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Abstract

Interpreting whether a word is hateful in con-
text is inherently subjective. While growing
research in NLP recognizes the importance of
annotation variation and moves beyond treat-
ing it as noise, most work focuses primarily
on annotator-related factors, often overlooking
the role of linguistic context and its interaction
with individual interpretation. In this paper,
we investigate the factors driving variation in
hateful word meaning interpretation by extend-
ing the HateWiC dataset with linguistic and
annotator-level features. Our empirical analy-
sis shows that variation in annotations is not
solely a function of who is interpreting or what
is being interpreted, but of the interaction be-
tween the two. We evaluate how well models
replicate the patterns of human variation. We
find that incorporating annotator information
can improve alignment with human disagree-
ment but still underestimates it. Our findings
further demonstrate that capturing interpreta-
tion variation requires modeling the interplay
between annotators and linguistic content and
that neither surface-level agreement nor predic-
tive accuracy alone is sufficient for truly reflect-
ing human variation.'

Content warning! Some examples in this paper
contain language that may be offensive, for illustra-
tive purposes; we recognize their potential harm.

1 Introduction

Words play a central role in hate speech by encod-
ing derogatory meanings. The meaning of such
words is rarely fixed but highly dependent on con-
text and interpretation which poses a significant
challenge for both theoretical understanding and
computational modeling of hate speech (Sayeed,

!Code and supplementary materials for this study are
available at https://github.com/SanneHoeken/
HateWiCVariation.
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2013). Despite growing interest in hate speech
detection, there has been little systematic investiga-
tion into the semantic and pragmatic mechanisms
that underlie how hateful word meanings are inter-
preted.

Recent work by Hoeken et al. (2024) introduced
the HateWiC dataset, which identified substantial
variation and disagreement in judgments about
whether a word is hateful in context. Models tend
to underperform on those cases where annotators
disagree. Although incorporating annotator demo-
graphic information shows modest improvements
in model performance, the underlying sources driv-
ing these variations remain poorly understood. This
aligns with a broader trend in NLP research, that
moves away from aggregated judgments to explic-
itly modeling inter-annotator variation (Uma et al.,
2021; Basile et al., 2021).

Yet, the focus in NLP research on label variation
in subjective tasks has largely remained on who is
interpreting (Kocon et al., 2021; Orlikowski et al.,
2023), with far less attention given to what is being
interpreted. While linguistic content has always
been the basis for classification, recent subjectivity-
focused approaches tend to sideline the role of the
content itself. Only a few studies acknowledge the
role of linguistic ambiguity in subjective labeling
(Sandri et al., 2023; Jiang and Marneffe, 2022).

Table 1 illustrates how subjective variation can
emerge from both linguistic and annotator features
with examples from HateWiC. Variation in per-
ceived hatefulness of the word napoleon in the
first example likely arises from ambiguity between
senses (food vs. person) with limited context.
Whereas in the second example annotator differ-
ences likely contributed to disagreement, as the
annotators seem to have different tendencies to la-
bel content as hateful (based on their label ratios).
Lastly, the shrink example shows that the same
annotator’s tendency can shift depending on the
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Word in Context Term Sense Definition Sense Sense Context | Ann. Gender Hateful | Label
Domain Person Aspect Length Id Ratio

Miss Manvers thrust aside a garnished napoleon  Another name for a millefeuille Food NotPerson 11 36 Female X

plate and attacked her napoleon. pastry. 69  Female

He is the napoleon of crime, Watson. He napoleon A person having come to dominate Person Personality/ 41 36 Female X

is the organizer of half that is evil [...] an area of activity through illegality. behavior 75 Male

My shrink said that he was an enabler, shrink A psychiatrist or psychotherapist. Person Profession 11 36  Female

bad for me. 4 Female X

Table 1: Examples from the HateWiC dataset, with augmented linguistic and annotator information, that illustrate

how label variation (X= hateful,

= not hateful) can arise from linguistic ambiguity (e.g. different senses of
napoleon) as well as from annotator tendencies (Hatefulness Ratio from low (4.) to high (

)), while also

highlighting the interaction of these features with subjective interpretation.

linguistic content they are judging, such as whether
the term’s referent is defined by profession or be-
havior (Person Aspect). It is this interaction be-
tween linguistic features and subjective tendencies
that shapes variation in interpretation.

Within the ongoing search for meaningful pre-
dictors of human variation in subjective language
interpretation, relatively little attention has been
given to the level of word meaning. Moreover,
most studies only focus on annotator-related fea-
tures, neglecting the interplay between semantics,
linguistic context, and subjective interpretation that
shapes how hateful meanings arise. Additionally,
existing modeling efforts typically emphasize over-
all performance metrics without assessing whether
models replicate the patterns of human variation.
Yet understanding and modeling such patterns is
crucial for NLP systems to meaningfully reflect
the subjective nature of language interpretation in
sensitive tasks like hate speech detection.

Addressing these gaps, we augment the
HateWiC dataset with linguistic and annotator-
level features (§3) and empirically show that vari-
ation in hateful meaning interpretation is driven
not just by who the annotator is or what is being
annotated, but by their interaction (§4). Building
on this analysis, we propose an evaluation frame-
work that assesses whether BERT-based classifica-
tion models capture this variation (§5). The results
(§6) demonstrate that while models incorporating
annotator-specific inputs can reproduce superficial
variation, they substantially underestimate its mag-
nitude and fail to capture the internal structure of
variation found in human annotations.

2 Related Work

In what follows, we discuss prior work on hate-
ful word meaning in NLP and subjective variation
in Hate Speech Detection (HSD), both of which
motivate our study.
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2.1 Hateful word meaning in NLP

Capturing variation in word meaning has long
been a focus in NLP (Pustejovsky, 1991; Schiitze,
1998; Haber and Poesio, 2024). Computational ap-
proaches to lexical semantics have included tasks
such as Word Sense Disambiguation (Loureiro
et al., 2021), Word Sense Induction (Eyal et al.,
2022) and Lexical Semantic Change Detection (Per-
iti and Montanelli, 2024). Methods predominantly
rely on embedding-based techniques using encoder-
based language models and often employ contextu-
alized sense similarity metrics (Blevins and Zettle-
moyer, 2020; Cassotti et al., 2023). Moreover, the
tasks and approaches typically depend on general-
purpose resources and corpora that are oriented to-
ward standard language usage. Consequently, they
tend to focus on denotative rather than domain-
specific or connotative meaning (Potts, 2007) (e.g.
capturing denotative shifts as with a word like
plane changing from primarily a geometric con-
cept to also denoting an aircraft, in contrast to con-
notative shifts, such as spinster becoming more
negatively charged over time).

In contrast, some work has addressed connota-
tive meaning in the context of hate speech by exam-
ining lexical features used in sequence-level detec-
tion (Koufakou et al., 2020; Zampieri et al., 2022).
Other studies have explored the disambiguation
and detection of such terms, including subtle forms
like dog whistles (Kruk et al., 2024; Mendelsohn
etal., 2023). Prior research has also examined more
clear-cut cases, such as swear words (Pamungkas
et al., 2022) and slurs (Hoeken et al., 2023), which
are often argued to be more stable across contexts
(Frigerio and Tenchini, 2019). Additional work
has addressed more ambiguous pejorative terms
(Dinu et al., 2021). However, much of this research
adopts a (binary) classification perspective, with
limited attention to intra-word variation, i.e. how
the connotative meaning of a term shifts across con-



texts or individuals. Recently, Hoeken et al. (2024)
addressed this issue with the introduction of the
HateWiC dataset. Their findings highlight the sub-
stantial variation in how hateful word meanings are
perceived, but the question about what underlies
this variation remains.

