ProPara-CRTS: Canonical Referent Tracking for
Reliable Evaluation of Entity State Tracking in Process Narratives

Bingyang Ye and Timothy Obiso and Jingxuan Tu and James Pustejovsky
Brandeis University
415 South St, Waltham, MA, 02453
{byye, timothyobiso, jxtu, jamesp } @brandeis.edu

Abstract

Despite the abundance of datasets for proce-
dural texts such as cooking recipes, resources
that capture full process narratives, paragraph-
long descriptions that follow how multiple enti-
ties evolve across a sequence of steps, remain
scarce. Although synthetic resources offer use-
ful toy settings, they fail to capture the lin-
guistic variability of naturally occurring prose.
ProPara remains the only sizeable, naturally oc-
curring corpus of process narratives, yet ambi-
guities and inconsistencies in its schema and an-
notations hinder reliable evaluation of its core
task Entity State Tracking (EST). In this paper,
we introduce a Canonical Referent Tracking
Schema (CRTS) that assigns every surface men-
tion to a unique, immutable discourse referent
and records that referent’s existence and loca-
tion at each step. Applying CRTS to ProPara,
we release the re-annotated result as ProPara-
CRTS. The new corpus resolves ambiguous par-
ticipant mentions in ProPara and consistently
boosts performance across a variety of models.
This suggests that principled schema design
and targeted re-annotation can unlock measur-
able improvements in EST, providing a sharper
diagnostic of model capacity in process nar-
ratives understanding without any changes to
model architecture.

1 Introduction

Comprehending changes in a dynamic world is
difficult. It requires the model not only to reason
about state transitions across multiple steps but also
to infer from knowledge of the world.

There has been considerable recent progress in
understanding naturally occurring procedural texts,
such as cooking recipes, WikiHow, etc. (Bosselut
et al., 2017; Tandon et al., 2020), and establishing
benchmarks over these datasets has helped drive
research in this area of NLP.

Unlike procedural texts, process narratives de-
scribe a process in sequential steps in descrip-

Participant:
tadpole | frog new tadpole
' Steps ! _ _ _ 4
1. Atadpole is hatched.] " - - \
2. The tadpole grows hind legs. } ; - . s
3. The tadpole loses its tail. } 7 . . 4States
4. The tadpole becomes a frog.] —) - 5
5. A tadpete new tadpole is hatched] . R) 6

Figure 1: An annotated paragraph in ProPara. Each
row shows the existence and location of participants

9% 6 9

before and after each step (“?” denotes “unknown”,
denotes “not exist””). This example demonstrates the
problem of referential confusion where the participant
“tadpole” can refer to more than one entity. Red denotes
the paragraph and annotation we find problematic, green
denotes the annotation based on our new schema.

tive narratives rather than instructional, imperative
steps. Consequently, the boundaries between “ac-
tions” are fuzzy, temporal ordering is not always
explicit, and many state changes must be inferred
from world knowledge rather than extracted from
verb—object pairs. These characteristics make pro-
cess narratives a stricter test of a model’s capacity
for dynamic, discourse-level reasoning than the for-
mulaic language of recipes or instructional bullet
points.

Although there exist a few datasets related to
process narratives, many of them are not in natu-
ral language but are synthetic texts (Weston et al.,
2015; Long et al., 2016). Recently there have been
more datasets using natural language, but due to the
rarity of the real-world data and expert knowledge
needed to create these sets, most of these datasets
are in a specific domain (Berant et al., 2014; Bosse-
lut et al., 2017; Tandon et al., 2020; Fang et al.,
2022; Rim et al., 2023; Zhang et al., 2024).

ProPara (Mishra et al., 2018; Tandon et al., 2018)
is the only existing dataset of process narratives in
natural language, covering diverse domains. It is

254

Proceedings of the 16th International Conference on Computational Semantics, pages 254-268
September 22-23, 2025, Licensed under the Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0/

a dataset of human-authored paragraphs of real-
world processes, along with annotations about the
changing states (existence and location) of entities
in these processes. Figure 1 shows an annotated
paragraph in ProPara. Annotators first construct the
process steps given the prompt “Describe the life
cycle of a frog”. Then they select entities of inter-
ests of the process as participants. Later, annotators
track the existence (i.e., Create, Destroy, and None)
and location changes of the participants. The result-
ing benchmark underpins the Entity State Tracking
(EST) task, which requires models to predict those
step-wise state transitions.

Despite its value as a comparatively large re-
source in a data-scarce genre, ProPara’s original
annotation schema is not fully aligned with the
formal requirements of EST evaluation. In par-
ticular, the schema tolerates referential ambiguity
and allows multiple surface mentions to be con-
flated under a single participant label, leading to
inconsistent state chains. Figure 1 illustrates the
problem: the label tadpole is used for two distinct
entities introduced in Step 1 and Step 5, but both
are erroneously merged. Consequently, a system
that correctly predicts the destruction of the first
tadpole is penalized because the gold annotation
wrongly asserts that tadpole is (re)created later in
the narrative. Such annotation artifacts obscure true
model performance and impede principled analyses
of reasoning errors.

To address these problems, we propose a
Canonical Referent Tracking Schema (CRTS) and
introduce a re-annotated dataset ProPara-CRTS.
CRTS is a tightly specified annotation framework
that assigns every surface mention in a process
narrative to a unique, immutable discourse refer-
ent and obliges annotators to record that referent’s
existence and location at every step in the text.

The re-annotation proceeds in three intercon-
nected stages. First, at the paragraph level, we ap-
ply Dense Paraphrasing (Tu et al., 2023) to rewrite
or split sentences so that every entity mention is
self-contained, eliminating referential ambiguity
in the running text. Next, at the participant level,
we merge coreferential mentions and assign each
cluster a single canonical name—its CRTS refer-
ent—thereby establishing a strict one-to-one corre-
spondence between discourse entity and participant
label. Finally, at the state-label level, we traverse
the revised step sequence and re-annotate existence
and location, adding previously implicit transitions,

sharpening coarse location spans, and guarantee-
ing that each referent experiences at most one state
change per step.

To investigate the effectiveness of our re-
annotation on the evaluation of the EST task, we
train the state-of-the-art models on the re-annotated
data and are able to achieve higher performances
and the predictions are more reasonable based on
human inspection.

