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Abstract
To enable finer-grained linguistic analysis, we
propose a method for the separation of lexical
and grammatical information within contextu-
alized word embeddings. Using CamemBERT
embeddings for French, we apply our method
to 14,472 inflected word forms extracted from
the French Lexical Network (LN-fr), covering
1,468 nouns, 202 adjectives, and 299 verbs in-
flected via 14 distinct grammatical feature val-
ues. Our iterative distillation process alternates
two steps until convergence: (i) estimating lex-
ical or grammatical vectors by averaging the
embeddings of words that share the same lex-
eme or grammatical feature value, and (ii) iso-
lating the complementary component of each
word embedding by subtracting the estimated
vector. To assess the quality of the decompo-
sition, we measure whether the resulting lexi-
cal and grammatical vectors form more com-
pact clusters within their respective groups and
whether their sum better reconstructs the orig-
inal word embeddings. All evaluations rely
on euclidean (L2) distance. The observed im-
provements in both clustering and reconstruc-
tion accuracy demonstrate the effectiveness of
our approach.

1 Introduction

Static word embeddings, such as those generated by
word2vec (Mikolov et al., 2013b,a), assign a single,
fixed vector to each word form based on its general
contextual usage. This approach conflates distinct
meanings of polysemous words or homonyms and
fails to capture morphological compositionality, as
it does not model how word forms may share a
common core lexical meaning or how affixes en-
code grammatical features. For morphologically
rich languages, this entanglement can hinder fine-
grained linguistic analysis. Previous work, such as
Lareau et al. (2015), addressed this issue by propos-
ing a method to decompose static embeddings into
lexical and inflectional components, aiming to ob-
tain semantically purer representations.

Contextualized embeddings from pretrained lan-
guage models such as BERT (Devlin et al., 2019)
produce dynamic, context-sensitive vectors that
implicitly encode a range of linguistic informa-
tion, including morphology and syntax. This has
substantially improved the modeling of polysemy,
homonymy, and morphosyntactic variation com-
pared to static embeddings. However, it remains
unclear how lexical and grammatical features are
represented within these embeddings and whether
they can be meaningfully disentangled. In this pa-
per, we revisit the problem of separating lexical and
grammatical information in word embeddings, fo-
cusing on embeddings produced by CamemBERT
(Martin et al., 2020) for French, a language with a
relatively rich morphology.

This work was originally motivated by a sepa-
rate study where we aimed to measure the semantic
idiomaticity of French idioms. Semantic idiomatic-
ity refers to the extent to which the meaning of
an idiom cannot be inferred from its component
words. While CamemBERT is able to distinguish
free simple lexemes from words within idioms, it
struggles with component words within idioms of
different levels of semantic idiomaticity (Liu and
Lareau, 2024). This suggests that the model cap-
tures idiomaticity at a superficial lexical level, but
is not sensitive to the internal semantic structure of
idioms. We hypothesized that this limitation is due
to the entanglement of multiple types of idiomatic-
ity, not only semantic, but also morphological and
syntactic. In order to isolate purely semantic mean-
ing from grammatical interference, we turned to
the problem of disentangling lexical and grammat-
ical components in contextual embeddings. The
current study develops and evaluates a method for
this task, inspired by the methodology proposed by
Lareau et al. (2015).

We assume that a word embedding can be mod-
eled as the linear combination of two components,
a lexical vector capturing its core lexical meaning,
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and a grammatical vector encoding morphosyn-
tactic information. Therefore, we should be able
to isolate one component by subtracting the other.
Our method relies on two assumptions:

1. All inflected forms of a lexeme share a com-
mon core lexical meaning.

2. All words inflected via the same grammatical
feature value (i.e., all plural nouns, or all femi-
nine adjectives) share a common grammatical
meaning, regardless of allomorphy.

Under this framework, the lexical vector of a lex-
eme can be estimated either directly, by averaging
the embeddings of its inflected forms, or indirectly,
by subtracting a shared grammatical vector from
each word embedding. Likewise, grammatical vec-
tors associated with specific feature values can be
derived by averaging over relevant word embed-
dings or by removing lexical content.

To obtain more accurate and disentangled rep-
resentations, we develop an iterative distillation
process that integrates both estimation strategies.
At each step, one component is isolated by subtract-
ing the current estimate of the other, then refined
by averaging over the pertinent group of words
(e.g., all inflected words of a lexeme, or all words
sharing a grammatical feature value). This pro-
cess incrementally improves both components over
successive iterations.