2.2 Subjective variation in HSD

Annotator disagreement is increasingly recognized
as a signal of subjective variation rather than mere
labeling noise (Larimore et al., 2021; Plank, 2022;
Fleisig et al., 2024). This shift is especially perti-
nent in HSD, where personal differences strongly
influence interpretive judgments. Several studies
have highlighted the role of annotator identity in
shaping perceived offensiveness. While some high-
light the relevance of sociodemographic variables
like gender and age (Kocon et al., 2021; Sang and
Stanton, 2022), recent findings suggest that such
variables often act as noisy proxies and are poor pre-
dictors for interpretation variation (Alipour et al.,
2024; Orlikowski et al., 2023). Several studies
consider other annotator factors like ideology (Sap
et al., 2022) or moral values (Mostafazadeh Davani
et al., 2024), yet all consider annotator information
as the primary source of variation.

Recent modeling approaches have incorporated
annotator-specific information in various ways.
These include demographic-based embeddings
(Fleisig et al., 2023), embeddings based on annota-
tor ids or label histories (Deng et al., 2023; Mokhbe-
rian et al., 2024), and label distribution learning
(Weerasooriya et al., 2023). Other recent personal-
ization techniques involve multimodal signals like
gaze (Alacam et al., 2024), or fine-tuning LLMs
with annotator-specific prompts (Orlikowski et al.,
2025). Despite these advances, most efforts em-
phasize improvements in predictive performance,
often evaluated via accuracy metrics. An excep-
tion is Anand et al. (2024), who propose aligning
model confidence with annotator agreement as a
step toward more human-aligned predictions.

Our work contributes to this line of research by
explicitly modeling individual variation in hateful
word interpretation, and evaluating models by how
well they capture the structure of this variation
across linguistic and annotator-related dimensions.

3 Data & Features

To analyze variation in the interpretation of poten-
tially hateful words, we use the HateWiC dataset
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(Hoeken et al., 2024), which provides contextual-
ized word usages annotated for perceived hateful-
ness. We further enrich this dataset with additional
linguistic and annotator-related features to facilitate
a comprehensive empirical analysis of variation.

3.1 The HateWiC dataset

The HateWiC dataset comprises approx. 4,000
word-in-context (WiC) instances, each annotated
independently by three annotators (N ~ 12k total
annotations). Annotation was distributed across
48 annotators, with each annotating 250 instances.
Each instance consists of a target term embedded
in a sentence and linked to a Wiktionary definition
that corresponds to its contextual meaning (totaling
1,888 unique definitions). This setup thus provides
sense-level information. The terms included have
at least one sense referring to people and consid-
ered offensive based on Wiktionary data. Annota-
tors were asked to indicate whether the meaning
of the target term in the specific sentence was hate-
ful or not, and could also indicate undecided. The
dataset is balanced across the two main classes.
To measure variation, we use a binary variable
indicating whether an individual annotator’s label
matches the majority label for that instance (agree)
or not (disagree). We adopt this annotation-level
operationalization because it allows us to associate
both linguistic features of the text and annotator fea-
tures (which require individual annotations) with
variation in interpretation. We further augment the
HateWiC data with various supplementary features,
described (and highlighted in bold) below.

3.2 Linguistic features

We manually annotated the semantic Domain of
each Wiktionary definition, assigning categories
such as Person, Animal, and Food. This is moti-
vated by the idea that ambiguity across these broad
semantic domains (e.g. Napoleon as a person ver-
sus a dessert) may lead to variation in hateful inter-
pretation. We further annotated the Person Aspect
emphasized, distinguishing among categories such
as Personality/Behavior, Ethnicity/Nationality and
Appearance. These dimensions could influence
annotators’ judgments of hatefulness differently.
For example, references to ethnicity may evoke
stronger perceptions of offense compared to those
focused on behavior or appearance. All annotations
were carried out by two linguistic experts, with full
dual annotation for validation. More details on cat-
egory taxonomies and annotation are provided in



Appendix A.

In addition to these semantic annotations, we
included the part of speech (POS) linked to each
sense definition, which was already included as
metadata in the HateWiC dataset. We also consider
for each word in context the Context Length, mea-
sured by the number of whitespace-separated to-
kens, as shorter contexts might provide fewer clues
for disambiguation which potentially increases dis-
agreement among annotators.

Finally, we incorporate the Grammatical Role
of the target word in its context. Grammatical Role
was identified using SpaCy’s dependency parser
and mapped to a coarser set of ten categories such
as subject, object and preposition (fully specified in
Appendix A). This syntactic information might af-
fect how strongly a term is emphasized and thereby
influence variation in perceived hateful intent.

3.3 Annotator features

We incorporated annotator-related features by lever-
aging information already present in the HateWiC
dataset. This includes the Annotator Id, along
with available sociodemographics (Gender, Eth-
nicity, and Age). We converted absolute age values
into age categories (e.g. “20-29’). As an additional
feature, we computed each annotator’s Hateful-
ness Ratio, defined as the proportion of instances
they labeled as hateful across the dataset (see also
Appendix A). This metric serves as an approxima-
tion of an annotator’s tendency to classify content
as hateful.

4 Empirical Analysis

We begin our empirical analysis by assessing
the overall degree of annotator agreement in the
HateWiC dataset. We calculate inter-annotator
agreement on the original dataset’s annotations,
with Krippendorff’s alpha resulting in 0.452. This
value reflects moderate agreement and matches the
original HateWiC paper’s findings (Hoeken et al.,
2024)?. Moving beyond surface-level agreement,
we statistically test the association between our en-
riched set of linguistic and annotator features, and
the binary outcome of agreement with the majority.

4.1 Independent feature associations

For a fair comparison of statistical test outputs, we
converted numerical features (Context Length and
’The alpha value reported in Hoeken et al. (2024) was

obtained without considering the undecided label, a difference
that does not appear to substantially affect the outcome.
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Hatefulness Ratio) into categorical variables using
quantile-based binning (with n_bins = 4). We con-
ducted Chi-squared tests of independence to assess
the relationship between each feature and anno-
tation agreement (i.e. agree or disagree with the
majority vote). Effect sizes were calculated using
Cramer’s V to measure the strength of associations.

Type Feature X2 p-value Cramer’s V

linguistic ~ Person Aspect 61.43 <0.001 0.072
Domain 31.83  <0.001 0.052
Context Length 48.53  <0.001 0.064
Grammatical Role  18.99 0.040 0.040
POS 4.06 0.669 0.018

annotator Annotator Id 238.11 <0.001 0.141
Hatefulness Ratio  37.32  <0.001 0.056
Ethnicity 59.39  0.000 0.071
Age 14.53 0.006 0.035
Gender 4.73 0.094 0.020

Table 2: Statistical test results for association of cat-
egorical features with annotation agreement (agree or
disagree with majority vote)

The results in Table 2 show several statistically
significant associations. Among linguistic fea-
tures, Person Aspect shows the strongest associ-
ation. Context Length and Domain also have sig-
nificant effects on the agreement (p < 0.001) and
Grammatical Role is marginally significant (p =
0.04). In the annotator-related features, Annotator
Id shows the strongest association. Ethnicity and
Hatefulness Ratio are also significant (p < 0.001).
Age is significant at the 0.01 level. Further details
on the computation and results, including contin-
gency tables, are provided in Appendices B and D.