We evaluate LLMs with a range of reasoning
scaffolds and observe modest but consistent gains
on ProPara-CRTS relative to the original corpus.
This suggests that the cleaner reference mapping re-
moves label noise that previously suppressed zero-
shot scores. Even with best performing prompt-
ing, however, the model still trails supervised sys-
tems by a large margin. When we fine-tune a
parameter-efficient Llama-3-8B on the CRTS train-
ing split, the model surpasses zero-shot LLMs and
approaches the performance of fully supervised
baselines, confirming that LLMs can internalize
canonical referent tracking once given sufficient
task-specific examples. !

2 Related Work

Procedural texts comprehension WIQA (Tan-
don et al., 2019) evaluates models’ performance
on “What if” questions regarding procedural texts.
TRIP (Storks et al., 2021) is a dataset created to
evaluate the reasoning ability of language models
related to procedural physics texts. MARS (Wang
and Song, 2024) evaluates the understanding of
event and state changes in processes and how meta-
physical changes to certain aspects of the process
impact the process.

Entity state tracking Ma et al. (2022) propose
a new model, CGLI, that builds local and global
representations to track entities in procedural texts
showing improvement on ProPara and TRIP. Other
datasets focusing on the EST task include OpenPI
(Tandon et al., 2020) and its derivations and itera-
tions, OpenPI-C (Wu et al., 2023), and OpenPI2.0
(Zhang et al., 2024). At each step of a process,
these datasets ask models to produce the entities
involved in that step, the states about them that
change, and the before and after states. Elazar et al.
(2022) propose a new task, TNE (Text-based NP
Enrichment) which aims to collect all relevant infor-
mation about an NP from a paragraph. Throughout

The source code and dataset is available at https://
github.com/brandeis-11lc/ProPara-CRTS.

255

https://github.com/brandeis-llc/ProPara-CRTS
https://github.com/brandeis-llc/ProPara-CRTS

a given text, this task challenges models to track the
attributes of and participation of entities in events.
EST is both a complement to and a component of
this task.

Linguitically enriched reannotation High-
quality annotation is needed for models to improve
performance on tasks related to procedural text
comprehension and EST. This is because they
require a high level of semantic knowledge about
the events and how the entities are involved.
These tasks test models on their knowledge of
the real-world intricacies of these events and how
entities are created, moved, or destroyed through
these processes.

Ménard and Mougeot (2019) and Tu et al. (2024)
propose heuristics to recognize common annotation
errors including typos, expert knowledge errors,
protocol ambiguity, etc. These authors propose
automatic processes for recognizing common an-
notation errors to create datasets of higher quality.
Rezayi et al. (2021) uses external text to enrich
graph representations which suffer from sparsity
issues. The enhancement of this additional infor-
mation improves performance on multiple datasets.
Li et al. (2022) enhances social media posts with
post metadata appended onto the post text. The au-
thors show improvement over methods using non-
enhanced text by fine-tuning a pre-trained language
model using the enhanced data.

3 Canonical Referent Tracking Schema

Canonical Referent Tracking Schema (CRTS) is
an annotation framework that maps every surface
mention to a unique and immutable discourse ref-
erent—the single authoritative or canonical repre-
sentation of that entity, corresponding to the partic-
ipant in ProPara—and obliges annotators to record
that referent’s existence and location at every step
in the discourse. Three constraints follow: (i) ref-
erent uniqueness—a one-to-one mapping between
participants and mentions, so that referent of dis-
tinct entities are never conflated; (ii) temporal
atomicity—a referent can undergo at most one
state transition per step; and (iii) complete state
accounting-consistent state and location values are
obligatory for every mention at every step, includ-
ing transitions that are only implicit in the text.
When any of these constraints is violated, gold an-
notations no longer reflect the ground-truth reason-
ing problem, and evaluation scores conflate model
error with annotation noise.

In this section, we show how ProPara systemati-
cally violates each principle and why those viola-
tions obscure a model’s true competence in EST.

3.1 Violations of Referent Uniqueness

In the EST task, to successfully track the state
change of a participant p, given an entity set F
of the paragraph, a first and foremost premise is
that we know which entity p refers to. Otherwise,
our systems can be tracking the states of completely
different entities than ProPara intends to.

The original ProPara annotations frequently
breach the CRTS requirement of referent unique-
ness, producing an ambiguous, non-canonical map-
ping from the participant list P to the underlying
entity set E. These violations manifest in several
recurring patterns:

Name confusion Many processes in ProPara are
continuous. In a cycling process, it is common to
see multiple entities with the same name undergo
different actions (i.e., state and location changes).
For the purpose of EST, if a participant shares the
same name with all these entities, then it is impos-
sible to ascertain which entity is of interest here.

In Figure 1, the paragraphs describe the process
of the life cycle of a frog. There are two mentions
of tadpole in the paragraph in Step 1 and Step 5
respectively, and the two mentions are parent tad-
pole and baby tadpole — two different entities. The
annotator chooses the first “tadpole” as the entity
of interest and put the name “tadpole” in the par-
ticipant set then starts labeling its state changes.
What seems fine from an annotator’s point of view
becomes confusing when it comes to someone who
wants to use the date to do state tracking. When
you asked about what the state of the participant
“tadpole” is, it is impossible to know which tad-
pole we want to track without looking at the gold
annotation, which is inaccessible during inference.

This also makes annotation error-prone as it is
easy to confuse mentions of the same name as one
entity. The annotation for participant “tadpole”
in state 5 is such an example. According to the
annotation, the tadpole becomes a frog and then
transforms into a tadpole again, which is counter-
factual.

Part-whole splits This happens when an entity e
undergoes some state changes and splits to a few
new entities where each resulting entity holds a
part-whole relation with e. Each new split still

256

shares the same name of e. This will also cause
reference confusion when doing EST.

(1) Step t: Water washes the sediment back.

Step t+1: Some sediment is left as sand.

In example 1, sediment is partially moved in step
t. The sediment in step ¢ and step ¢ + 1 are not
the same entity, neither of which is the same as
the sediment before. But since they share the same
name, one cannot tell which one the participant
“sediment” refers to. Furthermore, a situation like
this makes annotating the split entities difficult.

Conditional branches Similar to part-whole
splits, conditional sentences would create possi-
ble worlds where in each world there is a copy of
the entity e. When asked about the state of entity
e, one cannot tell which possible world the entity
belongs to.

(2) Step t: If the magma building is thick and
sticky it will result in an explosive eruption.

Step t+1: If the magma is thin and
runs, the magma results in a low-pressure
Sflow instead of a violent eruption.

In example 2, the changes of the entity magma are
conditional in step ¢ and step t + 1. When there
is only one participant under the name “magma”,
one cannot tell which magma should be linked to
participant “magma’.

