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Abstract

In this article, we describe the first compre-
hensive neurosymbolic pipeline for the task of
Natural Language Inference (NLI) for French,
with the synergy of Large Language Models
(CamemBERT) and automated theorem provers
(GrailLight, LangPro). LLMs prepare the in-
put for GrailLight by tagging each token with
Part-of-Speech and grammatical information
based on the Type-Logical Grammar formalism.
GrailLight then produces the lambda-terms
given as input to the LangPro theorem prover, a
tableau-based theorem prover for natural logic
originally developed for English. Currently, the
proposed system works on the French version
of SICK dataset. The results obtained are com-
parable to the ones on the English and Dutch
versions of SICK with the same LangPro the-
orem prover, and are better than the results of
recent transformers on this specific dataset. Fi-
nally, we have identified ways to further im-
prove the results obtained, such as giving ac-
cess to the theorem prover to lexical knowledge
via a knowledge base for French.

1 Introduction

In Natural Language Processing (NLP), the classi-
fication task of predicting, for a given pair of sen-
tences, the correct label between two (entailment,
not entailment) or, better, three (entailment, neutral,
contradiction) given ones is conventionally called
Natural Language Inference (NLI) or Recognising
Textual Entailment (RTE).

The code for the paper’s pipeline is available on

github. The datasets are all available on github and on
huggingface.

Utrecht University
Utrecht, the Netherlands

l.abzianidze@uu.nl

CNRS & University of Montpellier
Montpellier, France

richard.moot@lirmm. fr

Simon Robillard
LIRMM
CNRS & University of Montpellier
Montpellier, France

simon.robillard@lirmm. fr

Deep learning methods have proven effective for
the task, with quickly improving performance over
the last years. However, they lack explainability,
and they might predict a correct inference label
based on heuristics that has little to do with
reasoning but heavily relying on the nature of the
training datasets (McCoy et al., 2019; Gururangan
et al., 2018; Poliak et al., 2018). On the other
hand, symbolic methods include using theorem
provers for rule-based reasoning between the two
sentences provided. In this case, the input has
to be clearly structured. To get the best of both
worlds, neurosymbolic Al methods can be used,
where deep learning methods can be leveraged to
prepare the input by converting the sentences to
their logical form for the theorem prover, which
is then used for reasoning on the sentences and
outputs its label prediction as well as the proof
with the rules it applied to reach this prediction.

After having introduced the context of the task
and of the methods adopted, the article follows the
structure below:

- We present already conducted research, first
for English (Section 2.1), then for French (Sec-
tion 2.2), both on the NLI datasets and on the
neurosymbolic methods for NLI (Section 2.3
for preparing the input, and 2.4 for the logical
methods for NLI).

- Section 3 lists and describes the steps for us-
ing neurosymbolic methods for NLI in French,
providing the first pipeline for such use for
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French.

- In Section 4.2, we analyse the work of adapt-
ing the tools for the case of French, due to the
interlinguistic syntactic differences between
the source language of the NLI theorem prover
(English) and the target language (French).

- Some next steps for further improvement are
outlined in Section 5.

2 Related work
2.1 Datasets in English

Numerous datasets exist in English for the task of
NLI, namely FraCaS (Cooper et al., 1996), RTE1-8
(Dagan et al., 2006) (Dzikovska et al., 2013), SICK
(Marelli et al., 2014), SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2018), XNLI (Con-
neau et al., 2018), BreakingNLI (Glockner et al.,
2018), ANLI and NLI-style FEVER (Nie et al.,
2020), LingNLI (Parrish et al., 2021), GQNLI (Cui
et al., 2022), WANLI (Liu et al., 2022), SpaceNLI
(Abzianidze et al., 2023), the GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019) bench-
marks. HANS (McCoy et al., 2019) and MED
(Yanaka et al., 2019a) have only two labels, entail-
ment and non-entailment.

In particular for logical reasoning with the nat-
ural language, eSNLI (Camburu et al., 2018) also
contains natural language explanations for every
label attributed. Finally, HELP (Yanaka et al.,
2019b), ProofWriter (Tafjord et al., 2021), and FO-
LIO (Han et al., 2024) include First-Order Logical
formulas for the sentences provided.

