA has
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SemScore Accuracy on evaluation data subsets

relative size eval data
object function eval data
differences eval data

objects causing harm eval data

0.80 0.82 0.80 0.82 0.79 0.81 0.85 0.75 0.80

specialized equipment eval data

non-functional object facts eval data
earthquake eval data
instruction understanding eval data

all evaluation data

Figure 4: SemScores (embedding-vector cosine sim-
ilarity scores) for the FRIDA suite for each type of
evaluation. Across all models, performance is better
in evaluation data corresponding to physical common
sense (object functions, differences) and worse in eval-
uation data corresponding to specialized object knowl-
edge (earthquake, specialized equipment).

stronger performance than the base model except
for the “required equipment”, “earthquake”, and
“instruction following” evaluations. This could po-
tentially demonstrate that these data need to be
generated differently or that Ministral 8B needs

more of them in order to strengthen performance.

5 Discussion & Error Analysis

It is particularly surprising that the “aFRIDA rela-
tive size and shape” and the “aFRIDA object func-
tion” models outperformed all other models across
the board, even though the physical semantics ex-
pressed in those fine-tuning data are not complex.
We hypothesize that clarifying the basic properties
and affordances of objects provided a better basis
for the model to have stronger physical reasoning
across all categories.

Another surprise was that the “relative sizes and
shapes” evaluation subset was a challenge for the
FRIDA suite. Although one may think that simpler
object properties like its “relative sizes and shapes”
might be relatively prevalent in the base models’
pre-training data, it is also plausible that report-
ing bias in web text leads to under-representation
of highly commonplace facts (Raji et al.). We
hypothesize that this lack of pretraining data is
partially why the ablation model trained on “rela-
tive shapes and sizes” synthetic data performs so
strongly. However, this does not answer why the



ablated models trained on data pertaining to other
challenging categories in our evaluation, namely
“aFRIDA: earthquake” and “aFRIDA: specialized
equipment”, did not receive the same overall per-
formance bump.

We suspect that the reason “aFRIDA: earthquake”
and “aFRIDA: specialized equipment” did not sim-
ilarly improve performance is that our synthetic
data for the more specific objects and tasks tended
to be longer and have lower ROUGE scores. These
data therefore had more diversity. The sample size
of the Earthquakes and Specialized Equipment syn-
thetic data subsets may have been too small for the
model to be correctly biased by fine tuning. Con-
versely, larger models may have ingested operators’
manuals for specialized equipment, facilitating par-
roting answers for questions on this topic. We note
that our research highlights the general difficulty of
analyzing the precise effects of fine-tuning given
opaque pre-training data.

Error analysis of both the FRIDA model (fine-
tuned using all synthetic data) and the “aFRIDA
relative size and shape” model revealed that both
models got the same instances and number of the
“relative size and shape” evaluation data incorrect.
For example:

1. “What is the easiest way to use a camera?”’
A) with the camera plugged in
B) with the camera unplugged
Gold: B) with the camera unplugged
FRIDA: A) with the camera plugged in

The base Ministral model generally gets the same
“relative size and shape” evaluation instances in-
correct as the FRIDA models. However, it also
answers incorrectly for over half of the instances
of test items that relate to answering which item
is bigger and which item will fit into another item.
For example:

2. “Choose the biggest of a given set of objects
in terms of your own common sense.”
A) bicycle
B) chalk
C) poster
D) jar
E) taillight
Gold: A) bicycle
Ministral: D) jar

3. “Can chalk fit in a cup?”
Answer “it can” or “it cannot”
Gold: it can
Ministral: it cannot

Thus, we conclude that the fine-tuning con-
tributed to improvement in understanding which
items are bigger and which items fit into others in
particular. This improvement may translate to im-
provement in other related categories. Specifically,
we also see dramatic improvement over the base
model for the “objects causing harm” evaluation
data. This could be further boosted by a general
understanding of which objects are larger.

When it came to reasoning about the complex
equipment used, error analysis revealed that both
vanilla and fine-tuned models scored perfectly
when asked to choose the correct role for an object
in an event. For example:

4. “What role does a helicopter play in the search
and rescue process?”
A) Provide a vantage point to identify heavily
damaged areas
B) Move large vehicles to disaster area
C) Blow away debris
D) Warn victims about aftershocks
E) Blow debris out of the way
Gold: A) Provide a vantage point to identify
heavily damaged areas
Ministral: A) Provide a vantage point to iden-
tify heavily damaged areas
FRIDA: A) Provide a vantage point to identify
heavily damaged areas

The task of choosing the correct object to use
for a task proved more challenging. Fine-tuning
on related data seemed to unnecessarily bias the
model toward choosing the most complicated ob-
ject, while fine-tuning on unrelated data maintained
results. For example:

5. “Select the equipment needed for breaking rub-
ble into smaller pieces after an earthquake.”
A) axe
B) pickaxe
C) hydraulic lift
D) hard hat
E) hammer
Gold: B) pickaxe
Ministral: B) pickaxe
FRIDA: C) hydraulic lift
aFRIDA relative sizes: B) pickaxe



In the most complex reasoning task of ordering
steps to complete to use an object, fine-tuning had
no clear effect, with all models providing random
answers.