Overall, the analysis indicates that both
linguistic properties of the input and demo-
graphic/behavioral characteristics of annotators in-
fluence annotation variation, with the strongest ef-
fects observed at the annotator level. While many
features have significant effects, the effect sizes are
generally small (Cramer’s V < 0.15), indicating
weak to modest associations. This suggests that a
large portion of variation in annotation variation
remains unexplained by these main effects.

4.2 Feature interaction associations

Figure 1 displays both individual and pairwise in-
teraction effects on annotation agreement, again
based on Chi-squared tests, this time considering
combinations of two features as well. The diag-
onal represents individual feature effects, while
the off-diagonal quadrants correspond to pairwise
interactions: the lower-left quadrant shows interac-
tions between linguistic and annotator features, the



upper-left linguistic x linguistic interactions, and
the lower-right annotator X annotator interactions.
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Figure 1: Heatmap of Cramer’s V effect sizes showing
both individual and pairwise associations of features
with annotation agreement. The upper triangle (above
the diagonal) as well as non-significant (p > 0.05) inter-
action effects are masked.

Generally, interactions explain more variation
in annotation agreement than individual features.
Particularly, interactions between annotator and lin-
guistic features are the strongest, with the highest
effect size of V =0.29 for Person Aspect x Ann Id.
This pattern of low main effect but high cross-type
(linguistic x annotator) interaction supports that
annotation variation is more a function of who is
interpreting what, rather than just who, or what.

Within type interactions, the higher interaction
effects among linguistic features (max V = 0.12
for Person Aspect x Grammatical Role), compared
to individual features (max V = 0.07), emphasize
that the combined effect of linguistic features mat-
ters more for meaning variation, which aligns with
linguistic theories of compositionality and context-
dependent meaning (Partee et al., 1984).

Adding interactions among annotator features
does not increase association strength beyond what
is captured by Annotator Id alone. This is logical
because Annotator Id essentially encapsulates all
annotator-related factors. Ignoring Annotator Id,
interactions among other annotator features show
modestly stronger effects than individual features,
with the ethnicity x Hatefulness Ratio interaction
yielding V = 0.10. This implies possible interpre-
tative biases (reflected by tendency to label hate)
linked to cultural context. Nonetheless, these ef-
fects remain smaller than those involving Annota-
tor Id, thus the results show that individual annota-
tor differences beyond demographics and labeling
tendency has stronger influence on the agreement.
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4.3 A closer look: Person Aspect x
Hatefulness Ratio

While statistical tests and interaction analyses pro-
vide evidence of feature associations with annota-
tion agreement, inspecting the directions and pat-
terns of these effects allows for a more concrete
interpretation. We illustrate this by zooming in on
the interaction effect of two features from our anal-
ysis. Figure 2 visualizes the interaction between
the semantic Person Aspect of the target word and
annotators’ hateful labeling tendency (Person As-
pect x Hatefulness Ratio, with the latter discretized
into four intervals. The disagreement probability
shows distinct patterns across Person Aspect cate-
gories. For example, instances in the Appearance
or Social class categories exhibit relatively high
disagreement for annotators with a low Hateful-
ness Ratio and less disagreement with moderate
to high ratios. Conversely, the Kinship/social cate-
gory exhibits the opposite trend. These diverging
patterns emphasize that annotator tendencies do not
exert uniform effects across linguistic categories.
Instead, the influence of individual biases on anno-
tation variation is mediated by the specific semantic
characteristics of the content.

S Computational Modeling

In this section, we investigate to what extent com-
putational models with different inputs can capture
human variation in annotations. We address this
question in the context of the binary classification
task that predicts the individual annotations in the
HateWiC dataset (12K annotations of words in con-
text, labeled hateful or not hateful based on their
meaning in that context). We explicitly model and
analyze this variation by conditioning predictions
on auxiliary inputs such as annotator identity or
demographics. The primary goal is to gain insights
into alignment with human interpretation variation
rather than optimize benchmark performance.

5.1 Model architecture & experiments

We largely follow the approach proposed by Deng
et al. (2023), who incorporate annotator embed-
dings into a BERT model. Their mechanism relies
on a predefined annotator id vocabulary. We extend
this approach by introducing a modular framework
that allows integration of auxiliary information, in-
cluding not only discrete id-based inputs but also
free-form text descriptions, alongside standard in-
put text (primary input). The model architecture
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Figure 2: Interaction between the person-related semantic category of the target word (Person Aspect) and annotator’s
individual tendency to label instances as hateful (Hatefulness Ratio) on the probability of disagreement as the
proportion of annotations where individual annotators disagreed with the majority vote.

builds upon a pre-trained encoder for representa-
tions of textual inputs. Specifically, we initialize
all models with the base version of ModernBERT
(Warner et al., 2024) as encoder. Similar to Deng
et al. (2023) we adopt a learnable feature-wise
weighting mechanism for auxiliary embeddings.

Primary text embeddings For each HateWiC
instance, the primary input is the sentence con-
taining the target term (WiC). Alternatively, fol-
lowing Hoeken et al. (2024), we test replacing
this input with the corresponding Wiktionary def-
inition (WikDef), or using a concatenation of
both. WikDef provides lexical semantic informa-
tion about the term in a non-contextualized form.
Each input type is independently passed through
the encoder to obtain a [CLS] representation, which
serves as the primary feature embedding.

Auxiliary annotator embeddings Following
Deng et al. (2023), an embedding layer maps auxil-
iary ids to dense vectors, which are jointly trained
with the rest of the model, yielding id-based anno-
tator embeddings (ann id). We extend this frame-
work by enabling auxiliary inputs in natural lan-
guage form, resulting in fext-based annotator em-
beddings. These include: (i) annotator ids (ann
id) expressed as text (e.g. “annotator_12”), (ii) a
description of demographic characteristics (profile
descr.) (e.g. “The reader is Female, Asian and
28”) and (iii) a description of a single character-
istic, for which we specifically test ethnicity (e.g.
“Asian”). Additionally, inspired by recommender
system approaches (Shin et al., 2023), we explore
(iv) representations of each annotator’s label his-
tory (ann. behavior) as the set of prior WiC in-
stances they labeled as hateful (drawn from the
training set). All textual inputs are processed using
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the same ModernBERT encoder, with the [CLS]
token representation used as the embedding. For
behavior-based inputs, which consist of a list of
texts, the [CLS] representations are averaged to
produce a single embedding.

Feature Weighted Classifier (FWC) To inte-
grate the auxiliary embeddings with the primary
text representation, we adopt a feature-wise learn-
able weighting scheme. Each auxiliary embedding
is assigned a scalar weight (learned during train-
ing) that determines its contribution. The weighted
auxiliary vectors are then concatenated with the
primary text embedding and passed into the clas-
sifier. The classifier is a single-layer multilayer
perceptron (MLP) comprising a linear transforma-
tion, ReLU activation, dropout regularization, and
a final linear layer mapping to the output classes.