2.2 Datasets for French

For the task of NLI in French, significantly less
datasets are available, despite some recent releases.

Table 1 gives the number of sentence pairs per
class, for all the NLI datasets available in French,
the first one, in order of release time, being XNLI
(Conneau et al., 2018), FraCaS-FR(Amblard et al.,
2020), then DACCORD (Skandalis et al., 2023),
RTE3-FR, GQNLI-FR, and SICK-FR (Skandalis
et al., 2024).

Because of the underrepresentation of con-
tradictions in the widely used NLI datasets, it
was recently proposed by Skandalis et al. (2023,
2024) to also work specifically on the labels
contradiction/non-contradiction, with a new ded-
icated 2-class dataset for French, called DAC-
CORD.
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Dataset Entailment Neutral Contradiction

train 1274 2524 641
SICK-FR  dev 143 281 71
test 1404 2790 712
FraCaS-FR test 204 98 33
dev 412 299 89
RTE-FR ot 410 318 72
GQNLI-FR  test 97 100 103
dev 830 830 830
XNLEFR 1670 1670 1670
Rus-Ukr war 215 257
DACCORD  Covid-19 251 199
Climate change 49 63

Table 1: Breakdown by label for NLI datasets for French

2.3 Lambda-term or FOL formula extraction

In order to obtain the lambda-terms corresponding
to a natural language sentence, one needs to first
tag the tokens of the sentence with grammatical
information. Categorial grammars are suited by
design to producing lambda terms. While Com-
binatory Categorial Grammars (Steedman, 2000)
have often been used in this context — for En-
glish notably the C&C (Clark & Curran) Parser
(Clark and Curran, 2007) and EasyCCG (Lewis
and Steedman, 2014) — we choose to use Type-
Logical Grammars (TLG) instead. Type-Logical
Grammars have the advantage of being purely logi-
cal formalisms, where lambda-terms are obtained
by the Curry-Howard isomorphism. More pragmat-
ically, our supertag models have been trained on
the TLGbank for French, which uses Type-Logical
Grammars as well. After the supertagger assigns
formulas to each word, a parser is used to find the
most likely parse for the given supertags.

These parses are then converted either to
Lambda Logical Forms (LLFs), via components
such as LLFgen (Abzianidze, 2017) or ccg2lambda
(Martinez-Gémez et al., 2016), or to FOL formulas,
usually with the intermediate step of the DRS (Dis-
course Representation Structure) formalism (Bos,
2008; Le, 2020). Lambda Logical Forms are sim-
ply typed A-terms built up from variables and con-
stant lexical terms with the help of two operations,
function application and A-abstraction.

More recently, Olausson et al. (2023) used Star-
coder+ (Li et al., 2023) directly for FOL formula
generation. The problem with this solution is that,
unlike English, there were no datasets with sen-
tences and their corresponding FOL representation
for French, thus LLMs have not been previously
exposed to such a task for French, in order to be
able to handle it in some way.



For French, there are two main models for
lambda-term extraction: DeepGrail and GrailLight
(Moot, 2017). DeepGrail consists of both a su-
pertagger and a parser, and the DeepGrail supertag-
ger has been designed to integrate seamlessly with
GrailLight. We have chosen to combine the Deep-
Grail supertagger with the GrailLight parser be-
cause this combination is the easiest to extend to a
multi-tagger, as we will show in Section 3.1.5.

2.4 Theorem provers for natural language

Different theorem provers have been used for rea-
soning on natural language, specifically English:

- Coq (Chatzikyriakidis, 2015; Chatzikyri-
akidis and Bernardy, 2019; Bernardy and
Chatzikyriakidis, 2021; Mineshima et al.,
2015; Martinez-Gémez et al., 2017);

- LangPro (Abzianidze, 2015, 2017);

- Vampire (Bos, 2009; Bjerva et al., 2014;
Haruta et al., 2022);

- Agda (Bekki and Satoh, 2015; Zwanziger,
2019);

- Prover9 (Olausson et al., 2023): Prover9 (Mc-
Cune, 2005) is a theorem prover that attempts
to solve theorems by contradiction and Mace4
attempts to find a counter-example to theo-
rems.

A summary of their use on NLI can be found in
Table 2.