In each of the cases, referential drift distorts
accurate evaluations by scoring correct inferences
as errors.

3.2 Violations of Temporal Atomicity

Violations of temporal atomicity further erode eval-
uation fidelity. It is usually demonstrated in the
following two ways.

Multiple transition Since EST is a step-wise
prediction task, one entity can only undergo one
action (transformation or location change) at each
step. To properly evaluate EST on the sentence-
level, there should be only one action per step for
each entity.

(3) Fallen rain or snow collects into surface water
which will evaporate into water vapor again.

257

In example 3, the entity surface water is assigned
with two actions in one step, i.e., created from
rain or snow and transformed into vapor by the
annotators. A single timestep now contains two
incompatible gold labels. Any model forced to
choose one incurs a false negative on the other,
capping maximum attainable performance.

Duplicate transition Sometimes, the same
change is described across more than one step.

(4) Step t: The light energy is used to convert
carbon dioxide.

Step t+2: The plant uses carbon dioxide in
the air to produce glucose.

In example 4, step ¢ and step ¢ 4+ 2 together de-
scribe the creation of glucose. Annotating CRE-
ATE in both steps does not correctly represent the
state changes of the involved entities. Models that
avoid double-counting a one-off event are scored
as under-predicting, while models that parrot the
duplication are rewarded.

3.3 Violations of Complete State Accounting

Finally, ProPara often omits or mis-codes required
state information.

Overgeneralized locations When annotating the
location of a participant, the annotations sometimes
are too general when there is a more specific men-
tion of the location.

(5) Blood returns to left side of your heart.

In example 5, the location of “blood” is anno-
tated as heart, which is technically correct but is
not informative enough. So a model that predicts
the finer span is marked wrong

Inconsistent state coding The same action does
not always get the same annotation. For exam-
ple, the event “die” is sometimes annotated as DE-
STROY and sometimes annotated as NONE since
the annotators think the remains of that entity still
exist.

Missing implicit transition When an action can
only be inferred from the context or when the in-
put/output is not explicitly stated, the correspond-
ing state transition can be overlooked by the annota-
tors. This happens most frequently when there is a
transformation that involves multiple inputs where
some inputs being explicitly mentioned while the

others not. The state changes of the entities that do
not get mentioned explicitly are usually missing in
the annotations.

(6) Step t: A larvae matures inside of the egg.

Step t+1:
the egg.

The caterpillar hatches from

In example 6, a transformation of larvae to cater-
pillar happens in step ¢ + 1. However, since the
action is not explicitly mentioned in the paragraph,
the annotators miss to annotate the state of “lar-
vae” as DESTROY. Thus a model that infers the
disappearance of the larva is scored as incorrect,
disincentivizing genuine causal reasoning

4 Re-annotating ProPara

To align ProPara with the CRTS constraints in §3,
we perform a systematic re-annotation based on
the Dense Paraphrasing (DP) technique (Ye et al.,
2022; Tu et al., 2023). We treat DP as a truth-
preserving textual enrichment strategy ¢ that maps
a textual unit u (clause/sentence) to an enriched
form u™ = ¢(u) in which otherwise implicit event
roles, entity distinctions, and state transitions li-
censed by local lexical and discourse context are
made explicit, with semantic fidelity «™ = u. In
this work, DP targets explicitness over economy by
realizing missing arguments/roles, canonicalizing
discourse referents, and expressing step-level state
changes that are only implicit in w.

4.1 Re-annotation Actions

Resolving referent confusions via DP In the
schema of ProPara-CRTS, we leverage DP to man-
ually enrich entities with the same mention name
so that their names become distinguishable while
also reflecting the contexts. These enriched names
establish a one-to-one mapping from the partici-
pant set P to the discourse-entity set F, ensuring
that every participant has a single canonical refer-
ent and that no reference confusion can arise when
models predict its state.

Whenever two lexically identical mentions de-
noted distinct discourse entities, the annotators
should enrich these entities in DP style so that the
names of these entities become distinct and can be
easily linked to their corresponding entities. The
names in the participant sets are subject to change
per the names of entities they refer to. If necessary,
the annotators will also add more participants to

258

the participant set in one-to-many split situations
like part-whole splits and conditional sentences.

In Figure 1, the “tadpole” in Step 5 should be
re-annotated according to our new schema. It is re-
annotated as “new tadpole” distinguishing it from
the “tadpole” in Step 1. Also, “new” suggests that
it is chronologically created in later steps.

Enforcing temporal atomicity Sentences that as-
sign multiple transitions to one referent are divided
into separate steps, or additional DP-distinguished
referents are introduced so that each step contained
exactly one action per entity. Duplicate transitions
express across steps are merged into a single canon-
ical event.

Completing state accounts For every referent
at every step annotators record both an existence
value and the most specific location span available.
Missing implicit transitions (e.g. DESTROY of
larva in the larva — caterpillar transformation) are
inserted. Inconsistent action labels are also cor-
rected.

Paragraph Issues Some paragraphs in ProPara
are not a description of a process. One example
describes how liver works with each sentence ex-
plaining a function of the liver. This kind of para-
graphs are usually explanations where steps are
not in order and few state or location changes are
mentioned rather than process narratives. We be-
lieve these paragraphs do not qualify as process
narratives and should not be included in the dataset.
There are 36 paragraphs that fit in this category,
and we exclude them from ProPara-CRTS.

4.2 Annotation Protocol and Qualiaty Control

Three trained graduate students with a background
in Computational Linguistics annotate each para-
graph in two passes. In Pass 1 the text is screened
for non-process narratives; rejected paragraphs are
removed. In Pass 2 manual error identification and
CRTS corrections are applied, with DP edits logged
and adjudicated when necessary. On a stratified
sample of 100 paragraphs, we achieve a pairwise
Cohen’s x of 0.72 for state labels and a pairwise F1
of 0.56 for location agreement.