Experimental setup We evaluate ten model con-
figurations: three using only primary inputs (i.e.
the WiC and/or its definition), and seven that ad-
ditionally incorporate auxiliary annotator informa-
tion. Model predictions are generated for each
individual annotation in the HateWiC dataset using
a 10-fold cross-validation framework. Each fold
follows a fixed 80-10-10 split into training, vali-
dation, and testing sets. Further implementation
details, including libraries, hyperparameters, and
hardware specifics, are provided in Appendix C.

5.2 Evaluation

Our goal is to assess how closely computational
models capture human variation in annotation for
the HateWiC task. In the previous section, we
statistically analyzed a range of linguistic and
annotator-specific features to understand their in-
fluence on human agreement. Here, we evaluate



whether models can replicate these patterns by an-
alyzing their predictions of individual annotations
(typically three per sentence), with and without
annotator-specific information as auxiliary input.
In the latter case, models simulate predictions from
annotators by conditioning on annotator identity.

Prediction agreement To quantify how closely
the model’s predictions resemble human annota-
tion variation in terms of inter-annotator agreement
measured through Krippendorff’s alpha (a), we
define an Agreement Alignment score as:

AA=1-— |Oémodel - ahuman|

Here, aiyogel 18 computed over the model’s pre-
dicted annotations and thus reflects the model’s
variation across simulated annotators. ohyman 1S the
alpha from actual human annotations. The score
ranges from O to 1, with higher values indicating
that the degree of variation in the model’s predic-
tions more closely matches the degree of variation
observed in human annotations.

Agreement patterns To assess whether models
go beyond surface-level agreement and replicate
deeper variation patterns, we examine whether they
reproduce the same effects of linguistic and anno-
tator variables on label variation as observed in
human data. Specifically, we conduct the same
statistical tests (§4), replacing human annotations
with model predictions. Variation is again treated
as a binary variable (agree or disagree) based on
whether each individual model prediction aligns
with the model-level majority vote. This mirrors
the human data procedure, where individual anno-
tations were compared to the human majority.

Using the same set of ten linguistic and annotator
features listed in Table 2, we examine both main ef-
fects of individual features (10 effects) and interac-
tions between feature pairs, i.e. 45 effects from all
possible pairwise combinations. To quantify how
closely a model replicates variation patterns, we
compute the Relative Pattern Alignment (RPA)
score between human and model effect sizes (mea-
sured using Cramér’s V) across all n effects, which
we define as:

effeCthuman, i effeCtmodel, i
effecthuman i

1
RPA—1- 1577,

We normalize each error by the magnitude of the
corresponding human effect size to accommodate
the small magnitude of Cramér’s V and to prevent
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larger effects from disproportionately influencing
the score. The final metric is inverted so that higher
RPA values indicate stronger alignment between
the model’s and humans’ variation patterns.

Prediction accuracy Finally, we directly com-
pare the model predictions to individual human
annotations, following traditional evaluation prac-
tices. For each model, we report accuracy across
all instances.

6 Results & Discussion

We present results for all ten model configurations
in Table 3, which vary in terms of their input fea-
tures: (i) primary input only, (ii) primary input with
id-based annotator embeddings, and (iii) primary
input with text-based annotator embeddings.

FWC config. model input AA RPA Ace
primary only WwiC 0.452  0.000 0.650
WikDef 0.452  0.000 0.671
WiC + WikDef 0.452  0.000 0.700
+ aux. (id-based) ~ WiC + ann. id 0.670 0.620 0.664
WikDef + ann id 0.732 0.632 0.682
WiC + WikDef + ann. id  0.638 0.658 0.704
+ aux. (text-based) WiC + ann. id 0.516 0.567 0.656
WiC + profile descr. 0.576 0.557 0.654
WiC + ethnicity 0.501 0.539 0.654
WiC + ann. behavior 0.452 0.000 0.654

Table 3: Agreement Alignment score, Relative Pattern
Alignment score and accuracy for the different model
configurations compared to the human annotation data.

6.1 Prediction agreement

Models that process only primary text naturally
produce identical predictions across simulated an-
notators for each instance. This results in perfect
inter-annotator agreement (amode; = 1). Conse-
quently, they score lowest on Agreement Align-
ment (AA = 0.452), as they fail to reproduce the
human variation in annotations. In contrast, mod-
els that incorporate auxiliary annotator information,
particularly those with id-based embeddings, ex-
hibit lower agreement rates. This indicates that
simulated annotators produce diverging predictions
on the same primary input, mimicking the variation
observed in human annotations.

Text-based auxiliary inputs result only in modest
improvements over primary-only baselines and un-
derperform compared to id-based embeddings. For
instance, using fext-based annotator ids yields an
AA of 0.516, whereas the corresponding id-based
configuration achieves 0.670. These differences
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Figure 3: Heatmaps of Cramer’s V effect sizes showing both individual (along the diagonal) and pairwise associations
of features with model prediction agreement for different FWC model configurations (named after their inputs). The
upper triangles (above the diagonal) as well as non-significant (p > 0.05) interaction effects are masked.

might originate from the fact that id-based embed-
dings are jointly trained, letting the model distin-
guish the annotators in a more clear-cut manner,
whereas text-based inputs rely on static represen-
tations from a pre-trained encoder, limiting their
influence on the model’s decision making. Notably,
the WiC + ann. behavior model maintains perfect
inter-annotator agreement (aumode; = 1), suggest-
ing that the behavior representations do not inject
any variation into model predictions. A possible
explanation is that each annotator’s behavior em-
bedding is a fixed average of the hateful sentences
they labeled, which may smooth out fine-grained
differences and lack strong signals to distinguish
annotators.

Overall, these findings suggest that conditioning
on annotator identity introduces label variation, but
the way this auxiliary input is provided affects the
extent of this variation. Yet, in general, models
underestimate the magnitude of variation observed
in human annotations.

6.2 Agreement patterns

While Agreement Alignment quantifies whether
models produce human-like variation in an aggre-
gated manner, it does not capture how that varia-
tion arises. To probe this, we analyze Relative Pat-
tern Alignment (RPA), which measures how well
a model replicates the internal structure of human
variation. High AA does not always translate to
high RPA, indicating that the variation in human
data and model predictions might originate from
different instances. For example, while the model
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with WikDef + ann. id has the highest AA (0.732),
the configuration with combined inputs (WiC +
WikDef + ann. id) achieves the best RPA (0.658).
These results reveal that surface-level agreement
can be misleading, since it does not guarantee align-
ment with the internal structure of human variation.

Figure 3 visualizes feature association patterns
for each of the six models, restricted to those ex-
hibiting variation in their predictions (mede1 < 1).
It displays for each model a heatmap of Cramer’s V
effect sizes showing both individual and pairwise
associations of features with prediction agreement.
The human annotation data showed a diverse range
of significant effects (48 out of 55 tested), includ-
ing interactions between annotator features, linguis-
tic features, and cross-type combinations. Among
these, the latter were particularly prominent. Mod-
els generally captured far fewer significant effects
and vary widely in their replication of human-like
effect structures. A key distinction emerges in the
types of feature interactions that models are able to
replicate. The best model in terms of RPA (WiC +
WikDef + ann. id) captures numerous significant
effects spanning all three interaction types. In con-
trast, only two significant effects were identified for
the model with WiC + ann id (text-based) inputs,
none involving annotator x annotator interactions.

