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Abstract

We present a novel graph autoencoder (GAE)
architecture for classifying gestures using
Gesture Abstract Meaning Representation
(GAMR), a structured semantic annotation
framework for gestures in collaborative tasks.
We leverage the inherent graphical structure of
GAMR by employing Graph Neural Networks
(GNNs), specifically an Edge-aware Graph At-
tention Network (EdgeGAT), to learn embed-
dings of gesture semantic representations. Us-
ing the EGGNOG dataset, which captures di-
verse physical gesture forms expressing similar
semantics, we evaluate our GAE on a multi-
label classification task for gestural actions. Re-
sults indicate that our approach significantly
outperforms naive baselines and is competi-
tive with specialized Transformer-based mod-
els like AMRBART, despite using consider-
ably fewer parameters and no pretraining. This
work highlights the effectiveness of structured
graphical representations in modeling multi-
modal semantics, offering a scalable and effi-
cient approach to gesture interpretation in situ-
ated human-agent collaborative scenarios.

1 Introduction

In-person situated communication involves not just
language, but non-verbal behavior like actions and,
importantly, gestures. However, automated ges-
ture interpretation is complicated by how the same
gestural semantics may be represented by very dif-
ferent physical forms. Fig. 1 shows an instance of
this: two people use entirely distinct iconic gesture
shapes to denote the same concept—block.

This points to the need for higher levels of ab-
straction to adequately model the relationship be-
tween physical form and gestural meaning, particu-
larly in collaborative dialogue. Abstract Meaning
Representation (AMR; Banarescu et al. (2013)) is a
popular choice in the computational semantics com-
munity for its clarity and expressiveness, and Brutti

Figure 1: Example from the EGGNOG dataset (Wang
et al., 2017) showing different gesture shapes expressing
the same gesture semantics. Both are iconic gestures
(Brutti et al., 2022) denoting blocks, articulated dif-
ferently: the physical label of the left is RH: into
closed, left; that of the right is arms: move,
up; hands: into facing, into open.

et al. (2022) and Donatelli et al. (2022) developed
Gesture AMR (GAMR), an AMR formalism specif-
ically for gesture semantics. Within GAMR, the
semantics accompanying the iconic gesture block,
irrespective of physical form, may be rendered as
follows:

(i / icon
:ARG0 (s / signaler)
:ARG1 (b / block)
:ARG2 (a / actor))

In this paper, we observe that AMR/GAMR’s
natural graphical structure lends itself to graph
neural network (GNN)-based approaches for au-
tomated processing, and propose a graph autoen-
coder (GAE) that learns mappings between ges-
ture semantics represented in GAMR annotation
and the physical forms of the associated gestures.
Experiments on EGGNOG (Wang et al., 2017), a
challenging audio-visual dataset, show that our ap-
proach both outperforms naive baselines, and beats
or competes with strong Transformers on gesture
shape prediction, despite having significantly fewer
parameters and faster inference time, making our
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method suitable for gesture classification in low-
resource and edge environments.

2 Related Work

Early work on gesture semantics followed tradi-
tions viewing gesture as simulated action (Kendon
et al., 1980; Kendon, 2004) or a general mode of
reference (McNeill, 1992, 2000, 2008). Follow-
ing McNeill’s work, Lascarides and Stone (2006,
2009) posited a division of gestures into deictic
and iconic, creating a typing system continued
in GAMR (Brutti et al., 2022; Donatelli et al.,
2022). Lücking et al. (2015), Pustejovsky and Kr-
ishnaswamy (2021a,b, 2022), and Krishnaswamy
and Pustejovsky (2021) further developed the gram-
mar, semantics, and pragmatics of gesture on which
GAMR is based. Related coding schemes for mul-
timodal or non-verbal behavior include Kopp et al.
(2006); Allwood et al. (2007); Kipp et al. (2007);
Kong et al. (2015), and Rohrer et al. (2020).

Abstract Meaning Representation (AMR; (Ba-
narescu et al., 2013)) is well-known for abstracting
away from specific syntax using rooted, directed
acyclic graphs (DAGs) and for applications to di-
verse tasks such as translation and NLU. Graph-
based learning approaches using AMR include
AMR-to-sequence learning (Beck et al., 2018) and
text generation (Song et al., 2018; Wang et al.,
2020; Zhao et al., 2020).

Our primary experimental dataset EGGNOG
(Wang et al., 2017), containing natural gestures
elicited during a collaborative task. EGGNOG has
been used to train gesture recognizers for multi-
modal interactive agents such as Krishnaswamy
et al. (2017, 2020, 2022) and Narayana et al. (2019).
Lai et al. (2024) annotated a subset of EGGNOG
with gesture and speech AMR, as well as corefer-
ence relations within and across the two modalities.