4.3 Corpus Statistics

The re-annotated dataset, ProPara-CRTS, consists
of 452 paragraphs and 13,417 state annotations. A
total of 1,661 re-annotations were performed, en-
compassing updates to paragraphs, states, and par-

Group Error type Count %
Name confusion 198 25.1

. Part—whole split 50 6.3

Referent Uniqueness Conditional branch 63 8.0
Subtotal 311 394

Multiple transitions 40 5.1

Temporal Atomicity Duplicate transitions 45 5.7
Subtotal 85 108

Missing implicit transition 209 26.5

. Overgeneralized location 81 103

Complete State Accounting Inconsistent state coding 67 8.5
Subtotal 357 452

Paragraph Issues Non-process paragraph 36 4.6
Subtotal 36 4.6

Total 789 100

Table 1: Distribution of error types corrected during the Canonical Referent Tracking re-annotation of ProPara.
Groups correspond to the three CRTS principles plus non-process paragraph issues.

ticipants, representing approximately 11% of the
annotations in the original ProPara dataset. Most
corrections in ProPara-CRTS address missing im-
plicit changes, which accounts for 26.5% of all cor-
rected errors. Name confusion and overgeneralizd
location are the next two most frequent issues. The
dataset maintains the same data splits as ProPara,
with each partition corresponding to a subset of
the original dataset partitions. Table 1 shows the
statistics of corrected errors in ProPara-CRTS.

By integrating DP into the CRTS workflow, the
new corpus removes referential drift without al-
tering the underlying prose, thereby providing a
sharply defined benchmark for measuring genuine
model capacity in EST.

S Experiments

In order to investigate the effectiveness of the new
annotation, we evaluate different models against
ProPara-CRTS and compare the results with those
of the original ProPara dataset.

5.1 LLM Prompting

Considering the moderate modifications made to
the original ProPara dataset, we believe that utiliz-
ing LLMs to perform inference on both test sets
provides a valid basis for comparison.

We follow the experiment setups in MeeT (Singh
et al., 2023) and frame EST into two subtasks: 1.
A multi-choice problem where we ask the LLMs to
select the state change of an entity from a fixed
label set in step ¢t. Similar to previous works
(Zhang et al., 2021; Ma et al., 2022), we define six

259

state types CREATE, NOT_CREATED, EXIST,
MOVE, DESTROY, and WAS_DESTROYED.
During evaluation, label NOT_CREATED, EX-
IST and WAS_DESTROYED will be mapped
back to NONE. This enrichment of state label
space helps the model differentiate the NONE
types. 2. An extractive QA task that asks LLMs
to extract the location of an entity in step ¢ from
the paragraph. Specifically, for each participant p,
at each step ¢ in the paragraph, we ask the LLMs
two questions: 1) What is the state of p in step
t? 2) Where is p located in step t? To preclude
information leakage, the paragraph passed to the
model is truncated at step .

We compare four prompting strategies that differ
only in the reasoning scaffold they present to the
LLM while leaving the task formulation unchanged.
The direct prompt elicits a terse answer and is de-
coded greedily with temperature 0. A Chain-of-
Thought (CoT) variant adds the instruction “think
step by step” and uses temperature 0.2 to encour-
age mild lexical diversity. The Self-Consistency
setting draws eight independent CoT completions
at temperature 0.7 and returns the state chosen by
majority vote; when location spans disagree, the
longest common subsequence is selected. Finally,
a Few-Shot prompt supplies two worked examples
drawn from the training split, each consisting of a
short paragraph, the target entity, and the gold state
and location pair.

We run the experiments using GPT-40-mini
and GPT-40 on the test sets of both ProPara and
ProPara-CRTS. The detailed prompting queries to

Prompt Dataset Sent-level Doc-level
Direct ProPara 37.1 59.6
! ProPara-CRTS 37.5 58.8
CoT ProPara 384 60.8
ProPara-CRTS 40.9 61.4

ProPara 40.2 62.1

Self-Cons. b Para-CRTS 419 63.5
ProPara 39.0 61.3

Few-Shot b para-CRTS 40.0 622

Table 2: Sentence-level and document-level F1 obtained
by GPT-40 under four prompting scaffolds tested on
ProPara and ProPara-CRTS test sets respectively.

the LLMs are shown in Appendix A.2.

5.2 LLM Fine-tuning

We also try fine-tuning LLMs for the EST task on
the ProPara datasets. Due to the limitation of com-
puting resources, we decide to fine-tune a smaller
model Llama 3.1 8B? twice: once on ProPara
and once on ProPara-CRTS. We fine-tune using
the training sets of each dataset and evaluate their
performance on the test sets of each dataset.

To fine-tune Llama 3.1, we make several adjust-
ments to improve efficiency. We use 4-bit quan-
tized models and LoRA (Hu et al., 2021) layers on
all seven target modules available on Llama mod-
els. In addition, we use the unsloth method for
gradient checkpointing. We use the CoT prompt
during fine-tuning and Self-Consistency prompt for
inference. Full fine-tuning hyperparameter set is
reported in Appendix A.1.

5.3 Supervised Learning Models

We evaluate ProPara-CRTS with two supervised
learning models MeeT (Singh et al., 2023) and
CGLI (Ma et al., 2022), which are the top 2 models
on the ProPara leaderboard®. MeeT formulates
the EST into two subtasks: state prediction and
location prediction. Then it fine-tunes the TS5 model
on both tasks. CGLI uses RoOBERTa and leverages
a decoding strategy that considers the context of
each step on both local and global levels. We reuse
the hyperparameters and settings reported by the
authors to train the two models on ProPara-CRTS.

6 Results

Table 2 reports GPT-40’s performance under four
prompting scaffolds, while Table 3 places those re-

2unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
3https://leaderboard.allenai.org/propara/submissions/public

Model Dataset Sent-level Doc-level
. . ProPara 24.8 55.0
GPT-40-mini b b ra CRTS 232 55.6
ProPara 40.2 62.1

GPT-40 ProPara-CRTS 41.9 63.5
ProPara 59.5 64.9

FTLlama 3.1 p b ra CRTS 63.6 65.9
MeeT ProPara 54.9 69.4
ProPara-CRTS 61.9 70.8

ProPara 65.4 72.4

CGLI ProPara-CRTS 69.5 75.1

Table 3: Sentence-level and document-level evaluation
results (F1) of models tested on ProPara and ProPara-
CRTS test sets respectively.

sults alongside parameter-efficient fine-tuning and
fully-supervised baselines.

Evaluation scheme Following the original
ProPara setup, models are judged by their abil-
ity to answer three QA categories derived from
an entity—step grid: (Catl) whether an entity is
created/destroyed/moved, (Cat2) at which step the
change occurs, and (Cat3) where it occurs (Dalvi
etal., 2018). In our reporting, sentence-level scores
evaluate these predictions at the granularity of
entity—step pairs, aggregated as macro/micro Fy
over Catl-3. Complementarily, document-level
scores treat all answers for a paragraph as a set
of predicted tuples (entity, change-type, step, loca-
tions) and compute precision/recall/F; against the
gold set, emphasizing global consistency across the
whole process (Tandon et al., 2018).