Overall, these findings show the importance of
not just measuring agreement rates, but also system-
atically analyzing the patterns of variation, which
can offer a more fine-grained view of how model
predictions reflect the structure of human annota-



tion behavior.

6.3 Prediction performance

Across all configurations, predictive accuracy re-
mains relatively stable (0.65-0.70). The highest
accuracies are observed for models using semantic-
rich inputs, i.e. including both sentence context
(WiC) and definitions (WikDef) as inputs. This
highlights the importance of linguistic information
for predicting individual annotations and aligns
with our earlier findings on the role of linguistic
features in human annotations. In addition, mod-
els that best capture human-like variation do not
necessarily predict individual labels more accu-
rately. For instance, although the WikDef + ann. id
model exhibits strong AA (0.732) and RPA (0.632),
its accuracy (0.682) is only marginally better than
primary-only models. These findings suggest that
optimizing for predictive accuracy and optimizing
for alignment with human variation may constitute
distinct modeling objectives that warrant separate
consideration in model development.

7 Conclusion

In this paper we demonstrated that the variation
in interpretation of hateful word meaning is not
merely a function of who the annotator is or what is
being annotated, but of the interaction between the
two. Through empirical analysis of the HateWiC
dataset, we showed that both linguistic properties
of the target word in context and annotator charac-
teristics shape interpretive variation. Our evalua-
tion of model alignment with human variation fur-
ther reveals that although models that incorporate
annotator-specific information introduce human-
like variation at a surface level, they still under-
estimate the magnitude of variation observed in
human annotations and generally fail to represent
the internal structure of variation. In conclusion,
our findings show that capturing human interpretive
variation requires modeling the interaction between
annotators and linguistic content, and that surface-
level agreement or predictive accuracy alone does
not ensure true alignment with human variation.

Limitations

Alongside its contributions, this study has several
limitations that should be acknowledged:

Binary operationalization. Our analysis relies
on binary categorizations for hatefulness (hateful
vs. not hateful) and annotator agreement (agree vs.
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disagree with majority). While this simplifies mod-
eling and interpretation, it risks oversimplifying
the complexity of human judgments. Future work
could explore multi-class or continuous scales to
capture finer distinctions in hatefulness and annota-
tion variation.

Feature selection & categorization. The linguis-
tic and annotator features included in our study, al-
though carefully chosen to cover key linguistic and
annotator dimensions, represent a subset of poten-
tially relevant factors. Additionally, some features
were either provided in broad categories or grouped
during analysis to facilitate reliable statistical anal-
ysis. Other linguistic phenomena, richer annotator
identity information and more refined categoriza-
tions might further explain variation patterns.

Label variation as interpretation variation.
We interpret label variation among annotators
as indicative of variation in meaning interpreta-
tion. While this is a reasonable assumption, other
sources of disagreement, such as sloppy annota-
tions or uncertainty, cannot be fully ruled out (e.g.
Sandri et al. (2023)). Incorporating complemen-
tary data such as annotator confidence ratings or
qualitative feedback could strengthen this.

Automatic parsing. The Grammatical Role fea-
ture was derived using automatic dependency pars-
ing (SpaCy) without additional validation tailored
to the specific dataset. While SpaCy generally of-
fers robust performance, parsing errors could in-
troduce noise in the linguistic feature set. Dataset-
specific parser evaluation could improve feature
reliability in future analyses.

Data size and imbalance. Some feature cate-
gories have limited observations, restricting the
use of complex models like mixed-effects regres-
sion with random intercepts for annotators. These
models treat each subcategory as a separate binary
feature which requires enough data per subcate-
gory to produce reliable estimates of variation and
interaction effects. Due to this, we relied on Chi-
squared tests and effect size measures better suited
to the dataset. Larger, more balanced data would
enable exploring richer feature effects.

Limited modeling diversity. The modeling com-
ponent of this study focused on one type of archi-
tecture (ModernBERT-based encoder models with
auxiliary feature integration). While this design al-
lowed us to systematically evaluate the contribution



of annotator information within a controlled setup,
it does not explore the full range of potentially use-
ful architectures. Future work could broaden this
scope to assess generalizability across modeling
paradigms.

Ethics Statement

Our work builds upon the HateWiC dataset by en-
riching it with additional linguistic annotations and
computational analyses. Apart from the supple-
mentary linguistic annotations (see also Appendix
A), no new human annotations were collected for
this research beyond what is already available in
HateWiC, and no personally identifying informa-
tion was processed or used. Where annotator iden-
tity is used for modeling purposes, it is limited to
anonymous identifiers that cannot be traced to real
individuals. We recognize that demographic cat-
egories such as ethnicity, gender and age provide
only a limited representation of individual identity.
These features are used here solely to explore vari-
ation in annotator interpretation and not to make
generalizations about any group.

Given the sensitive nature of hate-related content,
we have taken care to conduct our analyses and re-
porting in a manner that avoids harm. The focus
of our work is on variation in interpretation rather
than the endorsement or rejection of any specific
viewpoint. Our goal is to improve understanding
of the variation inherent to such subjective anno-
tation tasks, in order to support the development
of computational methods that better account for
subjective variation and promote fairness in NLP
applications.

Acknowledgments

The authors acknowledge financial support by the
project “SAIL: SustAlnable Life-cycle of Intelli-
gent Socio-Technical Systems” (Grant ID NW21-
059A), which is funded by the program “Netzw-
erke 2021 of the Ministry of Culture and Science
of the State of North Rhine-Westphalia (Germany)
and by the project “Dealing with Meaning Varia-
tion in NLP”, which is funded by the Dutch Re-
search Council (NWO) through the AiNed Fellow-
ship Grant (NGF.1607.22.002).

References

Ozge Alacam, Sanne Hoeken, and Sina Zarrief3. 2024.
Eyes don’t lie: Subjective hate annotation and de-

72

tection with gaze. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 187-205, Miami, Florida, USA.
Association for Computational Linguistics.

Shayan Alipour, Indira Sen, Mattia Samory, and
Tanushree Mitra. 2024. Robustness and confounders
in the demographic alignment of llms with human
perceptions of offensiveness.

Abhishek Anand, Negar Mokhberian, Prathyusha Ku-
mar, Anweasha Saha, Zihao He, Ashwin Rao, Fred
Morstatter, and Kristina Lerman. 2024. Don’t blame
the data, blame the model: Understanding noise and
bias when learning from subjective annotations. In
Proceedings of the 1st Workshop on Uncertainty-
Aware NLP (UncertaiNLP 2024), pages 102—113,
St Julians, Malta. Association for Computational Lin-
guistics.

Valerio Basile, Michael Fell, Tommaso Fornaciari, Dirk
Hovy, Silviu Paun, Barbara Plank, Massimo Poesio,
and Alexandra Uma. 2021. We need to consider
disagreement in evaluation. In Proceedings of the
1st Workshop on Benchmarking: Past, Present and
Future, pages 15-21, Online. Association for Com-
putational Linguistics.

Terra Blevins and Luke Zettlemoyer. 2020. Moving
down the long tail of word sense disambiguation
with gloss informed bi-encoders. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1006—1017, Online.
Association for Computational Linguistics.

Pierluigi Cassotti, Lucia Siciliani, Marco DeGemmis,
Giovanni Semeraro, and Pierpaolo Basile. 2023. XL-
LEXEME: WiC pretrained model for cross-lingual
LEXical sEMantic changE. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1577-1585, Toronto, Canada. Association for Com-
putational Linguistics.