6. “The following are two different steps for
using a dump truck. Which needs to happen
first?

A) Wait for others to fill the truck bed

B) open the tailgate

Gold: B) open the tailgate

Ministral: B) open the tailgate

FRIDA: B) open the tailgate

aFRIDA relative sizes: A) Wait for others to
fill the truck bed

aFRIDA required equipment: A) Wait for
others to fill the truck bed

We thus conclude that fine-tuning for required
equipment did not effectively bias the models to un-
derstand the use cases of these complex objects. At
its worst, it incorrectly biases the model to choose
complex objects when simpler ones would be more
effective.

Overall, the FRIDA pipeline improves small
LLM object reasoning when said models are fine-
tuned on more general physical common sense and
object reasoning data. The FRIDA suite models
are lightweight enough to fit within our constraints,
and can even achieve comparable performance to a
much larger Gemini model. In comparison to the
ablated models, the performance of the full FRIDA
model trained on all synthetic data demonstrates
that more work needs to be done to improve the
synthetic dataset distribution to be ideal for improv-
ing FRIDA model performance on reasoning for
earthquake search and rescue.

5.1 Future Work

There are several ways we can further improve the
FRIDA pipeline. We want to improve our prompt-
ing for synthetic data to make them less trivial to
answer. We can refine and expand our less tech-
nical templates. By adding different phrasing, we
hope to make our synthetic data more reflective
of real world natural language. We also hope im-
plementing the strategies in other work (Ge et al.,
2024; Ding et al., 2023; Mukherjee et al., 2023)
for diversifying synthetic data will improve genera-
tion quality and efficiency. We want to explore the
impact of using quantized models over full preci-
sion models to determine if we can save additional
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storage space while maintaining reasoning ability.
Finally, we plan to test the pipeline on other do-
mains with experts to help us refine our process.

6 Conclusion

We introduce a pipeline to create expert-in-the-
loop-based synthetic data that is then used for
fine-tuning to create FRIDA models. We found
our pipeline improved performance over our base
model. We performed an ablation study and found
that data generated from templates based in ba-
sic physical common sense reasoning about ob-
jects improved performance most; ablated models
trained on those data scored higher than FRIDA
models trained on all synthetically generated data
and higher than Gemini-1.5-flash, the LLM that
generated the synthetic data. This pipeline is an im-
portant step in understanding and improving LLM
object reasoning for practical use. Even if some of
our problem constraints are eventually alleviated by
technology that facilitates very large models with
smaller compute requirements, there will remain
problem spaces for which web-based pre-training
data simply does not exist. Our research demon-
strates an effective pipeline to specialize models
fine-tuned on data that is not well-represented in
typical web text pre-training data.

7 Limitations, Risks, and Ethics

One limitation is that we train and evaluate on
template-generated data rather than naturally occur-
ring language; there could be linguistic or stylistic
differences between template-generated data and
naturally occurring instructions. Though our ap-
proach still relies on access to expert input and
non-trivial computational power for fine-tuning to
counter these shortcomings, we outline solutions
in Section 5.1 which we believe are ripe avenues
for future work.

We note that multiple choice questions can
be different and less complicated than an uncon-
strained turn between a user and an Al assistant.
Nevertheless, we believe this work is an impor-
tant step towards our goal of imbuing smaller lan-
guage models with physical common sense. This
is because we prove the feasibility and capability
of small LLMs to complete this more constrained
task. We argue that FRIDA should be seen as a
proof-of-concept for LLM physical common sense
understanding, which sets the stage for increasingly
challenging training data and evaluations.



FRIDA is built by biasing an LLM to a specific
domain. While this is important for our work, this
could be misused to bias models in harmful ways,
especially when considering applications involving
social common sense. When modifying our seed
data and templates, we took care to reduce gender
bias as much as possible. This was fairly trivial
since all questions pertained to objects and events,
not people. We acknowledge that many objects
from the ontology we used were annotated with a
Western perspective, and that other cultures likely
have additional uses for these objects.
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A Categories and Descriptions

See Table 4.

B Fine Tuning Specifics

For fine-tuning, we used Huggingface TRL(von
Werra et al., 2020) supervised fine-tuning example
script modified to access our custom dataset. We
used random sampling to split each dataset 90-10
into training and development subsets. We fine-
tuned using PEFT (Mangrulkar et al., 2022) and
LORA (Hu et al., 2021) to both decrease the com-
putational load on the robot and the time spent fine-
tuning. We mostly used parameters suggested by
the fine-tuning software we used (von Werra et al.,
2020), with a learning rate of 2.0e-4, and lora r and
alpha values of 32 and 16, respectively. The main
differences between our training and the default
parameters were training over 3 epochs instead of
1 and not using data packing. We fine-tuned on 2
A100 GPUs.