Effect of canonical reference Across all set-
tings ProPara-CRTS yields higher F1 scores than
the original annotation except for GPT-40-mini
at sentence-level. For GPT-4o the absolute gain
ranges from +0.4 points with the direct prompt to
+1.7 points with self-consistency. The trend is even
clearer for trained models: Llama-3-8B fine-tuned
on CRTS improves by +4.1 points at the sentence
level and by +1.0 points at the document level;
CGLI and MeeT register gains of +4.1 and +7.0
points respectively. These consistent improvements
confirm that enforcing a canonical, one-to-one ref-
erent mapping removes annotation noise that previ-
ously capped model scores.

Impact of reasoning scaffolds Moving from
the direct question to Chain-of-Thought (CoT) in-
creases GPT-40’s sentence-level score from 37.1 to
38.4 on ProPara and from 37.5 to 40.9 on CRTS.
Adding self-consistency sampling delivers a further

260

gain, reaching 41.9 / 63.5 on CRTS—the best zero-
shot result in our study. Few-shot prompting also
helps, though its improvement is slightly smaller
than that of self-consistency. The pattern suggests
that canonical referent tracking particularly bene-
fits prompts that require multi-step inference: once
referential ambiguity is removed, the model’s ex-
plicit reasoning is more likely to be correct and
internally consistent.

Prompting versus training Even with the
strongest scaffold, GPT-40 remains 22 points below
the best supervised model (CGLI) at the sentence
level and 12 points below at the document level.
Fine-tuning a relatively small 8-billion-parameter
Llama eliminates more than half of that gap, sur-
passing the older supervised systems MeeT and
CGLI on the original corpus and approaching them
on CRTS. These results indicate that canonical ref-
erent tracking narrows but does not erase the differ-
ence between prompt-only and parameter-updated
approaches; models still gain substantially from
task-specific training.

Canonical referent tracking lifts every method
we tested, but the magnitude of the lift is modu-
lated by the model’s ability to exploit richer rea-
soning scaffolds or supervised updates. Prompt-
engineering alone can reach the mid-40s F1 at the
sentence level, yet fine-tuning remains essential
for closing the gap to state-of-the-art supervised
systems. We show the full results in Appendix A.3.

Sent-level Doc-level
Model ProPara ProPara-CRTS ProPara ProPara-CRTS
FT Llama 3.1 61.9 63.6 65.0 65.9
MeeT 59.9 61.9 70.2 70.8
CGLI 67.2 69.5 71.1 75.1

Table 4: Cross-dataset evaluation results (F1) of models
trained on the training sets of ProPara and ProPara-
CRTS and tested against ProPara-CRTS test set.

Sent-level Doc-level
Model ProPara ProPara-CRTS ProPara ProPara-CRTS
FT Llama 3.1 62.3 64.6 65.4 67.5
MeeT 60.8 62.8 70.8 71.3
CGLI 68.3 71.2 73.3 76.5

Table 5: Cross-dataset evaluation results (F1) of models
trained on the training sets of ProPara and ProPara-
CRTS and tested against the shared slice of ProPara and
ProPara-CRTS test sets.

261

7 Analysis

To further investigate the effectiveness of the re-
annotation, we look into the prediction differences
in ProPara and ProPara-CRTS and see if the mod-
els trained on ProPara-CRTS understand process
narratives better.

7.1 Cross-Dataset Evaluation

We perform a cross-dataset evaluation by training
identical models on the training sets of ProPara
and ProPara-CRTS, and then assessing their perfor-
mance on ProPara-CRTS test set. Notably, models
trained on ProPara all exhibit a decline in accuracy
compared to those trained and tested exclusively
on ProPara-CRTS, underscoring the critical value
of high-quality training data and the advantages
offered by ProPara-CRTS. The main findings are
presented in Table 4.

We further evaluate models on the shared slice
of both ProPara and ProPara-CRTS test sets, where
no additional CRTS-only annotations are available.
The intersection test set contains 42 paragraphs out
of 52 of the original ProPara test set. The results
are shown in Table 5. Training on ProPara-CRTS
improves performance even when evaluation is re-
stricted to the intersection of both test sets. Gains
are consistent across all architectures. Because the
test slice excludes CRTS-specific enrichment, these
improvements indicate better generalization from
cleaner training signals rather than artifacts of a
richer label space.

Comprehensive results of both experiments are
reported in Appendix A.3.

7.2 Qualitative Analysis

Qualitatively, we compare model predictions ob-
tained from training on both datasets and observe
that models trained on ProPara-CRTS effectively
mitigate the shortcomings inherent in the original
annotations. As illustrated in Figure 2a, we show
the same paragraph in ProPara and ProPara-CRTS
with different state annotations. In Step 4, the en-
tity plant remains undergoes a transformation and
forms into peat. The annotation in ProPara misses
this transition because the input entity, plant re-
mains, is not explicitly stated. The annotation in
ProPara-CRTS corrects it. The prediction from
GPT-40 on Step 4 is NONE as it fails to identify
this implicit action as well. This mistake is also re-
garded as correct when evaluating against ProPara.

N a1

- P 1 Gold | GPT 4o Gold GPT 40
1. 300 millions years ago plants died. I
7 CREATE CREATE
2. The plant remains sank to the bottom of swampy areas. |
MOVE MOVE
3. Layer upon layer of remains accumulated.
NONE NONE
4. Eventually forming a soggy, dense material called peat.]
NONE DESTROY = J{{ NONE
L J
T
(a) State predictions of entity plant remains by GPT-40.
; Steps ' Gold CGLI Gold CGLI Gold CGLI
1. Animals die in watery environment.
NONE DESTROY CREATE
2. The animals are buried in mud.
MOVE DESTROY NONE MOVE
3. Soft tissue decompose.]‘ 5\/{ sl
NONE NONE NONE
C L J
e g

animals

(b) State predictions of entities animals and remains by CGLI.

Figure 2: State predictions on the same paragraphs or their re-annotated counterparts in ProPara and ProPara-CRTS.
The check denotes that the predictions match the gold. The cross denotes a mismatch with the gold. Green
background of the prediction means it is factually correct, red otherwise.

This shows that if the gold annotations are prob-
lematic, the evaluation results can be misleading.