Naihao Deng, Xinliang Zhang, Siyang Liu, Winston Wu,
Lu Wang, and Rada Mihalcea. 2023. You are what
you annotate: Towards better models through anno-
tator representations. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
12475-12498, Singapore. Association for Computa-
tional Linguistics.

Liviu P. Dinu, Ioan-Bogdan Iordache, Ana Sabina Uban,
and Marcos Zampieri. 2021. A computational ex-
ploration of pejorative language in social media. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 3493-3498, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Matan Eyal, Shoval Sadde, Hillel Taub-Tabib, and Yoav
Goldberg. 2022. Large scale substitution-based word
sense induction. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4738-4752,


https://doi.org/10.18653/v1/2024.emnlp-main.11
https://doi.org/10.18653/v1/2024.emnlp-main.11
http://arxiv.org/abs/2411.08977
http://arxiv.org/abs/2411.08977
http://arxiv.org/abs/2411.08977
https://aclanthology.org/2024.uncertainlp-1.11/
https://aclanthology.org/2024.uncertainlp-1.11/
https://aclanthology.org/2024.uncertainlp-1.11/
https://doi.org/10.18653/v1/2021.bppf-1.3
https://doi.org/10.18653/v1/2021.bppf-1.3
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2023.findings-emnlp.832
https://doi.org/10.18653/v1/2021.findings-emnlp.296
https://doi.org/10.18653/v1/2021.findings-emnlp.296
https://doi.org/10.18653/v1/2022.acl-long.325
https://doi.org/10.18653/v1/2022.acl-long.325

Dublin, Ireland. Association for Computational Lin-
guistics.

Eve Fleisig, Rediet Abebe, and Dan Klein. 2023. When
the majority is wrong: Modeling annotator disagree-
ment for subjective tasks. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 6715-6726, Singapore. As-
sociation for Computational Linguistics.

Eve Fleisig, Su Lin Blodgett, Dan Klein, and Zeerak
Talat. 2024. The perspectivist paradigm shift: As-
sumptions and challenges of capturing human labels.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 2279-2292, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Aldo Frigerio and Maria Paola Tenchini. 2019. Pejora-
tives: a classification of the connoted terms. Rivista
Italiana di Filosofia del Linguaggio, 13(1).

Janosch Haber and Massimo Poesio. 2024. Poly-
semy—evidence from linguistics, behavioral science,
and contextualized language models. Computational
Linguistics, 50(1):351-417.

Sanne Hoeken, Sina Zarrief3, and Ozge Alacam. 2023.
Identifying slurs and lexical hate speech via light-
weight dimension projection in embedding space. In
Proceedings of the 13th Workshop on Computational
Approaches to Subjectivity, Sentiment, & Social Me-
dia Analysis, pages 278-289, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Sanne Hoeken, Sina Zarrief3, and Ozge Alacam. 2024.
Hateful word in context classification. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 172—186, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Nan-Jiang Jiang and Marie-Catherine de Marneffe.
2022. Investigating reasons for disagreement in natu-
ral language inference. Transactions of the Associa-
tion for Computational Linguistics, 10:1357-1374.

Jan Kocon, Alicja Figas, Marcin Gruza, Daria
Puchalska, Tomasz Kajdanowicz, and Przemystaw
Kazienko. 2021. Offensive, aggressive, and hate
speech analysis: From data-centric to human-
centered approach. Information Processing Man-
agement, 58(5):102643.

Anna Koufakou, Endang Wahyu Pamungkas, Valerio
Basile, and Viviana Patti. 2020. HurtBERT: Incorpo-
rating lexical features with BERT for the detection
of abusive language. In Proceedings of the Fourth
Workshop on Online Abuse and Harms, pages 3443,
Online. Association for Computational Linguistics.

Julia Kruk, Michela Marchini, Rijul Magu, Caleb Ziems,
David Muchlinski, and Diyi Yang. 2024. Silent sig-
nals, loud impact: LLMs for word-sense disambigua-
tion of coded dog whistles. In Proceedings of the

73

62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12493-12509, Bangkok, Thailand. Association for
Computational Linguistics.

Savannah Larimore, Ian Kennedy, Breon Haskett, and
Alina Arseniev-Koehler. 2021. Reconsidering anno-
tator disagreement about racist language: Noise or
signal? In Proceedings of the Ninth International
Workshop on Natural Language Processing for So-
cial Media, pages 81-90, Online. Association for
Computational Linguistics.

Daniel Loureiro, Kiamehr Rezaee, Mohammad Taher
Pilehvar, and Jose Camacho-Collados. 2021. Anal-
ysis and evaluation of language models for word
sense disambiguation. Computational Linguistics,
47(2):387-443.

Julia Mendelsohn, Ronan Le Bras, Yejin Choi, and
Maarten Sap. 2023. From dogwhistles to bullhorns:
Unveiling coded rhetoric with language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 15162—15180, Toronto, Canada.
Association for Computational Linguistics.

Negar Mokhberian, Myrl Marmarelis, Frederic Hopp,
Valerio Basile, Fred Morstatter, and Kristina Lerman.
2024. Capturing perspectives of crowdsourced anno-
tators in subjective learning tasks. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 7337-7349, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Aida Mostafazadeh Davani, Mark Diaz, Dylan K Baker,
and Vinodkumar Prabhakaran. 2024. D3CODE: Dis-
entangling disagreements in data across cultures on
offensiveness detection and evaluation. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 18511-18526,
Miami, Florida, USA. Association for Computational
Linguistics.

Matthias Orlikowski, Jiaxin Pei, Paul Réttger, Philipp
Cimiano, David Jurgens, and Dirk Hovy. 2025. Be-
yond demographics: Fine-tuning large language mod-
els to predict individuals’ subjective text perceptions.

Matthias Orlikowski, Paul Rottger, Philipp Cimiano,
and Dirk Hovy. 2023. The ecological fallacy in anno-
tation: Modeling human label variation goes beyond
sociodemographics. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 1017-
1029, Toronto, Canada. Association for Computa-
tional Linguistics.

Endang Wahyu Pamungkas, Valerio Basile, and Viviana
Patti. 2022. Investigating the role of swear words
in abusive language detection tasks. Language Re-
sources and Evaluation, 57(1):155-188.


