@inproceedings{wilcock-jokinen-2025-integrating,
title = "Integrating Conversational Entities and Dialogue Histories with Knowledge Graphs and Generative {AI}",
author = "Wilcock, Graham and
Jokinen, Kristiina",
editor = "Torres, Maria Ines and
Matsuda, Yuki and
Callejas, Zoraida and
del Pozo, Arantza and
D'Haro, Luis Fernando",
booktitle = "Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology",
month = may,
year = "2025",
address = "Bilbao, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwsds-1.31/",
pages = "290--298",
ISBN = "979-8-89176-248-0",
abstract = "Existing methods for storing dialogue history and for tracking mentioned entities in spoken dialogues usually handle these tasks separately. Recent advances in knowledge graphs and generative AI make it possible to integrate them in a framework with a uniform representation for dialogue management. This may help to build more natural and grounded dialogue models that can reduce misunderstanding and lead to more reliable dialogue-based interactions with AI agents. The paper describes ongoing work on this approach."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wilcock-jokinen-2025-integrating">
<titleInfo>
<title>Integrating Conversational Entities and Dialogue Histories with Knowledge Graphs and Generative AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Wilcock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristiina</namePart>
<namePart type="family">Jokinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Ines</namePart>
<namePart type="family">Torres</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Matsuda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zoraida</namePart>
<namePart type="family">Callejas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arantza</namePart>
<namePart type="family">del Pozo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="given">Fernando</namePart>
<namePart type="family">D’Haro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bilbao, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-248-0</identifier>
</relatedItem>
<abstract>Existing methods for storing dialogue history and for tracking mentioned entities in spoken dialogues usually handle these tasks separately. Recent advances in knowledge graphs and generative AI make it possible to integrate them in a framework with a uniform representation for dialogue management. This may help to build more natural and grounded dialogue models that can reduce misunderstanding and lead to more reliable dialogue-based interactions with AI agents. The paper describes ongoing work on this approach.</abstract>
<identifier type="citekey">wilcock-jokinen-2025-integrating</identifier>
<location>
<url>https://aclanthology.org/2025.iwsds-1.31/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>290</start>
<end>298</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrating Conversational Entities and Dialogue Histories with Knowledge Graphs and Generative AI
%A Wilcock, Graham
%A Jokinen, Kristiina
%Y Torres, Maria Ines
%Y Matsuda, Yuki
%Y Callejas, Zoraida
%Y del Pozo, Arantza
%Y D’Haro, Luis Fernando
%S Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology
%D 2025
%8 May
%I Association for Computational Linguistics
%C Bilbao, Spain
%@ 979-8-89176-248-0
%F wilcock-jokinen-2025-integrating
%X Existing methods for storing dialogue history and for tracking mentioned entities in spoken dialogues usually handle these tasks separately. Recent advances in knowledge graphs and generative AI make it possible to integrate them in a framework with a uniform representation for dialogue management. This may help to build more natural and grounded dialogue models that can reduce misunderstanding and lead to more reliable dialogue-based interactions with AI agents. The paper describes ongoing work on this approach.
%U https://aclanthology.org/2025.iwsds-1.31/
%P 290-298
Markdown (Informal)
[Integrating Conversational Entities and Dialogue Histories with Knowledge Graphs and Generative AI](https://aclanthology.org/2025.iwsds-1.31/) (Wilcock & Jokinen, IWSDS 2025)
ACL