We hypothesize that, after distillation, lexical
vectors belonging to the same lexeme on the one
hand, and grammatical vectors sharing the same
feature value on the other, get closer in the vector
space. We evaluate this by comparing the average
pairwise L2 distances within each group before
and after distillation. We also assess the recon-
struction accuracy of the original embeddings by
measuring the difference between each embedding
and the sum of its distilled lexical and grammatical
components.

In this study, we focus specifically on inflec-
tion and leave aside derivation, as it is often non-
compositional. We worked on French because it
has a sufficiently rich morphology for it to be non-
trivial, and we had access to the data we needed.
However, our method is language-agnostic, and
such data is relatively easy to come by for a variety
of languages.

2 Related work

Recent studies have highlighted that contextualized
word embeddings encode various types of linguis-

tic information in a high entangled form (López-
Otal et al., 2025; Ravfogel et al., 2020). This has
sparked growing interest in disentangling gram-
matical information. However, most existing work
addresses this challenge in the context of down-
stream tasks or model performance, rather than
focusing on extracting grammatically meaningful
representations for linguistic analysis (Huang et al.,
2021; Li et al., 2021; Chen et al., 2019; Ravfogel
et al., 2020; Omrani Sabbaghi and Caliskan, 2022).

To our knowledge, few studies have explicitly
addressed this question from the perspective of lin-
guistic analysis. The work most closely related to
ours that we know of is by Lareau et al. (2015), who
developed a method applied to decompose static
word2vec embeddings in English. Their approach,
based on averaging and subtraction, was tested on
a small-scale dataset of around 20 verbs, with a
primary focus on lexical vectors. Their method
struggled with homonyms due to the static nature
of word2vec embeddings. In contrast, our approach
leverages contextualized embeddings, which miti-
gate this issue. It is also applied to a much larger
and more diverse natural corpus. While inspired by
their methodology, we extend it with an iterative
refinement process and expand the analysis to in-
clude grammatical vectors as well. In addition, we
introduce a broader set of evaluation metrics.

3 Experiment

3.1 Data

For our experiment, we used data from French
Lexical Network (LN-fr) v3 (Polguère, 2009; Lux-
Pogodalla and Polguère, 2011; Polguère, 2014;
ATILF, 2023), an open-access lexical database
manually developed according to the methodologi-
cal principles of explanatory combinatorial lexicol-
ogy (Mel’čuk, 2006). Each entry in LN-fr repre-
sents a disambiguated lexical unit in French, cor-
responding to a distinct and well-defined sense of
a simple lexeme or an idiom. In our study, we
focused exclusively on simple lexemes (hereafter
referred to as lexemes). Each lexeme has a part
of speech (POS) tag; since we studied inflectional
types in French, we extracted only the nouns, ad-
jectives, and verbs, other classes being invariant.

Each lexeme is associated with one or more lexi-
cographic examples sourced from corpora. These
examples were carefully selected by lexicographers
to reflect real-world usage, showcasing the syn-
tax, semantics, and combinatorial properties of the
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lexemes (Lux-Pogodalla, 2014). Furthermore, the
annotation explicitly identifies the position of the
words corresponding to the lexeme within each ex-
ample. These words represent inflected forms of
the lexeme in the sentence. A single lexeme may
be associated with multiple words within an exam-
ple. This can occur through repetitions or analytic
forms (such as past tense, e.g., ai mangé ‘(I) have
eaten’). To simplify the analysis, such cases were
excluded. Only examples containing a single word
corresponding to a lexeme were retained.

Most grammatical features are not annotated in
LN-fr, with the exception of number and gender.
We therefore used Stanza (Qi et al., 2020) to an-
alyze the examples of the lexemes and complete
the annotation of their remaining grammatical fea-
tures. For number and gender, we compared the
LN-fr annotations with those produced by Stanza
and found them to be fully consistent. Given that
nouns and adjectives, the main categories marked
for these features, account for over 86% of our data,
this consistency supports the reliability of Stanza
for morphological annotation and indicates that our
method should work even without annotated data.
To further reduce potential errors, we compared
the POS tags and lemmas returned by Stanza with
the manual annotations in LN-fr, removing 230 lex-
emes where the POS assignments did not match.