https://doi.org/10.18653/v1/2023.emnlp-main.415
https://doi.org/10.18653/v1/2023.emnlp-main.415
https://doi.org/10.18653/v1/2023.emnlp-main.415
https://doi.org/10.18653/v1/2024.naacl-long.126
https://doi.org/10.18653/v1/2024.naacl-long.126
http://rifl.unical.it/index.php/rifl/article/view/530
http://rifl.unical.it/index.php/rifl/article/view/530
https://doi.org/10.1162/coli_a_00500
https://doi.org/10.1162/coli_a_00500
https://doi.org/10.1162/coli_a_00500
https://doi.org/10.18653/v1/2023.wassa-1.25
https://doi.org/10.18653/v1/2023.wassa-1.25
https://doi.org/10.18653/v1/2024.emnlp-main.10
https://doi.org/10.1162/tacl_a_00523
https://doi.org/10.1162/tacl_a_00523
https://doi.org/https://doi.org/10.1016/j.ipm.2021.102643
https://doi.org/https://doi.org/10.1016/j.ipm.2021.102643
https://doi.org/https://doi.org/10.1016/j.ipm.2021.102643
https://doi.org/10.18653/v1/2020.alw-1.5
https://doi.org/10.18653/v1/2020.alw-1.5
https://doi.org/10.18653/v1/2020.alw-1.5
https://doi.org/10.18653/v1/2024.acl-long.675
https://doi.org/10.18653/v1/2024.acl-long.675
https://doi.org/10.18653/v1/2024.acl-long.675
https://doi.org/10.18653/v1/2021.socialnlp-1.7
https://doi.org/10.18653/v1/2021.socialnlp-1.7
https://doi.org/10.18653/v1/2021.socialnlp-1.7
https://doi.org/10.1162/coli_a_00405
https://doi.org/10.1162/coli_a_00405
https://doi.org/10.1162/coli_a_00405
https://doi.org/10.18653/v1/2023.acl-long.845
https://doi.org/10.18653/v1/2023.acl-long.845
https://doi.org/10.18653/v1/2024.naacl-long.407
https://doi.org/10.18653/v1/2024.naacl-long.407
https://doi.org/10.18653/v1/2024.emnlp-main.1029
https://doi.org/10.18653/v1/2024.emnlp-main.1029
https://doi.org/10.18653/v1/2024.emnlp-main.1029
http://arxiv.org/abs/2502.20897
http://arxiv.org/abs/2502.20897
http://arxiv.org/abs/2502.20897
https://doi.org/10.18653/v1/2023.acl-short.88
https://doi.org/10.18653/v1/2023.acl-short.88
https://doi.org/10.18653/v1/2023.acl-short.88
https://doi.org/10.1007/s10579-022-09582-8
https://doi.org/10.1007/s10579-022-09582-8

Barbara Partee et al. 1984. Compositionality. Varieties
of formal semantics, 3:281-311.

Francesco Periti and Stefano Montanelli. 2024. Lexical
semantic change through large language models: a
survey. ACM Comput. Surv., 56(11).

Barbara Plank. 2022. The “problem” of human label
variation: On ground truth in data, modeling and
evaluation. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10671-10682, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Christopher Potts. 2007. The expressive dimension.
Theoretical Linguistics, 33(2):165-198.

James Pustejovsky. 1991. The Generative Lexicon.
Computational Linguistics, 17(4):409-441.

Marta Sandri, Elisa Leonardelli, Sara Tonelli, and Elis-
abetta Jezek. 2023. Why don’t you do it right?
analysing annotators’ disagreement in subjective
tasks. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 2428-2441, Dubrovnik,
Croatia. Association for Computational Linguistics.

Yisi Sang and Jeffrey Stanton. 2022. The origin and
value of disagreement among data labelers: A case
study of individual differences in hate speech annota-
tion. In Information for a Better World: Shaping the
Global Future: 17th International Conference, ICon-
ference 2022, Virtual Event, February 28 — March
4, 2022, Proceedings, Part I, page 425-444, Berlin,
Heidelberg. Springer-Verlag.

Maarten Sap, Swabha Swayamdipta, Laura Vianna,
Xuhui Zhou, Yejin Choi, and Noah A. Smith. 2022.
Annotators with attitudes: How annotator beliefs
and identities bias toxic language detection. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5884-5906, Seattle, United States. Association for
Computational Linguistics.

Asad Sayeed. 2013. An opinion about opinions about
opinions: subjectivity and the aggregate reader. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 691-696, Atlanta, Georgia. Association for
Computational Linguistics.

Hinrich Schiitze. 1998. Automatic word sense discrimi-
nation. Computational Linguistics, 24(1):97-123.

Kyuyong Shin, Hanock Kwak, Wonjae Kim, Jisu Jeong,
Seungjae Jung, Kyungmin Kim, Jung-Woo Ha, and
Sang-Woo Lee. 2023. Pivotal role of language model-
ing in recommender systems: Enriching task-specific
and task-agnostic representation learning. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1146-1161, Toronto, Canada. Associ-
ation for Computational Linguistics.

74

Alexandra N. Uma, Tommaso Fornaciari, Dirk Hovy,
Silviu Paun, Barbara Plank, and Massimo Poesio.
2021. Learning from disagreement: A survey. Jour-
nal of Artificial Intelligence Research, 72:1385-1470.
Publisher Copyright: © 2021 AI Access Foundation.
All rights reserved.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallstrom, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference.

Tharindu Cyril Weerasooriya, Alexander Ororbia, Raj
Bhensadadia, Ashiqur KhudaBukhsh, and Christo-
pher Homan. 2023. Disagreement matters: Preserv-
ing label diversity by jointly modeling item and an-
notator label distributions with DisCo. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4679-4695, Toronto, Canada. Associa-
tion for Computational Linguistics.

Nicolas Zampieri, Carlos Ramisch, Irina Illina, and Do-
minique Fohr. 2022. Identification of multiword ex-
pressions in tweets for hate speech detection. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 202-210, Marseille,
France. European Language Resources Association.

A Data

We retrieved the HateWiC dataset upon request
which is available for research purposes, licensed
under CC BY-NC 4.0.

A.1 Sense-level annotation

The annotation task was conducted on Wiktionary
definitions from the HateWiC dataset, comprising
nearly 1,900 instances. Each instance was anno-
tated with two categorical labels: one for semantic
Domain and one for Person Aspect. The Domain
label captures the conceptual domain of the term,
provided that its part of speech is a noun; otherwise,
it is labeled as NotNoun. The Person Aspect label
identifies what aspect of a person the sense pertains
to, and is only applied if the term refers to a person;
otherwise, it is labeled as NotPerson.

The Domain taxonomy includes the following
categories: Person, Animal, Artefact, Body part,
Disease, Food, Plant, Supernatural being, Ambigu-
ous and Other. The Person Aspect taxonomy in-
cludes: Personality/behavior, Ethnicity/nationality,
Health/disability, Intelligence, Profession, Poli-
tics/ideology, Appearance, Gender/sexuality, Kin-
ship/social, Social class, Age and Unspecified.
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Full annotation guidelines, including definitions
of each category, are available in our GitHub repos-
itory. The annotation was carried out by two anno-
tators with expertise in linguistics: Annotator 1 (au-
thor) is a PhD student in Computational Linguistics
and Annotator 2 is a student in English and Com-
putational Linguistics. Inter-annotator agreement,
measured using Cohen’s kappa, was « = 0.832 for
the Domain annotations and x = 0.764 for the Per-
son Aspect annotations. Annotator 2’s annotations
served as validation, with Annotator 1 providing
the authoritative judgment when consensus was not
reached.

A.2 Grammatical Role extraction

We implemented a custom pipeline using the
spacy nlp library with the en_core_web_sm
model. To locate predefined (multiword)
terms within sentences, we used spacy’s
PhraseMatcher, configured to match on the
lemmatized form of the target terms (using spacy’s
built-in lemmatizer). If no exact lemmatized match
was found, approximate string matching was per-
formed using the rapidfuzz library, leveraging
the Levenshtein similarity ratio. Candidate noun
chunks in each sentence were compared to the
expected lemmatized term, and the highest-scoring
match above a fuzzy similarity threshold of 85 was
selected. For both exact and approximate matches,
the syntactic role of the term was determined by
extracting the dependency label (dep.) of the
syntactic head of the matched span. Processing
was parallelized using spacy’s nlp.pipe API
with a batch size of 50.