3 Methodology

The EGGNOG dataset (Wang et al., 2017) contains
360 videos of pairs of participants engaged in a col-
laborative task. One person, the actor, is given a set
of wooden blocks, while the other, the signaler, is
shown an image of a block structure. The signaler
uses gesture, sometimes together with speech, to in-
struct the actor how to build the structure. Gestures
are labeled according to both a physical descrip-
tion (e.g., RH: thumbs, up) and the signaler’s
intent (e.g., yes); this work focuses on the former.

Each EGGNOG physical gesture label refers to

one or more body parts, which include the head,
arms, hands, and upper body. Each body part
is then described with one or more aspects, in-
cluding various types of motions (of body parts
in space, such as rotate and shake), relations
(of body parts to each other, such as crossed
and facing), and poses (hand positions, such as
claw and point). Finally, aspects have optional
orientations: up, down, left, right, front,
or back. See Fig. 1 for an example. For simplicity,
we focus on the aspects within each label.

Lai et al. (2024) annotated 21 of the EGGNOG
videos with Gesture AMR. Because this was done
separately from the physical gesture labels, a single
GAMR can overlap with multiple labels. We link
each GAMR with each overlapping label, and, in
turn, with each aspect occurring in those labels,
making this a multi-label classification problem.
In total, the dataset contains 319 GAMRs (167
unique), associated with 889 aspects (33 unique).
We split the data into an 80:20 train/test split.

3.1 Graph Autoencoder
Our graph autoencoder (GAE) learns graph-
level representations from GAMR graphs for the
EGGNOG classification task. It is adopted from
the EdgeGAT-based message passing framework
proposed by Zhang and Ji (2021), which leverages
edge-aware attention mechanisms to integrate both
node and edge features. Each node in the graph
is represented using a one-hot 94D feature vector,
where 94 is the size of the unique node vocabu-
lary extracted from the GAMRs in the EGGNOG
dataset. Edges are typed with one of 9 possible la-
bels and are embedded into 9D continuous vectors
using a learnable embedding layer. To enable bidi-
rectional information flow between root and leaf
nodes, all graphs are made explicitly bidirectional
by adding the reverse of each original edge.

The encoder consists of three stacked EdgeGAT
layers. Each EdgeGAT layer performs attention-
based message passing where, for a given node i
and neighbor j, attention score αij is computed as

αij = LeakyReLU
(
aT [Whi ∥Whj ∥Weeij ]

)
,

where hi and hj are input node features, eij is the
edge feature, and W and We are learnable linear
projections applied to node and edge features, re-
spectively. aT is a learnable linear layer that maps
the concatenated vector into a scalar attention score.
Post-activation, these values are normalized using
softmax to compute a weighted sum over neighbor
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Figure 2: Graph autoencoder with EdgeGAT for self-supervised GAMR embedding, followed by MLP-based
multi-label gesture classification.

embeddings. A residual connection is applied to
preserve the original node features, controlled by a
mixing parameter λ:
hout
i = (1− λ) · hi + λ ·

∑

j∈N (i)

softmaxj(αij) ·Whj .

Each EdgeGAT layer except for the last is followed
by a ReLU activation. Node embeddings are then
average-pooled into a fixed-dimensional graph rep-
resentation g = 1

|V |
∑

i∈V hfinal
i , where V is the

set of nodes and hfinal
i is the embedding of node i

from the last EdgeGAT layer.
We employ a multilayer perceptron (MLP) de-

coder to predict the presence of edges. For each
edge (i, j), the decoder receives the concatenation
of node embeddings [zi ∥ zj ] and outputs a scalar
prediction ŷij = σ (MLP([zi ∥ zj ])), where σ is
the sigmoid activation function. The MLP consists
of a 128D hidden layer, followed by ReLU, and a
final linear layer projecting to a scalar.

The training objective is binary cross-entropy
over observed positive and sampled negative edges:

L = − 1

|E+|
∑

(i,j)∈E+

log ŷij − 1

|E−|
∑

(i,j)∈E−
log(1− ŷij)

where E+ denotes the set of observed edges and
E− is the set of randomly sampled negative edges.
The model is optimized using the Adam optimizer
with a learning rate of 0.001 over 100 epochs.

This GAE framework learns node and graph-
level representations that capture both structural
and semantic properties of the GAMR graphs. The
learned graph embeddings are used for downstream
classification in the EGGNOG task.