We generated word embeddings for lexemes in
our data using CamemBERT (Martin et al., 2020)
for our experiment. CamemBERT is a pretrained
contextualized language model for French, where
each token in the sentence is represented differently
depending on the other tokens in the context. We
used the representations from the last layer. For
words tokenized into sub-word tokens, we sum all
sub-word embeddings to get the word’s embed-
ding. We used example sentences retrieved from
LN-fr as context and generated vectors that repre-
sent the inflected forms of lexemes. We considered
only lexemes with at least four examples in the
database. This ensures more stable and representa-
tive lexical embeddings by averaging over multiple
contexts and helps achieve better coverage of a lex-
eme’s inflectional paradigm. Moreover, to reduce
model-internal bias, we applied mean-centering to
all embeddings, removing common components
unrelated to lexical or grammatical distinctions.

In total, we extracted from LN-fr nearly 2,000
lexemes, with significantly more nouns than adjec-
tives or verbs. Each lexeme is accompanied by its

word forms, example sentences, along with corre-
sponding word embeddings and annotated gram-
matical information. Table 1 summarizes the num-
ber of words associated with each feature value
within each grammatical category. We group nouns,
adjectives, and verbs according to the grammatical
categories they express: nouns by number, adjec-
tives by number and gender, and verbs by number,
tense, mood, finiteness, voice, gender and person.
Words lacking relevant annotation are excluded
from the count, and only feature values with at
least 200 words across lexemes are retained to en-
sure sufficient data for reliable analysis.

Lexemes Words

Noun 1468 11159
sing 8716
plur 2443

Adjective 202 1344
sing 1038
plur 306
masc 837
fem 507

Verb 299 1969
sing 834
plur 359
pres 903
imp 245
ind 1159
inf 715
fin 1182
per-3 1056

Total 1969 14472

Table 1: Lexemes and words (counted by grammatical
feature values) in our dataset. Abbreviations for
grammatical feature values: sing=singular, plur=plural,
masc=masculine, fem=feminine, pres=present,
imp=imperfect, ind=indicative, inf =infinitive, fin=finite,
per-3=third person.

3.2 Methodology
Relying on the assumptions outlined in §1, we pro-
pose an iterative distillation method to decompose
word embeddings into two components: a lexical
vector representing its core lexical meaning and
a grammatical vector encoding morphosyntactic
information.

Let L denote a lexeme with n observed inflected
forms {w1, w2, . . . , wn}. These forms share a com-
mon lexeme vector, estimated by the average of
their word embeddings:

L =
1

n

n∑

i=1

wi
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Similarly, for a grammatical feature value G
that appears in m words {w1, w2, . . . , wm} in our
dataset, we define a shared grammatical vector as:

G =
1

m

m∑

i=1

wi

For example, the lexeme eat includes words such
as eat, eats, ate, etc., whose embeddings share a
lexical component −→eat. The nominal number fea-
ture PLUR applies to words like apples, bikes and
houses, whose embeddings share a grammatical
component −−−→PLURN.

Let w be a word comprising a lexical base l and
a grammatical feature value g, its word embedding
can be approximated as the sum of two compo-
nents:

w ≈ lw + gw

To obtain purer lexical and grammatical embed-
dings, we apply two update steps:

Lexical vector update For each w of a lexeme
L, we initialize its local grammatical vector gw
using its feature value vector G. Then we subtract
this grammatical vector to isolate its current lexical
vector lw. For each lexeme L, we average all its
words’ lw to update the lexeme vector L.

lw = w −G, L← 1

|L|
∑

w∈L
lw

Grammatical vector update Likewise, for each
w, we can initialize its local lexical vector lw using
its lexeme vector L. Then by subtracting this lw
from the word embedding, we get the word’s cur-
rent grammatical vector gw. The average of gw of
all words inflected via G is calculated to update G.

gw = w − L, G← 1

|G|
∑

w∈G
gw

Our approach is an iterative process that alter-
nates between the two updates, where the output of
one step serves as the input for the next. The pro-
cess continues until the difference between succes-
sive updates becomes negligible—typically after
just five or six iterations.

To distill lexical or grammatical vectors of a
word, we can either start with the lexical vector
update by estimating G, or with the grammatical
vector update by estimating L. As subtraction is
central to both steps, the quality of the initial esti-
mate is critical: any noise in the subtracted vector

propagates into the result. Thus, the more accurate
the initial estimate, the better the decomposition. It
should be stressed that this initial estimate is not
random; it is the mean of a set of vectors, and thus
yields the same result every time.

