@inproceedings{jie-etal-2025-llms,
title = "{LLM}s Struggle with {NLI} for Perfect Aspect: A Cross-Linguistic Study in {C}hinese and {J}apanese",
author = "Jie, Lu and
Jin, Du and
Yanaka, Hitomi",
editor = "Evang, Kilian and
Kallmeyer, Laura and
Pogodalla, Sylvain",
booktitle = "Proceedings of the 16th International Conference on Computational Semantics",
month = sep,
year = "2025",
address = {D{\"u}sseldorf, Germany},
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwcs-main.8/",
pages = "89--97",
ISBN = "979-8-89176-316-6",
abstract = "Unlike English, which uses distinct forms (e.g., had, has, will have) to mark the perfect aspect across tenses, Chinese and Japanese lack sep- arate grammatical forms for tense within the perfect aspect, which complicates Natural Lan- guage Inference (NLI). Focusing on the per- fect aspect in these languages, we construct a linguistically motivated, template-based NLI dataset (1,350 pairs per language). Experi- ments reveal that even advanced LLMs strug- gle with temporal inference, particularly in de- tecting subtle tense and reference-time shifts. These findings highlight model limitations and underscore the need for cross-linguistic evalua- tion in temporal semantics. Our dataset is avail- able at https://github.com/Lujie2001/ CrossNLI."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jie-etal-2025-llms">
<titleInfo>
<title>LLMs Struggle with NLI for Perfect Aspect: A Cross-Linguistic Study in Chinese and Japanese</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Jie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Du</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitomi</namePart>
<namePart type="family">Yanaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Conference on Computational Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kilian</namePart>
<namePart type="family">Evang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Kallmeyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sylvain</namePart>
<namePart type="family">Pogodalla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Düsseldorf, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-316-6</identifier>
</relatedItem>
<abstract>Unlike English, which uses distinct forms (e.g., had, has, will have) to mark the perfect aspect across tenses, Chinese and Japanese lack sep- arate grammatical forms for tense within the perfect aspect, which complicates Natural Lan- guage Inference (NLI). Focusing on the per- fect aspect in these languages, we construct a linguistically motivated, template-based NLI dataset (1,350 pairs per language). Experi- ments reveal that even advanced LLMs strug- gle with temporal inference, particularly in de- tecting subtle tense and reference-time shifts. These findings highlight model limitations and underscore the need for cross-linguistic evalua- tion in temporal semantics. Our dataset is avail- able at https://github.com/Lujie2001/ CrossNLI.</abstract>
<identifier type="citekey">jie-etal-2025-llms</identifier>
<location>
<url>https://aclanthology.org/2025.iwcs-main.8/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>89</start>
<end>97</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLMs Struggle with NLI for Perfect Aspect: A Cross-Linguistic Study in Chinese and Japanese
%A Jie, Lu
%A Jin, Du
%A Yanaka, Hitomi
%Y Evang, Kilian
%Y Kallmeyer, Laura
%Y Pogodalla, Sylvain
%S Proceedings of the 16th International Conference on Computational Semantics
%D 2025
%8 September
%I Association for Computational Linguistics
%C Düsseldorf, Germany
%@ 979-8-89176-316-6
%F jie-etal-2025-llms
%X Unlike English, which uses distinct forms (e.g., had, has, will have) to mark the perfect aspect across tenses, Chinese and Japanese lack sep- arate grammatical forms for tense within the perfect aspect, which complicates Natural Lan- guage Inference (NLI). Focusing on the per- fect aspect in these languages, we construct a linguistically motivated, template-based NLI dataset (1,350 pairs per language). Experi- ments reveal that even advanced LLMs strug- gle with temporal inference, particularly in de- tecting subtle tense and reference-time shifts. These findings highlight model limitations and underscore the need for cross-linguistic evalua- tion in temporal semantics. Our dataset is avail- able at https://github.com/Lujie2001/ CrossNLI.
%U https://aclanthology.org/2025.iwcs-main.8/
%P 89-97
Markdown (Informal)
[LLMs Struggle with NLI for Perfect Aspect: A Cross-Linguistic Study in Chinese and Japanese](https://aclanthology.org/2025.iwcs-main.8/) (Jie et al., IWCS 2025)
ACL