@inproceedings{miyazawa-etal-2025-paralinguistic,
title = "Paralinguistic Attitude Recognition for Spoken Dialogue Systems",
author = "Miyazawa, Kouki and
Zhu, Zhi and
Sato, Yoshinao",
editor = "Torres, Maria Ines and
Matsuda, Yuki and
Callejas, Zoraida and
del Pozo, Arantza and
D'Haro, Luis Fernando",
booktitle = "Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology",
month = may,
year = "2025",
address = "Bilbao, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwsds-1.11/",
pages = "137--142",
ISBN = "979-8-89176-248-0",
abstract = "Although paralinguistic information is critical for human communication, most spoken dialogue systems ignore such information, hindering natural communication between humans and machines. This study addresses the recognition of paralinguistic attitudes in user speech. Specifically, we focus on four essential attitudes for generating an appropriate system response, namely agreement, disagreement, questions, and stalling. The proposed model can help a dialogue system better understand what the user is trying to convey. In our experiments, we trained and evaluated a model that classified paralinguistic attitudes on a reading-speech dataset without using linguistic information. The proposed model outperformed human perception. Furthermore, experimental results indicate that speech enhancement alleviates the degradation of model performance caused by background noise, whereas reverberation remains a challenge."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="miyazawa-etal-2025-paralinguistic">
<titleInfo>
<title>Paralinguistic Attitude Recognition for Spoken Dialogue Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kouki</namePart>
<namePart type="family">Miyazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshinao</namePart>
<namePart type="family">Sato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Ines</namePart>
<namePart type="family">Torres</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Matsuda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zoraida</namePart>
<namePart type="family">Callejas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arantza</namePart>
<namePart type="family">del Pozo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="given">Fernando</namePart>
<namePart type="family">D’Haro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bilbao, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-248-0</identifier>
</relatedItem>
<abstract>Although paralinguistic information is critical for human communication, most spoken dialogue systems ignore such information, hindering natural communication between humans and machines. This study addresses the recognition of paralinguistic attitudes in user speech. Specifically, we focus on four essential attitudes for generating an appropriate system response, namely agreement, disagreement, questions, and stalling. The proposed model can help a dialogue system better understand what the user is trying to convey. In our experiments, we trained and evaluated a model that classified paralinguistic attitudes on a reading-speech dataset without using linguistic information. The proposed model outperformed human perception. Furthermore, experimental results indicate that speech enhancement alleviates the degradation of model performance caused by background noise, whereas reverberation remains a challenge.</abstract>
<identifier type="citekey">miyazawa-etal-2025-paralinguistic</identifier>
<location>
<url>https://aclanthology.org/2025.iwsds-1.11/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>137</start>
<end>142</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Paralinguistic Attitude Recognition for Spoken Dialogue Systems
%A Miyazawa, Kouki
%A Zhu, Zhi
%A Sato, Yoshinao
%Y Torres, Maria Ines
%Y Matsuda, Yuki
%Y Callejas, Zoraida
%Y del Pozo, Arantza
%Y D’Haro, Luis Fernando
%S Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology
%D 2025
%8 May
%I Association for Computational Linguistics
%C Bilbao, Spain
%@ 979-8-89176-248-0
%F miyazawa-etal-2025-paralinguistic
%X Although paralinguistic information is critical for human communication, most spoken dialogue systems ignore such information, hindering natural communication between humans and machines. This study addresses the recognition of paralinguistic attitudes in user speech. Specifically, we focus on four essential attitudes for generating an appropriate system response, namely agreement, disagreement, questions, and stalling. The proposed model can help a dialogue system better understand what the user is trying to convey. In our experiments, we trained and evaluated a model that classified paralinguistic attitudes on a reading-speech dataset without using linguistic information. The proposed model outperformed human perception. Furthermore, experimental results indicate that speech enhancement alleviates the degradation of model performance caused by background noise, whereas reverberation remains a challenge.
%U https://aclanthology.org/2025.iwsds-1.11/
%P 137-142
Markdown (Informal)
[Paralinguistic Attitude Recognition for Spoken Dialogue Systems](https://aclanthology.org/2025.iwsds-1.11/) (Miyazawa et al., IWSDS 2025)
ACL