We find that initializing with grammatical vec-
tors is more robust. When estimating a grammati-
cal vector G for a feature value (e.g., PLURN), we
average the embeddings of all words (e.g., apples,
bikes, houses, etc.) that share this feature. Since
these words are typically lexically diverse, their
lexical components tend to cancel each other out,
resulting in a relatively clean approximation of the
grammatical meaning. While estimating a lexeme
vector L (e.g., for lexeme eat), we average a small
number of words inflected from the lexeme (e.g.,
eat, eats, ate). These words often differ in gram-
matical properties and appear in different contexts,
introducing noise that can distort the estimate of
their core lexical meaning.

Furthermore, we extend this idea to handle multi-
feature grammatical information, which is common
in French. While nouns typically carry only one
grammatical feature NUMBER (SING or PLUR), adjec-
tives and verbs express multiple features simultane-
ously. Specifically, adjectives reflect both number
and gender, while verbs can encode tense, mood,
person, number, etc. When extracting a word’s lex-
ical vector, we remove a composite grammatical
vector that corresponds to the full set of feature
values it carries. This vector is estimated by averag-
ing the embeddings of all words sharing the exact
same feature combination. Conversely, in extract-
ing grammatical vectors, we isolate each feature
value independently. For example, to estimate the
vector for present tense, we use all verb forms that
express the present tense, regardless of their other
grammatical properties. This targeted averaging
provides a clearer estimate of the intended gram-
matical dimension.

In summary, our method alternates between sub-
tracting a full grammatical vector to refine lexical
vectors, and subtracting the current lexical vector
to isolate individual grammatical components. We
apply this procedure to verbs, nouns, and adjec-
tives grouped by their feature values, iterating until
convergence.

3.3 Evaluation metrics

To assess the effectiveness of this method, we adopt
two complementary evaluation metrics.
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Internal distance Our evaluation is grounded in
the assumptions outlined earlier: (1) words belong-
ing to the same lexeme differ only in their gram-
matical components, and (2) words that share the
same grammatical components differ primarily in
their lexical meaning. From this, we hypothesize
that once the grammatical components are removed
from the original embeddings, the remaining lex-
ical vectors should form tighter clusters within
each lexeme group, because what is left should be
close to the naked lexical information. Similarly, if
the lexical component is subtracted, the remaining
grammatical vectors should show greater internal
consistency within each feature value group. To
verify this, we measure the internal compactness
of each group before and after distillation.

For each lexeme, we calculate the average pair-
wise distance among the embeddings of its in-
flected words prior to distillation. We then repeat
the measurement using only the lexical components
lw extracted from these words after distillation. A
reduction in distance suggests that the lexical con-
tent has been more effectively isolated.

Similarly, for each feature value, we first cal-
culate the average pairwise distance among the
original embeddings of all words marked with that
value. We then calculate the same measure using
only the grammatical vectors gw corresponding to
the feature value isolated from those words. A
tighter clustering in this space would indicate that
the shared morphosyntactic property has been cap-
tured more clearly.

As a baseline, we compute the average pairwise
distance between random word pairs that do not
share either a lexeme or any grammatical feature
values, applying the same subtraction procedure.
For each run, we sample up to 10,000 such random
pairs; if the total number of admissible pairs is
smaller, we use all available pairs. We repeat this
process 10 times and report the mean across runs.
Since these words are unrelated in both lexical and
grammatical dimensions, their vectors should not
become closer after distillation. This allows us
to verify that any observed distance reduction in
groups defined by shared lexemes or feature values
is not merely an artifact of the subtraction process,
but reflects meaningful linguistic structure.

Reconstruction accuracy We evaluate whether
the lexical and grammatical components can faith-
fully reconstruct the original word embeddings. For
each word, we compare its original embedding with

two reconstructed versions: one using the initial
estimates of its lexical vector and the grammatical
vectors corresponding to its set of feature values,
and another using the distilled vectors obtained. A
lower reconstruction error in the latter case implies
improved preservation of the original embeddings’
structure.

3.4 Distance metric

Both the distillation process and the subsequent
evaluation require a way to quantify how the vec-
tors change under our distillation method. To com-
pare these vectors, we initially calculated both co-
sine similarity and L2 distance.