3.2 Evaluation
We evaluate the effectiveness of different vector-
ized GAMR representations for classifying the

physical description of gestures. The EGGNOG
dataset provides ELAN-annotated gesture in-
stances along with their associated physical forms.
High-level physical actions, such as put, lift, and
lean, serve as the classification labels for this task.

The same GAMR (i.e., same graph structure)
may appear multiple times across different gesture
instances, each potentially annotated with a differ-
ent set of physical labels. To investigate the impact
of label aggregation on classification performance,
we evaluate three label assignment strategies:

1. Non-Aggregated (Instance-Level): Each
GAMR instance is treated independently, with
its own label set. This results in multiple in-
stances of the same GAMR with potentially
different labels.

2. Majority Aggregation (≥ 50%): For each
unique GAMR, only those labels that appear
in at least 50% of its instances are retained.
This strategy aims to filter out noise while
preserving consistent labels.

3. Binary-Union Aggregation (Any Occur-
rence): For each unique GAMR, we include
all labels that appear in any of its instances.
This is the most inclusive strategy and ensures
maximum label coverage.

All three versions result in a multi-label classifi-
cation setup with 33 possible physical action aspect
labels. We report results separately for each to en-
able informed choice of strategy for downstream
task accuracy and robustness.

We compare classification performance of graph-
based GAMR embeddings against several alter-
natives: (1) a naive baseline where GAMRs are
represented using k-hot encodings of their node
vocabulary, (2) embeddings of GAMRs extracted
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Instance-Level Majority Aggregation Binary-Union

P R F1 P R F1 P R F1 # params.

k-hot 0.083 1.000 0.154 0.083 1.000 0.152 0.188 1.000 0.317 —
RoBERTa 0.475 0.479 0.477 0.602 0.599 0.601 0.772 0.833 0.802 124.1M
AMRBART 0.487 0.474 0.480 0.732 0.715 0.724 0.882 0.895 0.889 409.3M
GAE 0.490 0.447 0.468 0.731 0.648 0.687 0.834 0.836 0.835 52k

Table 1: Performance comparison of different GAMR representations across different label aggregation strategies
on multi-label classification. All models use the same MLP classifier and training setup. # params incl. trainable
and non-trainable, excl. MLP classification head.

from pretrained RoBERTa (Liu et al., 2019) using
linearized AMRs as strings, and (3) GAMR embed-
dings from AMRBART (Bai et al., 2022) pretrained
specifically on AMR parsing and generation.

For all embedding types, we use a lightweight
multi-layer perceptron (MLP) classifier, consis-
tent with common practice in unsupervised learn-
ing evaluations. The input to the classifier is the
GAMR embedding vector as extracted from each
method. All classifiers are trained and evaluated on
the same 80:20 split described in Sec. 3.

All experiments follow the training protocol de-
scribed in Sec. 3.1. This ensures that performance
differences stem from the quality of the underlying
GAMR representations rather than classifier capac-
ity. We evaluate the three embedding types (GAE,
AMRBART, RoBERTa), and the flat k-hot baseline,
across the three aforementioned labeling strategies.

In these experiments, we use AMRBART-large-
v2, which is a simpler, faster, and stronger version
of AMRBART-large. This was pretrained on AMR
3.01, which comprises 55,635 training instances, as
well as on 200,000 English sentences from English
Gigaword2. RoBERTa experiments use RoBERTa-
base.

4 Results and Discussion

Table 1 shows micro-averaged precision, recall, and
F1 across all labels. The best overall performance
is achieved under the binary-union label strategy,
where a GAMR is labeled with any action that
appears in at least one of its instances.

While AMRBART achieves the best F1 score
overall, our GAE embeddings achieve competi-
tive performance despite using orders of magni-
tude fewer parameters (Table 1, right side) and
no pretraining. Notably, GAE embeddings outper-
form RoBERTa-based ones in both binary-union

1https://catalog.ldc.upenn.edu/
LDC2020T02

2https://catalog.ldc.upenn.edu/
LDC2011T07

Figure 3: F1 scores for the top 10 most frequent classes
across under binary-union labeling.

and majority aggregation settings, highlighting the
benefit of incorporating relational structure over a
linearized string representation. The naive k-hot
baseline performs poorly all around due to its in-
ability to encode structural context, and tends to
overlabel all class, resulting in a spurious 100% re-
call. These results suggest that leveraging the graph
structure of GAMRs provides a natural, effective
and, notably, efficient way to learn meaningful ges-
ture representations.

