@inproceedings{jamil-etal-2025-graph,
title = "A Graph Autoencoder Approach for Gesture Classification with Gesture {AMR}",
author = "Jamil, Huma and
Khebour, Ibrahim and
Lai, Kenneth and
Pustejovsky, James and
Krishnaswamy, Nikhil",
editor = "Evang, Kilian and
Kallmeyer, Laura and
Pogodalla, Sylvain",
booktitle = "Proceedings of the 16th International Conference on Computational Semantics",
month = sep,
year = "2025",
address = {D{\"u}sseldorf, Germany},
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwcs-main.4/",
pages = "41--48",
ISBN = "979-8-89176-316-6",
abstract = "We present a novel graph autoencoder (GAE) architecture for classifying gestures using Gesture Abstract Meaning Representation (GAMR), a structured semantic annotation framework for gestures in collaborative tasks. We leverage the inherent graphical structure of GAMR by employing Graph Neural Networks (GNNs), specifically an Edge-aware Graph Attention Network (EdgeGAT), to learn embeddings of gesture semantic representations. Using the EGGNOG dataset, which captures diverse physical gesture forms expressing similar semantics, we evaluate our GAE on a multi-label classification task for gestural actions. Results indicate that our approach significantly outperforms naive baselines and is competitive with specialized Transformer-based models like AMRBART, despite using considerably fewer parameters and no pretraining. This work highlights the effectiveness of structured graphical representations in modeling multimodal semantics, offering a scalable and efficient approach to gesture interpretation in situated human-agent collaborative scenarios."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jamil-etal-2025-graph">
<titleInfo>
<title>A Graph Autoencoder Approach for Gesture Classification with Gesture AMR</title>
</titleInfo>
<name type="personal">
<namePart type="given">Huma</namePart>
<namePart type="family">Jamil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibrahim</namePart>
<namePart type="family">Khebour</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenneth</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikhil</namePart>
<namePart type="family">Krishnaswamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Conference on Computational Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kilian</namePart>
<namePart type="family">Evang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Kallmeyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sylvain</namePart>
<namePart type="family">Pogodalla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Düsseldorf, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-316-6</identifier>
</relatedItem>
<abstract>We present a novel graph autoencoder (GAE) architecture for classifying gestures using Gesture Abstract Meaning Representation (GAMR), a structured semantic annotation framework for gestures in collaborative tasks. We leverage the inherent graphical structure of GAMR by employing Graph Neural Networks (GNNs), specifically an Edge-aware Graph Attention Network (EdgeGAT), to learn embeddings of gesture semantic representations. Using the EGGNOG dataset, which captures diverse physical gesture forms expressing similar semantics, we evaluate our GAE on a multi-label classification task for gestural actions. Results indicate that our approach significantly outperforms naive baselines and is competitive with specialized Transformer-based models like AMRBART, despite using considerably fewer parameters and no pretraining. This work highlights the effectiveness of structured graphical representations in modeling multimodal semantics, offering a scalable and efficient approach to gesture interpretation in situated human-agent collaborative scenarios.</abstract>
<identifier type="citekey">jamil-etal-2025-graph</identifier>
<location>
<url>https://aclanthology.org/2025.iwcs-main.4/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>41</start>
<end>48</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Graph Autoencoder Approach for Gesture Classification with Gesture AMR
%A Jamil, Huma
%A Khebour, Ibrahim
%A Lai, Kenneth
%A Pustejovsky, James
%A Krishnaswamy, Nikhil
%Y Evang, Kilian
%Y Kallmeyer, Laura
%Y Pogodalla, Sylvain
%S Proceedings of the 16th International Conference on Computational Semantics
%D 2025
%8 September
%I Association for Computational Linguistics
%C Düsseldorf, Germany
%@ 979-8-89176-316-6
%F jamil-etal-2025-graph
%X We present a novel graph autoencoder (GAE) architecture for classifying gestures using Gesture Abstract Meaning Representation (GAMR), a structured semantic annotation framework for gestures in collaborative tasks. We leverage the inherent graphical structure of GAMR by employing Graph Neural Networks (GNNs), specifically an Edge-aware Graph Attention Network (EdgeGAT), to learn embeddings of gesture semantic representations. Using the EGGNOG dataset, which captures diverse physical gesture forms expressing similar semantics, we evaluate our GAE on a multi-label classification task for gestural actions. Results indicate that our approach significantly outperforms naive baselines and is competitive with specialized Transformer-based models like AMRBART, despite using considerably fewer parameters and no pretraining. This work highlights the effectiveness of structured graphical representations in modeling multimodal semantics, offering a scalable and efficient approach to gesture interpretation in situated human-agent collaborative scenarios.
%U https://aclanthology.org/2025.iwcs-main.4/
%P 41-48
Markdown (Informal)
[A Graph Autoencoder Approach for Gesture Classification with Gesture AMR](https://aclanthology.org/2025.iwcs-main.4/) (Jamil et al., IWCS 2025)
ACL