Cosine similarity is commonly adopted as a met-
ric for semantic similarity in natural language pro-
cessing (NLP), as it captures the angular relation-
ship between vectors while ignoring their magni-
tude. However, our method involves vector subtrac-
tion, which can substantially alter both direction
and length. This makes cosine similarity poten-
tially misleading: in extreme cases, two vectors
may retain the same angle (i.e., yield a high cosine
similarity) while differing greatly in magnitude,
making them appear semantically close even when
they are not. Previous studies have also shown
that cosine similarity can be distorted in contex-
tualized embedding models due to anisotropy and
frequency effects (Ethayarajh, 2019; Timkey and
van Schijndel, 2021; Zhou et al., 2022).

In our evaluation, cosine similarity and L2 dis-
tance often led to divergent conclusions. Since
L2 distance captures both angular and magnitude-
related differences, we consider it to be a more
reliable indicator of the structural changes intro-
duced by our method. Furthermore, we found no
strong theoretical reason to prefer cosine similar-
ity in our setting beyond its popularity in previous
work. Given these considerations, we focus exclu-
sively on L2 distance in the results reported below.

4 Results and Discussion

In this section, we evaluate whether the lexical and
grammatical components extracted from word em-
beddings display greater internal consistency after
distillation. In each comparison, we measure the
target evaluation metric before and after the proce-
dure. In all result tables, the before column reports
results calculated using the original embeddings,
while the after column shows results based on dis-
tilled vectors. The relative change (∆) is calculated
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as after−before
before , reflecting the proportion of the re-

sulting change. All reported results are rounded to
two decimals.

4.1 Lexical vectors become more consistent
after grammatical removal

Table 2 reports the results of the evaluation of the
lexical vector distilled by removing the grammati-
cal component(s).

For each lexeme in our dataset, we select in-
flected words that differ in grammatical features
and calculate the average pairwise L2 distance be-
tween their original embeddings. This distance
serves as a measure of internal lexical dispersion
prior to distillation. We use the same measure on
lexical vectors derived after removing grammati-
cal components. If the grammatical information
has been successfully removed, the resulting lexi-
cal vectors should exhibit lower internal dispersion.
We exclude lexemes with identical feature values,
as their embeddings are already highly similar in
the original space; the procedure would yield negli-
gible effect.

As shown in Table 2, we observe a consistent
decrease in distance across all lexical categories
in the range of around 8% to 14%. This indicates
that the distilled lexical vectors are more tightly
clustered, supporting the effectiveness of our distil-
lation method across different parts of speech.

For baseline comparison, we evaluate random
word pairs drawn from different lexemes that differ
in feature values. These words are not expected to
share a semantic content, so removing grammatical
information should not significantly reduce their
distance. Indeed, the random groupings of the same
part of speech exhibit notably smaller reductions,
with average decreases reaching only about half
of those observed in lexeme-aligned groups. This
confirms that the increased compactness observed
in structured lexeme groups reflects meaningful
decomposition rather than trivial consequence of
mean subtraction or vector manipulation.

4.2 Grammatical vectors get closer after
distillation

In addition to lexical coherence, we also evaluate
the internal consistency of the grammatical vectors,
with results presented in Table 3.

For each feature value, we find words from dis-
tinct lexemes that share this value. The average
pairwise L2 distance between their original em-
beddings measures how dispersed these words are

before distillation. We then compute that distance
using the grammatical vectors extracted after re-
moving lexical components. If the subtraction is
effective, these vectors should converge toward a
representation of the shared grammatical property,
lowering the average distance. Again, we omit
tokens from the same lexeme to avoid trivial reduc-
tions stemming from shared lexical information.

As shown in Table 3, the grammatical vectors
exhibit a substantial reduction in pairwise distance
across all feature values within all grammatical
categories, ranging from approximately 31% to
45%. This level of reduction is markedly higher
than what we observed for lexical vectors. This
stark contrast suggests that grammatical informa-
tion is more effectively disentangled. A possible
explanation lies in the structural difference between
the comparison groups in each evaluation. In the
lexical vector analysis, we compare tokens from
the same lexeme that differ only in grammatical
features. Such tokens already occupy relatively
close positions in the embedding space even be-
fore distillation, leaving limited room for further
convergence. By contrast, in the grammatical vec-
tor analysis, the compared tokens share a gram-
matical feature but are from different lexemes, are
therefore initially more widely dispersed. After
the lexical component is removed, this dispersion
is greatly reduced, as the remaining grammatical
vectors align more closely around the shared gram-
matical property. Moreover, grammatical features
are often shared by a larger number of tokens than
individual lexemes, making the averaged estimates
for grammatical vectors more robust.