24.1 LangPro theorem prover

LangPro (Abzianidze, 2017) is an automated the-
orem prover for natural logic (Muskens, 2010). It
is written in Prolog, and makes use of the analytic
tableau proof method. LangPro needs CCG (Com-
binatory Categorial Grammar) derivations of the
linguistic expressions in order to obtain Lambda
Logical Forms (LLFs) from them via the LLFgen
(LLF generator) component. Otherwise, lambda
terms that follow the following BNF syntax are
the native format for the LangPro theorem prover
itself:
TERM = (tlp(pl_atom_for_token,
pl_atom_for_lemma,

pl_atom_for_POS_tag,
pl_atom_for_chunking_tag,

pl_atom_for_named_entity_tag), TYPE
| ( TERM @ TERM , TYPE ) | (abst(
VAR, TERM ), TYPE )
VAR = (pl_var, TYPE)
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TYPE = TYPE — TYPE | primitive_TYPE |
featured_TYPE

primitive_TYPE = pr | pp

featured_TYPE = n:FEAT | s:FEAT | np:

FEAT

FEAT = pl_var | dcl | ng | nb | pss |
thr | adj | b | to | pt | rm | num
| expl

n is the featured type assigned to nouns, np
the type assigned to noun phrases, and s the type
assigned to sentences.

In order to establish a certain logical relation
between one or more premises and a hypothesis,
the natural tableau method systematically searches
for a counterexample that would invalidate the re-
lation. The relation is considered proven if no such
counterexample can be constructed; otherwise, the
relation is refuted.

3 Pipeline Setup

3.1 Obtaining the input for the NLI theorem
prover

3.1.1 POS-tagging

GrailLight theorem prover, which is used for the
proof generation step, accepts Part-of-Speech tags
from the TreeTagger tagset'. These POS-tags are
also used for the semantics inferences by LangPro.

For TreeTagger POS-tags, three tools have been
identified, either the original TreeTagger (Schmid,
2013) (which is now outdated) with a Python wrap-
per? for convenience, RNNTagger (Schmid, 2019),
or the POS-tagger of the ELMo/bi-LSTM version
of DeepGrail (Moot, 2021), which uses the model
from Che et al. (2018). The latter one proved to be
the best performing for this task.

Table 3 provides details on the number of oc-
currences of each POS-tag at the token level for
French SICK dataset, as well as their partial corre-
spondence with the tags in MELL tagset.

3.1.2 CG-supertagging with DeepGrail

The more recent Transformer version of the Deep-
Grail supertagger’ uses CamemBERT (Martin
et al., 2020), itself a French version of ROBERTa
(Liu et al., 2019), for token embeddings. It
is trained on the French Type-Logical Treebank

"https://www.cis.uni-muenchen.
de/~schmid/tools/TreeTagger/data/
french-tagset.html.

https://treetaggerwrapper.readthedocs.
io/en/latest.

*https://gitlab.irit.fr/pnria/
global-helper/deepgrail_tagger.


https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/french-tagset.html
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/french-tagset.html
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/french-tagset.html
https://treetaggerwrapper.readthedocs.io/en/latest
https://treetaggerwrapper.readthedocs.io/en/latest
https://gitlab.irit.fr/pnria/global-helper/deepgrail_tagger
https://gitlab.irit.fr/pnria/global-helper/deepgrail_tagger

System Proof strategy Logic Prover Semantic parser Abduction Arithmetic Datasets covered

Mineshima et al. (2015) Ad hoc tactics HOL Coq CCG Parser (C&C) FraCaS

Abzianidze (2015, 2017) Tableau Natural logic / HOL LangPro C&C, and EasyCCG, v FraCaS, SICK
then LLFgen

Martinez-Gémez et al. (2017) Ad hoc tactics FOL Coq C&C, and EasyCCG v SICK

Chatzikyriakidis and Bernardy (2019), - .