Figure 2b demonstrates an example where the
re-annotation help CGLI better predict the states.
In the example, CGLI is asked to track the state
of participant “animals”. However, CGLI fails to
identify that die is an action of DESTROY, and
predicts that there is no state change for “animals”
in Step 1. We suspect that this is because there is
another mention of “animals” in Step 2 so CGLI
assumes that the animals are still alive in Step 1.
This is a mistake caused by reference confusion
where the “animals” in Step 1 refers to living ani-
mals while the mention in Step 2 refers to animal
remains, which should be differentiated in EST.
Hence, CGLI is actually tracking the states of the
wrong entity. By decontextualizing the “animals”
in Step 2, we distinguish the two entities which
share the same name. And the example shows that
CGLI is able to predict the states of both partici-
pants correctly. This indicates that the canonical
referent tracking schema help model to better com-
prehend process narratives.

8 Conclusion

We have presented ProPara-CRTS, a rigorously re-
annotated version of the ProPara corpus that re-

262

places the original, ambiguity-prone schema with
a Canonical Referent Tracking Schema. CRTS en-
forces one-to-one mention—referent mapping, step-
wise atomicity, and exhaustive state accounting.
DP supplies the minimal lexical edits needed to
make colliding mentions distinguishable while pre-
serving the original prose. During re-annotation
we also corrected recurrent paragraph and state-
label errors, yielding 452 paragraphs with 13,417
noise-free state triples. Experiments spanning from
LLM prompting, LLM fine-tuning and supervised
models show consistent gains on CRTS. The results
confirm three claims: (i) referential canonicaliza-
tion removes label noise that previously suppressed
scores; (ii) prompts that elicit multi-step reason-
ing profit most from the cleaner supervision; and
(ii1) despite these gains, EST remains challeng-
ing—supervised models still outperform purely
prompted LLMs, underscoring the importance of
dedicated training data. We release ProPara-CRTS,
annotation guidelines, and validation scripts to fa-
cilitate future work on robust, semantics-aware
evaluation of EST in natural-language process nar-
ratives.

9 Limitation

Due to resource constraints, only a subset of
100 paragraphs from ProPara underwent dual re-
annotation, while the remaining paragraphs were
subjected to single re-annotation. Consequently,
the inter-annotator agreement was calculated solely
based on this limited sample. Furthermore, for each
paragraph, both the re-annotation of the paragraph
text and the state labels were conducted by the
same annotator, which could introduce potential
bias into the annotations. Despite the involvement
of three specially-trained annotators, the possibil-
ity of unintentional errors or subjective judgments
remains.

References

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby
Vander Linden, Brittany Harding, Brad Huang, Peter
Clark, and Christopher D. Manning. 2014. Modeling
biological processes for reading comprehension. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1499-1510, Doha, Qatar. Association for Com-
putational Linguistics.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2017. Simulating
action dynamics with neural process networks. arXiv
preprint arXiv:1711.05313.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking state changes in
procedural text: a challenge dataset and models for
process paragraph comprehension. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1595-1604, New Orleans, Louisiana.
Association for Computational Linguistics.

Yanai Elazar, Victoria Basmov, Yoav Goldberg, and
Reut Tsarfaty. 2022. Text-based NP enrichment.
Transactions of the Association for Computational
Linguistics, 10:764-784.

Biaoyan Fang, Timothy Baldwin, and Karin Verspoor.
2022. What does it take to bake a cake? the
RecipeRef corpus and anaphora resolution in pro-
cedural text. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 3481-3495,
Dublin, Ireland. Association for Computational Lin-
guistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

263

Jinning Li, Shubhanshu Mishra, Ahmed El-Kishky,
Sneha Mehta, and Vivek Kulkarni. 2022. NTULM:
Enriching social media text representations with non-
textual units. In Proceedings of the Eighth Workshop
on Noisy User-generated Text (W-NUT 2022), pages
69-82, Gyeongju, Republic of Korea. Association
for Computational Linguistics.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1456—1465,
Berlin, Germany. Association for Computational Lin-
guistics.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Eric Nyberg,
and Alessandro Oltramari. 2022. Coalescing global
and local information for procedural text understand-
ing. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 1534—
1545, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Pierre André Ménard and Antoine Mougeot. 2019.
Turning silver into gold: error-focused corpus re-
annotation with active learning. In Proceedings of
the International Conference on Recent Advances in
Natural Language Processing (RANLP 2019), pages
758767, Varna, Bulgaria. INCOMA Ltd.

Bhavana Dalvi Mishra, Lifu Huang, Niket Tandon,
Wen-tau Yih, and Peter Clark. 2018. Tracking state
changes in procedural text: a challenge dataset and
models for process paragraph comprehension. arXiv
preprint arXiv:1805.06975.

Saed Rezayi, Handong Zhao, Sungchul Kim, Ryan
Rossi, Nedim Lipka, and Sheng Li. 2021. Edge:
Enriching knowledge graph embeddings with exter-
nal text. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2767-2776, Online. Association for
Computational Linguistics.

Kyeongmin Rim, Jingxuan Tu, Bingyang Ye, Marc
Verhagen, Eben Holderness, and James Pustejovsky.
2023. The coreference under transformation label-
ing dataset: Entity tracking in procedural texts using
event models. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 12448—
12460, Toronto, Canada. Association for Computa-
tional Linguistics.

Janvijay Singh, Fan Bai, and Zhen Wang. 2023. En-
tity tracking via effective use of multi-task learning
model and mention-guided decoding. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 1255-1263, Dubrovnik, Croatia. Association
for Computational Linguistics.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: Toward

https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.1162/tacl_a_00488
https://doi.org/10.18653/v1/2022.findings-acl.275
https://doi.org/10.18653/v1/2022.findings-acl.275
https://doi.org/10.18653/v1/2022.findings-acl.275
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://aclanthology.org/2022.wnut-1.7
https://aclanthology.org/2022.wnut-1.7
https://aclanthology.org/2022.wnut-1.7
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P16-1138
https://aclanthology.org/2022.coling-1.132
https://aclanthology.org/2022.coling-1.132
https://aclanthology.org/2022.coling-1.132
https://doi.org/10.26615/978-954-452-056-4_088
https://doi.org/10.26615/978-954-452-056-4_088
https://doi.org/10.18653/v1/2021.naacl-main.221
https://doi.org/10.18653/v1/2021.naacl-main.221
https://doi.org/10.18653/v1/2021.naacl-main.221
https://doi.org/10.18653/v1/2023.findings-acl.788
https://doi.org/10.18653/v1/2023.findings-acl.788
https://doi.org/10.18653/v1/2023.findings-acl.788
https://doi.org/10.18653/v1/2023.eacl-main.90
https://doi.org/10.18653/v1/2023.eacl-main.90
https://doi.org/10.18653/v1/2023.eacl-main.90
https://doi.org/10.18653/v1/2021.findings-emnlp.422

verifiable commonsense language understanding. In ~ Bingyang Ye, Jingxuan Tu, Elisabetta Jezek, and James

Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4902—4918, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Niket Tandon, Bhavana Dalvi, Joel Grus, Wen-tau Yih,
Antoine Bosselut, and Peter Clark. 2018. Reasoning
about actions and state changes by injecting com-
monsense knowledge. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 57-66, Brussels, Belgium.
Association for Computational Linguistics.

Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Pe-
ter Clark, and Antoine Bosselut. 2019. WIQA: A
dataset for “what if...” reasoning over procedural text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6076—
6085, Hong Kong, China. Association for Computa-
tional Linguistics.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,
Kyle Richardson, and Eduard Hovy. 2020. A dataset
for tracking entities in open domain procedural text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6408—-6417, Online. Association for Computa-
tional Linguistics.

Jingxuan Tu, Kyeongmin Rim, Eben Holderness,
Bingyang Ye, and James Pustejovsky. 2023. Dense
paraphrasing for textual enrichment. In Proceedings
of the 15th International Conference on Computa-
tional Semantics, pages 39-49, Nancy, France. Asso-
ciation for Computational Linguistics.

Jingxuan Tu, Keer Xu, Liulu Yue, Bingyang Ye,
Kyeongmin Rim, and James Pustejovsky. 2024. Lin-
guistically conditioned semantic textual similarity.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1161-1172, Bangkok, Thailand.
Association for Computational Linguistics.

Weiqi Wang and Yangqiu Song. 2024. Mars: Bench-
marking the metaphysical reasoning abilities of lan-
guage models with a multi-task evaluation dataset.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart Van Merriénboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Xueqing Wu, Sha Li, and Heng Ji. 2023. OpenPI-C:
A better benchmark and stronger baseline for open-
vocabulary state tracking. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 7213-7222, Toronto, Canada. Association for
Computational Linguistics.

264

Pustejovsky. 2022. Interpreting logical metonymy
through dense paraphrasing. In Proceedings of the
Annual Meeting of the Cognitive Science Society,
volume 44.

Li Zhang, Hainiu Xu, Abhinav Kommula, Chris

Callison-Burch, and Niket Tandon. 2024. OpenPI2.0:
An improved dataset for entity tracking in texts. In
Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 166—178,
St. Julian’s, Malta. Association for Computational
Linguistics.

Zhihan Zhang, Xiubo Geng, Tao Qin, Yunfang Wu,

and Daxin Jiang. 2021. Knowledge-aware proce-
dural text understanding with multi-stage training.
In Proceedings of the Web Conference 2021, pages
3512-3523.

https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/D18-1006
https://doi.org/10.18653/v1/D18-1006
https://doi.org/10.18653/v1/D18-1006
https://doi.org/10.18653/v1/D19-1629
https://doi.org/10.18653/v1/D19-1629
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://doi.org/10.18653/v1/2020.emnlp-main.520
https://aclanthology.org/2023.iwcs-1.4
https://aclanthology.org/2023.iwcs-1.4
https://aclanthology.org/2024.acl-long.64
https://aclanthology.org/2024.acl-long.64
http://arxiv.org/abs/2406.02106
http://arxiv.org/abs/2406.02106
http://arxiv.org/abs/2406.02106
https://doi.org/10.18653/v1/2023.findings-acl.452
https://doi.org/10.18653/v1/2023.findings-acl.452
https://doi.org/10.18653/v1/2023.findings-acl.452
https://aclanthology.org/2024.eacl-long.10
https://aclanthology.org/2024.eacl-long.10

rank 16
lora_alpha 16
lora_dropout 0
target_modules

gate_proj,

up_proj,

down_proj
max_seq_length 2048
use_gradient_checkpointing | unsloth

g_proj, k_proj,
V_proj, o_proj,

per_device_train_batch_size| 2
gradient_accumulation_steps| 4

warmup_steps 5
num_train_epochs 1
learning_rate 2e-4

optim adamw_8bit
weight_decay 0.01
1r_scheduler_type linear

Table Al: Hyperparameters for Unsloth fine-tuning.

A Appendix

A.1 LLMs Fine-tuning

We report the hyperparameters for fine-tuning in
Table Al. During fine-tuning Llama 3.1 on both
datasets, the loss quickly decreases and then stabi-
lizes during the first epoch of training. Therefore,
we stop fine-tuning after one epoch. As shown in
Figure A1, the loss functions for both datasets are
nearly identical. This is expected as the task itself
is not changing. The average loss for ProPara is
0.06618. For ProPara-CRTS, it is 0.06341, only a
4% difference.

While it is not a difficult task for humans, LLMs
struggle to be competitive on the EST task. We
believe this is due to the ambiguity associated with
the task. Even with a limited set of responses,
annotators will interpret these labels differently.
The sharp initial decrease in loss is where the model
learns the expected format of the answers. Very
soon after starting training, the model produces
correctly formatted responses, but they are less
accurate than those collected after fine-tuning has
concluded.

A.2 Prompts

Figure A2 illustrates the direct prompts we feed
to LLMs for inference. Figure A3 demonstrates
the CoT prompts we use for LLMs inference and
fine-tuning. We also use the same prompt for self-

—— Propara

Propara-C
100,

Loss

Il
L ¢

'

101

J)‘J,Id‘“\‘}\ | AT . | |
. "I. it M‘ll"r) uu*:‘ I L‘.". fj“k.h,w bl g) Lot a1

0 500 1000 1500 2000 2500
Training Steps

Figure Al: Fine-tuning loss on ProPara and ProPara-
CRTS using Llama 3.1.

consistency setting. Figure A4 shows the few-shot
prompts for LLMs inference.

A.3 Results

We report the full sentence-level and document-
level evaluation results of models on ProPara and
ProPara-CRTS in Table A2. We report the cross-
dataset evaluation results in Table A3 where EST
models are trained on ProPara and ProPara-CRTS
training sets respectively and tested on ProPara-
CRTS test set. We report the cross-dataset evalua-
tion results in Table A4 where EST models are
trained on ProPara and ProPara-CRTS training
sets respectively and tested on the shared slice of
ProPara and ProPara-CRTS test sets.