To establish a control, we measure distances be-
tween randomly sampled words that differ in both
lexeme and feature value. Since such pairs are
not expected to encode common grammatical infor-
mation, their grammatical vectors should remain
dispersed. This comparison ensures that the ob-
served distance reductions in feature-based groups
cannot be explained by vector subtraction alone.
Table 4 shows reductions in distance consistently
small across all grammatical categories, less than
10%. These values are markedly lower than those
observed in structured feature-based groups (cf. Ta-
ble 3), confirming that the substantial convergence
seen reflects the extraction of meaningful shared
grammatical information.
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Lexemes Random lexemes

before after ∆ before after ∆

Noun 5.30 4.71 -10.32% 6.70 6.41 -4.24%
Adjective 4.72 4.34 -7.97% 6.78 6.50 -4.03%
Verb 5.66 4.82 -14.07% 7.14 6.48 -9.22%

Table 2: Pairwise distance of lexical vectors before and after distillation. Results are computed over word pairs from
the same lexeme, as well as random word pairs from different lexemes, all inflected with different grammatical
feature values.

before after ∆

Noun
sing 6.08 3.33 -45.18%
plur 7.34 4.23 -42.31%

Adjective
sing 6.33 3.62 -42.85%
plur 7.15 4.35 -39.12%
masc 6.63 3.83 -42.19%
fem 6.54 3.88 -40.70%

Verb
ind 7.09 4.40 -37.89%
per-3 7.02 4.36 -37.88%
sing 6.71 4.13 -38.50%
plur 7.57 4.70 -37.91%
pres 6.66 4.09 -38.51%
imp 7.81 4.77 -38.86%
inf 5.93 3.65 -38.36%
fin 7.06 4.81 -31.94%

Table 3: Pairwise distance of grammatical vectors be-
fore and after the distillation, calculated over word pairs
that share the same grammatical feature value but origi-
nate from distinct lexemes.

before after ∆

N-number 7.10 6.73 -5.20%
Adj-number 7.06 6.77 -4.14%
Adj-gender 6.67 6.55 -1.76%
V-mode 8.07 7.29 -9.66%
V-person 7.36 7.25 -1.42%
V-number 7.45 7.15 -4.08%
V-tense 7.75 7.34 -5.27%
V-finiteness 6.99 6.61 -5.42%

Table 4: Pairwise distance of random grammatical vec-
tors before and after distillation, calculated between ran-
dom word pairs differing in grammatical feature value
and lexeme.

4.3 Word embedding reconstruction

Extending the above evaluations, to assess whether
the distilled components provide more accurate
representations of lexical and grammatical infor-
mation, we evaluate how well they can reconstruct
the original word embeddings. Specifically, we
measure the L2 distance between the original em-
bedding of each token and its reconstructed form,

before after ∆

Noun 2.58 2.52 -2.38%
Adjective 2.89 2.58 -11.40%
Verb 3.50 2.27 -35.28%

Table 5: Reconstruction error of word embeddings from
their lexical and grammatical components before and
after the distillation. Results are averaged over part of
speech.

obtained by summing its lexical vector and the av-
erage of its grammatical vectors corresponding to
each of its feature values.

As a baseline, we first perform reconstruction
using the initial, undistilled estimates of lexical
and grammatical vectors. These initial estimates
are expected to contain overlapping or entangled
information, resulting in higher reconstruction er-
ror. After distillation, however, the components are
refined to better isolate the intended dimensions
of meaning, which should lead to more faithful
reconstructions.

Our results are reported in Table 5. We observe
consistent reductions across all parts of speech.
The improvement is most substantial for verbs,
with an average reduction of over 35%, while ad-
jectives and nouns show smaller but still meaning-
ful improvements (11.4% and 2.4%, respectively).
This pattern may be attributed to differences in mor-
phological complexity and the way grammatical
information is distributed across parts of speech. In
French, both nouns and adjectives typically mark
number and gender using the same surface mor-
phemes (e.g., -s and -x for PLUR; -e,-euse and -trice
for FEM), which are shared between lexemes. While
such suffixes are consistent and formally simple,
they express only a limited set of grammatical fea-
tures, and the shared form across categories may
blur the information, making it more difficult for
the model to disentangle the lexical and grammati-
cal components precisely.