Bernardy and Chatzikyriakidis (2021) Ad hoc tactics HOL Coq Grammatical Framework v FraCaS

Haruta et al. (2022) Resolution Typed FOL Vampire C&C, BasyCCG, and ¥ (WordNet and v FraCa$, MED, SICK,

Olausson et al. (2023) Resolution/model building FOL

Prover9/Mace4

depceg HANS & CAD
LLM (StarCoder+, GPT

35,GPT 4)

VerbOcean)
FOLIO & ProofWriter

Table 2: Existing methods based on theorem provers for NLI on English datasets

Number of TreeTagger tags MELTt tags
occurences

50725 NOM NN (NNS?)
35984 DET:ART DT
24269 PRP IN
20471 VER:pres VB
9416 ADJ 1
5447 ADV RB
3886 KON CcC
3394 PRP:det

3388 PRO:PER PRP
3201 VER:pper VBN
1876 NUM CD
1461 PRO:REL WP
832 PRO:IND

645 VER:infi VB
636 VER:ppre VB
581 DET:POS PRP$
398 PUN

139 NAM NNP
29 ABR

24 PRO PRP
23 PRO:DEM DT
21 VER:simp VBD
18 VER:impf

14 VER:futu

2 VER:subp

2 SYM

Table 3: Occurrences of each POS-tag in French SICK
dataset for TreeTagger POS-tags and MELt POS-tags.

(Moot, 2015) to produce supertags (type-logical
formulas) for each word in a sentence. DeepGrail
is a loose adaptation of the work of Kogkalidis
et al. (2020) to French. The supertagger assigns the
correct formula to a word 96,1% of the time.

3.1.3 Lemmatisation

There are three tool options for lemmatisation for
French, namely spaCy (Honnibal et al., 2020),
Stanza (Qi et al., 2020), or Lefff (Sagot, 2010).
Lemmas do not have an impact on the lambda-term
extraction step, but they do have on the reasoning
step with LangPro at the end. After inspecting the
lemmatisation output, we concluded that Stanza’s
lemmatiser is comparatively the best among the
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three. For example, both spaCy and Lefff mistak-
enly gave as lemma 1uire for the word 1ui in the
phrase derriére 1ui. On the other hand, Stanza
gives the disjunctive pronoun 1ui as lemma for the
subject pronoun i1, indicating maybe that it groups
pronominal forms together.

3.1.4 Proof and lambda-term generation with
GrailLight

GrailLight (Moot, 2017) is a supertag-factored
chart parser for multimodal type-logical grammars.
It outputs a natural deduction proof for the highest-
probability sequence of formulas for which a proof
exists. A lambda-term for this proof is obtained by
the Curry-Howard isomorphism.

Finally, we convert GrailLight’s output lambda-
term to LangPro’s native input format shown in
Section 2.4.1.

3.1.5 Evaluating the pipeline and improving
the coverage

Dataset Total Number of  Percentage = Number of

sentences sentences of the sentences
parsed sentences failed to be

parsed (%) parsed

SICK-FR 19,680 18,294 92,96 1,386
FraCaS-FR  test 882 838 95,01 44
GQNLI-FR  test 703 667 94,88 36
test 1,828 1,496 81,84 332
RTE3FR ey 1,959 1503 81,32 366
test 10,409 8,128 78,09 2,281
XNLEFR gy 5151 3.956 76,8 1195
DACCORD 2,341 1,773 75,74 568

Table 4: Parsing results per dataset with 1 formula per
token

In order to improve coverage from GrailLight,
we used the 2022 Transformer version of Deep-
Grail Supertagger as a base, adding the beta value
assignment introduced by Clark and Curran (2004)
and already included in the 2021 ELMo/bi-LSTM
version of DeepGrail (Moot, 2021).

For P(z;): the probability of predicted formula
Zi,

Tpest = arg max, P(x): the formula with the
highest predicted probability,



(: the beta value (a scalar between 0 and 1),
T = 3 - P(xpest): the threshold probability.

DeepGrail includes in its output, for every token,
all formulas x; such that:

P(xz) > 5 : P<xbest)

It is to be noted that the beta value is not impor-
tant per se; what matters is the resulting average
number of predicted formulas per token.

Thus, without changing the pipeline (ELMo/bi-
LSTM DeepGrail for POS-tagging, Stanza for lem-
matisation, CamemBERT DeepGrail for CG su-
pertagging), but with the beta value set to 0.01 and
0.0001 now (instead of set to 1.0 as in Table 4, or
before in Skandalis et al. (2025)), which gives ex-
actly one prediction per token), the number and per-
centage of proofs generated by GrailLight (whether
these proofs are correct or not) are improved (see
Tables 5 and 6).