Table 2 shows the performance of our proposed
method across the gesture types available from the
EGGNOG dataset. We can observe a slight perfor-
mance advantage leaning towards Iconic gestures
when using instance-level labeling, which can be
explained by the data imbalance toward this class as
suggested by Table 3. However, under the binary-
union strategy, Deixis gestures strongly outperform
the other classes, this weakening the idea that the
model might be biased towards any specific gesture
category across labeling strategies. Instead, the
strong performance of Deixis under this strategy
may be attributable to the characteristic hand-shape
of most deictic gestures that accompany English
spoken dialogue.

Fig. 3 shows the F1 scores for the 10 most-
frequently occurring physical gesture classes ac-
cording to the binary-union strategy, across all
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Gesture Type Instance-Level Majority Aggregation Binary-Union

P R F1 P R F1 P R F1

Iconic 0.525 0.489 0.506 0.692 0.537 0.605 0.624 0.653 0.638
Deixis 0.500 0.421 0.457 0.577 0.750 0.652 0.943 0.978 0.960
Emblem 0.450 0.474 0.462 0.348 0.727 0.471 0.524 0.942 0.674

Table 2: Performance comparison over different gesture types using the GAE method.

Gesture Types Train Test

Iconic 179 43
Deixis 54 14
Emblem 29 8

Table 3: Gesture types distribution across train and test
sets.

Figure 4: Cumulative inference time vs. number of
GAMRs processed.

3 learnable methods. Here we see a number of
classes where GAE embeddings match or exceed
the performance of AMRBART embeddings, such
as closed, shake, and together.

Finally, since the GAE has substantially fewer
parameters than the competitor methods, we per-
formed an inference-time experiment to quantify
the speed advantage. Fig. 4 shows the cumula-
tive time required to process increasing numbers
of GAMRs by each method. We see that the GAE
boasts a nearly 50% improvement in processing
time over AMRBART despite AMRBART’s ex-
tremely modest classification advantage, and that
the GAE remains about 20% faster than RoBERTa
at all input sizes despite outperforming it nearly
globally.

5 Conclusion

We presented a novel approach to gesture clas-
sification using Gesture AMR and graph autoen-
coders. Our approach achieves competitive clas-
sification accuracy with SOTA Transformer ap-
proaches at significantly less computational over-
head with faster inference speed. We also explored

the effects of different label aggregation strategies,
based on the premise that in real world data, the
same semantics may have different physical forms
attached to them. Our results can inform the choice
of classification technique for downstream tasks
that use gesture information with different require-
ments, such as epistemic position classification as
in Khebour et al. (2024). Our efficient GAE method
is suitable for real-time (e.g., VanderHoeven et al.
(2025)) or GPU-less systems.

Limitations

Our method as presented (and all those tested) re-
quires pre-annotated Gesture AMRs to be used as
input, which entails additional human preparatory
effort. Automating this step would entail some
form of automatic AMR-graph construction for
GAMR, such as sequence-to-graph transduction
approaches for AMR parsing (Zhang et al., 2019)
from raw dialogues and/or videos (VanderHoeven
et al., 2024), potentially using text enrichment tech-
niques such as dense paraphrasing (Tu et al., 2024).
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128, and 64 units, respectively). Batch normaliza-
tion and ReLU activation are used after each of the
first three linear layers, followed by a dropout layer
with probability 0.3. The activation function used
throughout is ReLU.

MLP Decoder An inner product decoder mod-
els only a simple, fixed linear similarity between
node embeddings. That is, it only predicts that an
edge exists between two nodes if node vectors are
aligned (high inner product), providing a rigid no-
tion of connectivity. By contrast, an MLP provides
a learnable decoder which can learn complex, non-
linear relationships to explain the presence and ab-
sence of edges, and hence can more reliably capture
asymmetric relationships. When comparing inner
product with MLP approaches during development,
we used AUROC on the task of reconstructing the
node adjacency matrix as a guiding metric. An
inner product decoder achieved a top AUROC of
93, which increased to 99 with the MLP decoder.
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Sampling Strategy Random sampling was used
for sampling negative edges for training (Sec. 3.1).
For each batch, we sampled node pairs that are
not connected in the input graph to serve as
negative edges. The sampling is uniform and
done on the fly during training and evaluation.
We use the negative sampling utility by
torch geometric, which makes sure that sam-
pled edges do not overlap with positive edges.

Hardware and Software All classification ex-
periments were performed on an AMD Ryzen
Threadripper 3960X 3.8 GHz system with 96 GB
RAM running Linux 5.15.0-130-generic x86 64
(Ubuntu-based kernel).

The inference time experiment shown in Fig. 4
was performed on an Intel Xeon Gold 5520+ with
256 GB RAM and Ubuntu 24.04.2 LTS.

PyTorch 2.4.0 was used.
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