C Synthetic Data Generation Prompting

We primed Gemini with a system prompt that read
as follows:

You will be creating multiple choice
questions on a variety of topics related to
common sense and/or earthquake knowl-
edge. Be creative in choosing the vocabu-
lary and phrasing of these questions. All
responses must be given as json objects
with the following format:

99,66

{“instruction”:“example instruction”, “in-
put”’:*A) this B) is C) an D) example E)

question”,“output”:“E) Question”}

LRI T3
, 1

A subsequent template prompt from each template
category can be seen in Table 5. The corresponding
5 shot examples followed these prompts.
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D Licenses

We used TRL (von Werra et al., 2020) under the
Apache License. SemScore (Geronimo and Lera,
2024) implements the MIT license, and the LLaMa
models were used after author agreement to the
LLaMa 3.1 and 3.2 Community License Agree-
ment (Team, 2024b). Ministral 8B Instruct was
used under the Mistral Research License (Jiang
et al., 2023).
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lowing

Follow-Up Questions

from the bottle, sail a boat, enter the door-
way

Category Templates Examples Instances
in Seed
Sets
Relative sizes | Biggest Object, Heaviest | Which of these objects is the lightest? out- | 20
and shapes Object, Relative Fit let, broom, pail, orange, screen
Ease of Interaction Given | Is a raised or lowered drawbridge more
Object State effective at getting cars across the river?
Would a shoe fit in a bag?
Object Func- | Basic Affordance, Size | Which of the following can be used to | 25
tions Restricted, Shape Re- | climb and is bigger than a table? stile,
stricted, General Property | stairway, stepladder, step, ladder
Restricted,
Goal Restricted What should I use if I want to learn some-
thing from the internet?
Object Differ- | Difference within Affor- | What is the difference between a window | 25
ences and Hy- | dance, Difference within | and a pane?
pernyms Affordance given Criteria,
Basic Is-A, Identical Us- | Can you use a shed as a barn?
age, Sub-Types
Choose the truck from the list: coupe,
minivan, 18 wheeler, sedan, ATV
Objects in | Cause Injury, Cause Dan- | Which of the following objects would be | 15
Risky  Situa- | ger, Cause Object Damage | the most dangerous if it hit something?
tions dvd, screen, wall, drum, mat
Required How to Use, Equipment | Give a step by step explanation of how to | 15
Equipment for Scenarios, Role of | use a concrete saw.
Equipment in Task
What role does a thermal imaging camera
play in identifying survivors?
Primary  and | Where Object Found, Ob- | Which of the following can be used as a | 15
Secondary jects in Location, Sec- | lever? art, motorcycle, picture, dvd, broom
Object Facts ondary Uses
Disaster Earthquake knowledge Choose the relevant precautions one | 5
Specific Knowl- should take to prepare for an earthquake.
edge
Instruction Fol- | Instruction Identification, | Choose the navigation instruction: drink | 11

Table 4: An overview of the types of templates within each category, some examples of resulting seed sentences
within each category, and the number of instances of each category within the resulting seed dataset. Note the
emphasis on affordances, object knowledge, and instruction knowledge.
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Category

Prompt

Heaviest

Create 40 unique multiple choice questions about which objects
weigh the most. These questions must be multiple choice and
they must have 5 options with 1 correct answer. Choose lots of
different objects that people interact with.

Affordances
and Shape

Create 40 unique multiple choice questions about which objects
can complete a given function and are a certain shape.

These questions must be multiple choice and they must have 5
options with 1 correct answer. Choose lots of different objects
that people interact with.

Use As

Create 40 unique multiple choice questions about if an object
can be used as a substitute for another object.

These questions must be multiple choice with the two choices
being “it can” or “it cannot”. Choose lots of different objects
that people interact with.

Damage
to Objects

Create 40 unique multiple choice questions about which object
would cause the most damage to a larger object or structure.
These questions must be multiple choice and they must have 5
options with 1 correct answer. Choose lots of different objects
that people interact with.

Equipment
Used in
Task

Create 40 unique multiple choice questions about how an object
is used in a task. The tasks and objects should be related to
earthquakes. The answer choices should be brief descriptions
of potential ways to use the object in the task. These questions
must be multiple choice and they must have 5 options with 1
correct answer. Make sure each answer option is unique.

Secondary
Uses

Create 40 unique multiple choice questions about objects that
are not created to complete a task, but nevertheless can complete
the task. These questions must be multiple choice and they must
have 5 options with 1 correct answer.

Make sure the answer choices do not include objects that are
meant to do the task described. Make sure to pick lots of unique
tasks and objects.

Earthquake

Create 40 unique multiple choice questions about earthquakes,
earthquake preparation, and earthquake search and rescue pro-
tocols. These questions must be multiple choice and they must
have 5 options with 1 correct answer. Be as creative as possible
with the types of questions you generate, as long as they have
something to do with earthquakes.

Instruction
ID

Create 40 unique multiple choice questions about the purpose
of instructions. These questions must be multiple choice and
they must have 5 options with 1 correct answer. The answer
choices must all be simple instructions. Make sure the correct
answer falls under the given category. Use lots of different
simple instructions.

Table 5: A selection of prompts used to generate the synthetic data using Gemini Flash 1.5. Note all prompts had
similar language encouraging creativity and strict multiple choice answer requirements.
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