Dataset Total Number of  Percentage ~ Number of Average
sentences sentences of the sentences number of

parsed sentences failed to be formulas

parsed (%) parsed per token
SICK-FR 19,680 19,564 99.41 116 10618
FraCaS-FR test 882 869 98,53 13 1,0819
GQNLI-FR test 703 688 97,87 15 1,0562
test 1,828 1775 97,1 53 L15
RTES-FRER ey 1,959 1,890 96,48 6 1,176
test 10.409 9,748 93,65 661 1,1807
XNLEFR gy 5.151 4,824 93,65 327 11913
DACCORD 2,341 2,196 93,81 145 1,1978

Table 5: Parsing results and formula density per dataset
for beta value set to 0,01

make the French terms somewhat similar to En-
glish terms as LangPro already has inference rules
specialized for the latter ones. Such approach pre-
vents us from making inference rules that specialize
for French function words such as determiners and
connectives. A brief illustration of transforming
French terms into English-like terms is given be-
low for the SICK NLI problem 3514, where the
terms use lemmas of the corresponding words and
non-French function words are highlighted in red.

(3514) P-FR: Une femme danse
a femme danser
H-FR: Il n’y a pas de femme qui danse
ne™ (Ay.no (who danser femme) (Az.be z y)) there
P-EN: A woman is dancing
(be dance)
H-EN: There is no woman dancing
no (who dance woman) (Azx. be x there)
Label: Contradiction

a woman

More details on the adaptation is provided in Sec-
tion 4.2. The entire pipeline of the French neu-
rosymbolic NLI is concisely visualised in Figure 1.

4 Score and discussion

4.1 Score

We first evaluated some recent Transformer mod-
els on the French and English versions of SICK
dataset. The results can be seen in Table 7. All
NLI Transformer models for French are, in general,
trained on the machine-translated from English to
French train subset of XNLI. Thus, the evaluation

Dataset Total Number of  Percentage =~ Number of Average . . . .
sentences sentences of the sentences number of Of the LLMS 1S done here m CrOSS—dOInaln Settlngs.
parsed sentences failed to be formulas
parsed (%) parsed per token
SR bm b pm % um
atas- 3 B Model
GQNLI-FR 703 698 99,29 5 1,2444 Accuracy Precision Accuracy Precision
DistilmBERT; 52 61,25 48,43 54,01
: : Base-cased ” - N
Table 6: Parsing results and formula density per dataset MR 086 o1
~“Base - - 4 »
for beta value set to 0,0001 CamemBER Tgpee 3.ctcs : ) 5259 .63
mDeBERTa-v3p,ce XNLI 57.34 67,36 59,09 64,43
For comparison, Abzianidze and Kogkalidis mDeBERTa-VIgase, NLL2mit7 8.3 689 6694 66,76
XLM-Rp grge 53,12 64,57 54,81 63,08

(2021) report 95,9% of the sentences parsed for the
dutch version of SICK with the Neural proof nets
model from Kogkalidis et al. (2020), and 98,1%
with the dutch Alpino parser (van Noord and Mal-
ouf, 2001).

3.2 Using LangPro for NLI for French

The LangPro has been initially developed for En-
glish but later adapted to Dutch (Abzianidze and
Kogkalidis, 2021). We follow the previous work
and in a similar style adapt the theorem prover
to French. The main idea of the adaptation is to

CamemBERT] 4ro¢. 3-class 583 64,83

Table 7: Results of label prediction by Transformers on
SICK-EN and SICK-FR

Table 8 reports the results currently obtained on
SICK-FR with LangPro theorem prover, with ab-
duction and without the use of a dedicated French
Knowledge base. It also gives for comparison the fi-
nal results on SICK-EN and SICK-NL as reported
by Abzianidze and Kogkalidis (2021), with the
same theorem prover.

246


https://huggingface.co/regisss/distilbert_xnli
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https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli
https://huggingface.co/waboucay/camembert-large-finetuned-xnli_fr_3_classes

Figure 1: The pipeline for neurosymbolic NLI in French, with an example of conversion, which consists of the
following steps: 1) POS-tagging and CG supertagging, 2) lemmatisation, 3) proof generation and lambda-term

extraction, 4) theorem prover input.