After extracting the dependency parsing tags
using SpaCy for the target terms in the texts, we
mapped them to a coarser categorization based
on guidelines provided in https://github.com/
clir/clearnlp-guidelines/blob/master/
md/specifications/dependency_labels.md.
The coarse-grained categories of Grammatical
Roles are: subject, object, nominal, adverbial,
preposition, coordination, root, compoundword,
complement and miscellaneous.

A.3 Annotator Hatefulness Ratio

We computed each annotator’s Hatefulness Ratio,
defined as the proportion of instances they labeled
as hateful across the dataset, i.e.:
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where H, denotes the Hatefulness Ratio of anno-
tator a, Néh) is the number of instances annotator
a labeled as hateful, and IV, is the total number of
instances annotated by a.

B Empirical Analysis

Inter-annotator agreement was computed using the
krippendorff package. Furthermore, we con-
ducted two types of statistical analyses. Feature as-
sociation testing was carried out using chi-squared
tests of independence via the scipy.stats
package. For handling numerical variables, we
applied quantile-based binning to create discrete
categories. This was achieved using the gcut func-
tion from the pandas library.

For the analysis visualized in Figure 4, ordinary
least squares (OLS) regression was applied using
the OLS method from the statsmodels.api
module. We included interaction and poly-
nomial terms using PolynomialFeatures
from sklearn.preprocessing and com-
puted the coefficient of determination (R?) with
sklearn.metrics.r2_score.

All data visualizations were produced with
matplotlib.pyplot and seaborn.

C Computational Modeling

All modeling experiments were implemented us-
ing the PyTorch framework. Text representa-
tions were obtained using a pre-trained transformer
model. More specifically, initialized with the
‘answerdotai/ModernBERT-base’ check-
point via the transformers library. Model
training was performed with the Adam optimizer
using a learning rate of 2 x 10~° and a batch size
of 32 for both training and evaluation. The train-
ing process was conducted over 3 epochs using
a fixed random seed of 56 to ensure reproducibil-
ity. Classification performance was evaluated us-
ing cross-entropy loss and accuracy computed with
sklearn.metrics. All experiments were exe-
cuted on a single NVIDIA RTX A6000 GPU using
CUDA acceleration.

D Additional Results

D.1 Main effect of Hatefulness Ratio

An additional illustration of the directions of fea-
ture effects is provided in Figure 4. The figure
plots individual annotators’ hateful labeling ten-
dency (Hatefulness Ratio) against their annotation
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agreement ratio with the majority, which allows
for more concrete interpretation of this measured
main effect as presented in Table 2. Unlike earlier
analyses, which relied on binned categories, this
figure presents the continuous relationship between
these variables. The relationship appears weakly
quadratic, with lower agreement visible at both
extremes of Hatefulness Ratio. As expected, anno-
tators who rarely or frequently label instances as
hateful tend to deviate more often from the majority
decision, while those with moderate Hatefulness
Ratios agree more frequently. Especially for these
annotators, incorporating individual labeling behav-
ior may improve models of annotation variation.
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Figure 4: Annotator’s hatefulness proportion (i.e. how
much of their annotations is hateful) against agreement
ratio (i.e. how much of their annotations is the majority
vote). Each datapoint represents one annotator.

D.2 Contingency tables

For each feature, the frequency counts that underlie
the statistical analyses in Table 2 are reported in
Tables 4 until 13.
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Person Aspect agree disagree
Age 77 16
Appearance 307 41
Ethnicity/nationality 480 80
Gender/sexuality 510 74
Health/disability 171 17
Intelligence 380 52
Kinship/social 164 14
NotPerson 4271 688
Personality/behavior 2183 473
Politics/ideology 772 185
Profession 228 43
Social class 49 10
Undecided 47 10
Unspecified 177 18

Table 4: Frequencies for individual annotations by
Agreement with the majority vote and Person Aspect

Domain agree disagree
Ambiguous 191 28
Animal 248 40
Artefact 579 50
Body part 212 46
Disease 213 43
Food 110 15
NotNoun 2111 377
Other 802 120
Person 6786 1107
Plant 82 12
Super natural being 33 7

Table 5: Frequencies for individual annotations by
Agreement with the majority vote and Domain

Context Length agree disagree
3-14 2667 341
14-23 2494 374
23-35 2478 512
35-176 2483 487

Table 6: Frequencies for individual annotations by
Agreement with the majority vote and Context Length

Grammatical Role agree disagree
adverbial 457 55
complement 415 73
compoundword 704 125
coordination 687 125
miscellaneous 101 18
nominal 1078 188
not_found 196 48
object 2897 486
preposition 1073 373
root 600 91
subject 1246 297

Table 7: Frequencies for individual annotations by
Agreement with the majority vote and Grammatical
Role



POS agree disagree
adjective 848 159
adverb 237 30
interjection 47 5
noun 7688 1421
phrase 3 0
proper noun 94 11 Annotator Id agree disagree
verb 1193 210
annotator_1 261 33
. C . . annotator_10 213 32
Table 8: Freguenmes 'for' individual annotations by annotator_13 181 32
Agreement with the majority vote and POS annotator_14 213 32
annotator_16 198 59
annotator_18 193 39
annotator_19 187 60
annotator_2 228 24
Hate Ratio agree disagree annotator_22 215 43
0.25-0.4 2632 430 annotator_23 217 27
annotator_24 220 26
0.4-0.48 2668 482
annotator_25 216 31
0.48-0.56 2577 382
0.56-0.7 2418 535 annotator_26 169 31
o annotator_28 219 29
annotator_30 217 29
Table 9: Frequencies for individual annotations by annotator_31 222 17
Agreement with the majority vote and Hate Ratio annotator 34 215 41
annotator_35 207 37
annotator_36 191 53
annotator_37 226 28
annotator_39 193 42
. . . annotator_4 206 51
Ethnicity agree disagree annofator 42 214 38
Asian 889 142 annotator_44 222 35
Black 3883 810 annotator_47 191 66
Mixed 639 110 annotator_5 225 27
Other 191 66 annotator_53 208 36
White 4511 675 annotator_55 164 78
annotator_56 198 18
Table 10: Frequencies for individual annotations by annotator_58 225 28
A ith th .. d Ethnici annotator_59 220 38
greement with the majority vote and Ethnicity annotator_6 189 39
annotator_60 222 33
annotator_62 234 23
annotator_63 186 67
annotator_64 209 44
Age Category agree disagree annotator_65 209 26
20-2 12 annotator_66 230 28
0-29 3657 >3 annotator_69 213 40
30-39 2790 960
40-49 210 20 annotator_71 213 32
annotator_74 214 44
50-59 208 40
60+ 213 32 annotator_75 203 50
annotator_77 215 36
. o ) annotator_78 208 49
Table 11: Frequencies for individual annotations by annotator_79 218 37
Agreement with the majority vote and Age Category annotator_8 216 35
annotator_83 204 45
annotator_85 236 21

Table 13:

Frequencies for individual annotations by

Gender agree  disagree Agreement with the majority vote and Annotator Id
Female 5410 1086
Male 4467 777
Prefer 217 27

Table 12: Frequencies for individual annotations by
Agreement with the majority vote and Gender
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