265

Model / Train set Sentence-level Document-level

Model Train Catl Cat2 Cat3 Macro Micro P R F1
GPTdomini ProPara 503 95 06 234 248 702 442 550
0 ProPara-CRTS 537 108 06 217 232 682 419 556
GPTA ProPara 708 364 115 396 402 631 612 621
0 ProPara-CRTS 67.7 365 138 393 419 623 534 635

BT Llama 3. ProPara 78.1 552 456 596 595 664 635 649
" ProPara-CRTS 799 616 502 639 63.6 649 669 659

MeeT ProPara 770 508 378 551 549 790 619 694
ee ProPara-CRTS 81.1 626 439 625 619 785 645 708
CGLI ProPara 81.1 617 538 655 654 749 700 724

ProPara-CRTS 839 705 55.6 70.0 69.5 803 706 751

Table A2: Sentence-level and document-level evaluation results of models on ProPara and ProPara-CRTS.

Model / Train set Sentence-level Document-level

Model Train Catl Cat2 Cat3 Macro Micro P R F1
FT Llama 3.1 ProPara 772 58.0 50.8 620 619 68.1 622 65.0
" ProPara-CRTS 799 61.6 50.2 63.9 63.6 649 669 659
MeeT ProPara 78.6 55.6 46.0 60.0 599 81.3 61.7 70.2
ProPara-CRTS 81.1 62.6 439 625 619 785 64.5 70.8
CGLI ProPara 81.6 655 553 675 672 757 670 71.1

ProPara-CRTS 83.9 70.5 556 700 69.5 803 70.6 751

Table A3: Cross-dataset evaluation results of the setting where EST models are trained on ProPara and ProPara-
CRTS respectively and tested on ProPara-CRTS.

Model / Train set Sentence-level Document-level

Model Train Catl Cat2 Cat3 Macro Micro P R F1
FT Llama 3.1 ProPara 78.8 58.4 50.6 62.6 623 67.8 63.1 654
ProPara-CRTS 78.5 61.5 523 64.1 646 692 659 675
MeeT ProPara 79.1 562 463 60.6 60.8 81.0 629 70.8

ProPara-CRTS 81.3 634 447 63.1 628 782 654 713

CGLI ProPara 823 680 553 685 683 778 69.2 733
ProPara-CRTS 84.4 723 579 715 712 792 739 76.5

Table A4: Cross-dataset evaluation results of the setting where EST models are trained on ProPara and ProPara-
CRTS respectively and tested on the shared slice of ProPara and ProPara-CRTS test sets.

266

(System Prompt)

You are an intelligent assistance that can track the state of an given entity from a document. The following is the document.

Document:
[1] A plant or animal dies in a watery environment.
[2] The remain is buried in mud and silt.

(State Tracking Instruction)
Based on the document, answer the question: What is the state of <plant; animal> exactly after step [2]?

- Create — entity absent before step [2] but present after

- Not_Created — entity has not been created yet after step [2]

- Move — entity present before step [2] and after, but in a different location
- Destroy — entity present before step [2] but absent after

- Was_Destroyed — entity had already been destroyed before step [2]

- Exist — entity present before step [2] and after, in the same location

You should only answer with Create, Move, Destroy, Not_created, Was_destroyed and Exist without saying anything else.
Response
Move; gold: Exist

(Location Tracking Instruction)

Based on the document, answer the question: Where is <plant; animal> located exactly after step [2]?

If you cannot tell the location of <plant; animal> after [2], answer with 'unknown'. If <plant; animal> is either not

created yet or was destroyed before [2], answer with 'not_exist'. The extracted text should be exactly the same with that in the document.
Only respond with the extracted text, do not say any other words or explain.

Response

in mud and silt; gold: not_exist

Figure A2: Direct prompt for LLMs inference.

System Prompt

You are an intelligent assistance that can track the state of an given entity from a document. The following is the document.

Document:
[1] A plant or animal dies in a watery environment.
[2] The remain is buried in mud and silt.\

(State Tracking Instruction)
Based on the document, answer the question: What is the state of <plant; animal> exactly after step [2]?

- Create — entity absent before step [2] but present after

- Not_Created — entity has not been created yet after step [2]

- Move — entity present before step [2] and after, but in a different location
- Destroy — entity present before step [2] but absent after

- Was_Destroyed — entity had already been destroyed before step [2]

- Exist — entity present before step [2] and after, in the same location

You should only answer with Create, Move, Destroy, Not_created, Was_destroyed and Exist without saying anything else.
Think step by step about the entity’s existence and location from step 1 through [2].

Reasoning:
(Your chain-of-thought here.)

Answer:
State = <LABEL>
Location =

Response
Move; gold: Exist

(Location Tracking Instruction)

Based on the document, answer the question: Where is <plant; animal> located exactly after step [2]?

If you cannot tell the location of <plant; animal> after [2], answer with 'unknown'. If <plant; animal> is either not

created yet or was destroyed before [2], answer with 'not_exist'. The extracted text should be exactly the same with that in the document.
Only respond with the extracted text, do not say any other words or explain.

Think step by step about the entity’s existence and location from step 1 through [2].

Reasoning:
(Your chain-of-thought here.)

Answer:

State = <LABEL>
Location =

Response

in mud and silt; gold: not_exist

Figure A3: CoT Prompt for LLMs inference and fine-tuning.

267

System Prompt

You are an intelligent assistance that can track the state of an given entity from a document.
You are first given two examples.

Example 1
<Example1>

Example 2
<Example2>

The following is the target document.

Document:

[1] A plant or animal dies in a watery environment.
[2] The remain is buried in mud and silt.

(State Tracking Instruction)

Based on the document, answer the question: What is the state of <plant; animal> exactly after step [2]?

- Create — entity absent before step [2] but present after

- Not_Created — entity has not been created yet after step [2]

- Move — entity present before step [2] and after, but in a different location
- Destroy — entity present before step [2] but absent after

- Was_Destroyed — entity had already been destroyed before step [2]

- Exist — entity present before step [2] and after, in the same location

You should only answer with Create, Move, Destroy, Not_created, Was_destroyed and Exist without saying anything else.

Response
Move; gold: Exist

(Location Tracking Instruction)

Based on the document, answer the question: Where is <plant; animal> located exactly after step [2]?

If you cannot tell the location of <plant; animal> after [2], answer with 'unknown'. If <plant; animal> is either not

created yet or was destroyed before [2], answer with 'not_exist'. The extracted text should be exactly the same with that in the document.
Only respond with the extracted text, do not say any other words or explain.

Response

in mud and silt; gold: not_exist

Figure A4: Few-shot prompt for LLMs inference.

268