Dataset Accuracy  Precision

SICK-EN 84,4 94,3
SICK-NL (Abzianidze and Kogkalidis, 2021) 78,8 84,2
. test 71,1 96,8

SICK-FR (present article) train-trial 76.9 98.6

Table 8: Precision and accuracy of LangPro for different
languages

4.2 Handling inter-linguistic differences

Existential sentences with negation Historically
in French, the word ne was the bearer of the sense
of negation, and was followed by the word point,
for emphasis. But nowadays, the negation is borne
by the word pas, evolution of the word point.
There are some occurrences where the word ne
can appear without the pas to express the negation,
but this is not with existential sentences. So for
existential sentences, in order to align more easily
the tree structures between there exists/is no

and i1 n’y a pas de, we put together pas de
as a quantifier, and correspond it to no as illus-
trated in 3514. While ne is still present in the
corresponding term, it is marked with a specific
NIL tag, indicating the semantic vacuousness for
theorem proving.

Insert a WH-pronoun for VPs of type np—n—n
To prove the contradiction such as the one
in 3720, one needs to relate épluche:np—np—s
to épluchant :np—n—n but it is difficult because
of their different types. We convert personne
épluchant :np—n—n un oignon INtO personne
WHICH:np—s— (n—n)
oignon, which makes the connection between the
verbs more transparent.

épluchant :np—np—s un

(3720) P-FR: Une personne épluche:np—snp—s un
oignon
H-FR: I ny a pas de

épluchant:np—n—n un oignon

personne
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P-EN: A person is peeling an onion
H-EN: There is no person peeling an onion
Label: Contradiction

Attach remote ‘“ne” to “personne” In sentences
such as the premise in the example 4816, ne is
renamed to no and attached to personne, so that
the underlying logical form is be (no (who ...)
personne) there, where closed-class words are re-
placed with English. With this, it is possible to
prove the contradiction below.

(4816) P-FR: Il n’y a personne qui coupe un peu de
gingembre

H-FR: Une personne coupe un peu de gingem-

bre
P-EN:
H-EN:
Label:

There is no person cutting some ginger
A person is cutting some ginger
Contradiction

Predicative adjectives In the English CCG, pe
green is analysed as be: (np—s:adj) 2np—s:
dcl green:np—s:adj, while in French TLG pe
: (n—n) »np—s:dcl green:n—n Seems to be a
preferred analysis. To accommodate the latter,
the initial LangPro tableau rule empty_mod is
extended, which discards be: (n—n) —np—s:dcl,
and changes the type of green to np—s:adj. The
analysis is intuitive, that’s why it was accommo-
dated in the inference rules rather than rewriting
the French terms in the English style. This addition
solves problems such as 3812 below:
(3812) P-FR: Une femme tranche un poivron qui est

vert
Une femme tranche un poivron vert
A woman is slicing a pepper which is

H-FR:
P-EN:

green
H-EN:
Label:

A woman is slicing a green pepper
Entailment



Normalise French terms Because of particulari-
ties of the chart rules, the French terms generated
by GrailLight need not be in beta normal form.

(819) P-FR: Une personne en équipement de vélo
est debout régulierement en face de
certaines montagnes

P-EN: A person in biking gear is standing
steadily in front of some mountains
Label: Contradiction

The lambda-term for the exam-
ple 819 above includes the subterm
(A x. réguliérement (est debout x))

Une_personne_en_équipement_de_vélo.
Before fixing any issues in the terms, first they
are normalized.

Running abduction Abductive learning was in-
troduced in LangPro by Abzianidze (2020). Abduc-
tive learning is run on the train and trial subparts
of SICK, where LangPro has access to the gold
inference labels and exploits them to learn useful
lexical knowledge, i.e., relations over lexical items.
In particular, LangPro induces the lexical knowl-
edge that contributes to the proofs for entailment
and contradiction problems. The learned lexical
knowledge is later use to prove problems from the
SICK-test subset.