In contrast, French verbs undergo more complex
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inflection, where a single suffix often encodes mul-
tiple feature values simultaneously. For instance,
the ending -ent in ils parlent (‘they speak’) marks
third person, plural, present tense, and indicative
mood all within a single affix. Despite the greater
surface complexity, the richness and density of
grammatical encoding in verbal morphology may
provide a stronger signal, allowing the model to
better isolate and represent grammatical content.
The more pronounced improvement observed in
verbs thus likely reflects this concentrated gram-
matical structure, which becomes more salient and
recoverable after distillation.

5 Conclusion

We aimed to disentangle contextualized word em-
beddings in CamemBERT into lexical and gram-
matical parts. We proposed an iterative distillation
method based on the complementarity of averaging
and subtraction. A word’s lexical vector can be
approximated either by averaging the vectors of all
words that share the same lexical meaning, or by
subtracting the vectors corresponding to its gram-
matical features. Similarly, its grammatical vector
can be obtained either by subtracting the lexical
part from the original embedding, or by averaging
the embeddings of all words that share the same
grammatical feature.

If effectively separated, the lexical and grammat-
ical vectors should be more distinct, with minimal
overlap between their respective contents compared
to their initial estimates. Each vector should convey
more clearly the structural regularities shared with
similar words, resulting in tighter alignment within
their lexical or grammatical groups. As such, they
are better suited to jointly approximate the origi-
nal word embedding. As expected, in our evalua-
tion, the final lexical and grammatical vectors that
we extracted are more clearly clustered with their
structurally similar counterparts, when combined,
reproduce original word embeddings with minimal
loss.

Notably, the reduction in distance is much more
pronounced for grammatical vectors than for lexi-
cal vectors—around 40% versus 10% on average.
Since the initial grammatical vectors are averaged
over a large set of lexemes and contain great lexical
noise, which is removed during distillation, leading
to tighter alignment. The extent of this convergence
is relatively stable across different feature values,
but varies across parts of speech. Verbs, especially,

show a stronger reduction in distance and a larger
drop in reconstruction error compared to nouns and
adjectives. This may be due to the richness of ver-
bal morphology in French, where suffixes often
encode several grammatical features at once, mak-
ing the grammatical signal more prominent and its
removal more effective. Nouns show only minor
reconstruction gains, likely due to limited grammat-
ical variation from number inflection alone. Also,
large number of nouns in our dataset may stabi-
lize their initial estimates, leaving less room for
improvement. Adjectives fall in between, showing
moderate gains.

Another important factor behind these observa-
tions concerns tokenization and the model’s sensi-
tivity to morphological markers. In CamemBERT,
frequent, short, and morphologically informative
tokens are more likely to be consistently encoded or
even assigned special status during training (Rogers
et al., 2021; Clark et al., 2019; Mohebbi et al.,
2021). In contrast, lexical roots often span longer
or rarer sub-word tokens and are more prone to
being split or distorted, especially in low-frequency
contexts. As a result, grammatical information is
already more cleanly separated and clearly encoded
in the model’s internal representations, making it
easier to distill effectively. This also explains why
verbs, whose suffixes encode multiple features in
compact forms, benefit the most from the process.

Future work will further explore how factors
such as word frequency and tokenization affect the
separation of lexical and grammatical vectors. Our
method assumes a linear relationship between lexi-
cal and grammatical vectors; in a follow-up study,
we plan to explore non-linear relationships. Given
that our method does not rely on language-specific
morphological rules, we will apply and evaluate it
across languages. In addition, we are interested in
extending the approach using learning-based meth-
ods, and in incorporating morphology-aware to-
kenizers to improve grammatical representation.
Finally, we aim to assess the practical value of our
decomposition through downstream tasks.

Limitations

One limitation of our study is data imbalance,
which may affect result comparability and robust-
ness. The number of words varies widely across
parts of speech and grammatical features: nouns
are far more numerous, yet have fewer grammati-
cal features. Some feature values are sparsely rep-
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resented, leading to less reliable vector estimates.
Lexemes also vary in the number of inflected forms.
Due to limited data, certain features such as ver-
bal voice and gender were excluded, making the
evaluation less complete.

Source code

This experiment can be reproduced by download-
ing the data we used and our source code from
https://github.com/liliulng/disentangle-wemb.
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