Adding a knowledge base for access to lexical
knowledge Results can be improved if we give
access to the theorem prover to lexical relation-
ships, such as hypernyms, synonyms, antonyms, ge-
ographical relations. For English, LangPro uses re-
lations taken from WordNet 3.0 (Abzianidze, 2017).
Knowledge bases, which could be used for this pur-
pose for French, include the multilingual Babel-
net (Navigli and Ponzetto, 2012), the monolingual
French version of Wordnet WOLF (Sagot and Fiser,
2008), or JeuxDeMots (Lafourcade, 2007). Addi-
tional common sense knowledge, whose inclusion
could be useful to test next, are listed in LoBue and
Yates (2011).

As a first step here, we extracted the hypernyms
(isa) and the antonyms from a 2013 version of
JeuxDeMots, and converted them into Prolog for-
mat. This version contains 49.812 hypernyms, and
12.802 antonyms. Without further manipulation
on the system, LangPro was able to prove some
52 additional problems from the train subset of
SICK-FR with these relations. The example 5752
is one of these 52 cases, mentioning in sys1 the
prediction without access to the knowledge base,

and in sys2 the prediction that employs relations
from JeuxDeMots.

(58752) P-FR:
H-FR:

P-EN:

H-EN:

Label:

sysl:

Sys2:

Le rhinocéros broute sur 1’herbe
L’animal broute sur I’herbe

The rhino is grazing on the grass

The animal is grazing on the grass
Entailment

neutral

entailment, using isa(rhinocéros,animal)

We also extracted the same relations from a more
recent version of JeuxDeMots (2024), amounting
to 28.760.688 hypernyms and 131.813 antonyms,
and plan on conducting tests with these versions,
too.

Labels affected by translation Since this first
version of SICK for French is machine-translated
from English, some examples might need correc-
tions in their translation after inspection, so that the
initial label remains true.

Un homme marche dans les bois
L’homme ne marche pas dans les bois
A man is trekking in the woods

The man is not hiking in the woods
Neutral

(3181) P-FR:
H-FR:
P-EN:
H-EN:
Label:

The example 3181 could be better translated,
with an anglicism, as:

(3181) P-FR: Un homme fait un trek dans les bois
H-FR: L’homme ne fait pas de randonnée

dans les bois
Label: Neutral

Finally, we applied manual corrections to the
translations of certain sentences, the mistranslation
of which may not impact the truth value of the la-
bel, or for which access to a knowledge base would
now be needed in order for the label to remain truth-
ful (e.g. poivron vert for green pepper, instead of
poivre vert in the machine translation). These cor-
rections are incorporated into the version of SICK-
FR available on github and on huggingface.

5 Conclusion and perspectives

In this paper, we have presented the first combi-
nation of Transformers with automated theorem
provers applied to the task of Natural Language
Inference for French. The task of NLI with neu-
rosymbolic methods can be split into two subparts:
semantic parsing and natural language reasoning.
The first one is necessary in order to convert the
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sentences to a form that can be processed by the
theorem prover, that is, in the form of lambda
terms or first-order logical formulae. In the case of
French, to achieve this, one first needs to add Part-
of-Speech and Type-Logical Grammar tags to the
tokens of the sentences with the help of DeepGrail,
then feed this to the Graillight logical parser. The
LangPro theorem prover, that we chose here to use
for the natural language reasoning, accepts lambda-
terms as an input. We adapted it from English
to French, mainly by aligning French linguistic
structures to their equivalents in English, and by
mapping words that can modify meaning to their
English translations. The current performance of
the model is promising, surpassing the performance
of recent Transformer encoder models evaluated
on the French SICK dataset. It is on par with the
results obtained by LangPro on the English and
Dutch versions of SICK, as long as more lexical
knowledge is added for French as well. Finally, the
present work also resulted in the first (NLI) datasets
with sentences and their lambda-term representa-
tions available for French.

For the future, we plan to adapt and evaluate
alternative semantic parsers, notably by using the
DeepGrail parsers and by adapting Spindle (Kogka-
lidis et al., 2023) to generate lambda-terms for our
French datasets. We also plan to extend the cov-
erage of LangPro for French, so that it can handle
FraCaS and GQNLI, as well. Finally, we aim at
establishing another method based on a second the-
orem prover, for comparison reasons.
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