@inproceedings{kubo-etal-2025-developing,
title = "Developing Classifiers for Affirmative and Negative User Responses with Limited Target Domain Data for Dialogue System Development Tools",
author = "Kubo, Yunosuke and
Yanagimoto, Ryo and
Nakano, Mikio and
Yamamoto, Kenta and
Takeda, Ryu and
Komatani, Kazunori",
editor = "Torres, Maria Ines and
Matsuda, Yuki and
Callejas, Zoraida and
del Pozo, Arantza and
D'Haro, Luis Fernando",
booktitle = "Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology",
month = may,
year = "2025",
address = "Bilbao, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwsds-1.33/",
pages = "309--317",
ISBN = "979-8-89176-248-0",
abstract = "We aim to develop a library for classifying affirmative and negative user responses, intended for integration into a dialogue system development toolkit. Such a library is expected to highly perform even with minimal annotated target domain data, addressing the practical challenge of preparing large datasets for each target domain. This short paper compares several approaches under conditions where little or no annotated data is available in the target domain. One approach involves fine-tuning a pre-trained BERT model, while the other utilizes a GPT API for zero-shot or few-shot learning. Since these approaches differ in execution speed, development effort, and execution costs, in addition to performance, the results serve as a basis for discussing an appropriate configuration suited to specific requirements. Additionally, we have released the training data and the fine-tuned BERT model for Japanese affirmative/negative classification."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kubo-etal-2025-developing">
<titleInfo>
<title>Developing Classifiers for Affirmative and Negative User Responses with Limited Target Domain Data for Dialogue System Development Tools</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunosuke</namePart>
<namePart type="family">Kubo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryo</namePart>
<namePart type="family">Yanagimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenta</namePart>
<namePart type="family">Yamamoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryu</namePart>
<namePart type="family">Takeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazunori</namePart>
<namePart type="family">Komatani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Ines</namePart>
<namePart type="family">Torres</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Matsuda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zoraida</namePart>
<namePart type="family">Callejas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arantza</namePart>
<namePart type="family">del Pozo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="given">Fernando</namePart>
<namePart type="family">D’Haro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bilbao, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-248-0</identifier>
</relatedItem>
<abstract>We aim to develop a library for classifying affirmative and negative user responses, intended for integration into a dialogue system development toolkit. Such a library is expected to highly perform even with minimal annotated target domain data, addressing the practical challenge of preparing large datasets for each target domain. This short paper compares several approaches under conditions where little or no annotated data is available in the target domain. One approach involves fine-tuning a pre-trained BERT model, while the other utilizes a GPT API for zero-shot or few-shot learning. Since these approaches differ in execution speed, development effort, and execution costs, in addition to performance, the results serve as a basis for discussing an appropriate configuration suited to specific requirements. Additionally, we have released the training data and the fine-tuned BERT model for Japanese affirmative/negative classification.</abstract>
<identifier type="citekey">kubo-etal-2025-developing</identifier>
<location>
<url>https://aclanthology.org/2025.iwsds-1.33/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>309</start>
<end>317</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Developing Classifiers for Affirmative and Negative User Responses with Limited Target Domain Data for Dialogue System Development Tools
%A Kubo, Yunosuke
%A Yanagimoto, Ryo
%A Nakano, Mikio
%A Yamamoto, Kenta
%A Takeda, Ryu
%A Komatani, Kazunori
%Y Torres, Maria Ines
%Y Matsuda, Yuki
%Y Callejas, Zoraida
%Y del Pozo, Arantza
%Y D’Haro, Luis Fernando
%S Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology
%D 2025
%8 May
%I Association for Computational Linguistics
%C Bilbao, Spain
%@ 979-8-89176-248-0
%F kubo-etal-2025-developing
%X We aim to develop a library for classifying affirmative and negative user responses, intended for integration into a dialogue system development toolkit. Such a library is expected to highly perform even with minimal annotated target domain data, addressing the practical challenge of preparing large datasets for each target domain. This short paper compares several approaches under conditions where little or no annotated data is available in the target domain. One approach involves fine-tuning a pre-trained BERT model, while the other utilizes a GPT API for zero-shot or few-shot learning. Since these approaches differ in execution speed, development effort, and execution costs, in addition to performance, the results serve as a basis for discussing an appropriate configuration suited to specific requirements. Additionally, we have released the training data and the fine-tuned BERT model for Japanese affirmative/negative classification.
%U https://aclanthology.org/2025.iwsds-1.33/
%P 309-317
Markdown (Informal)
[Developing Classifiers for Affirmative and Negative User Responses with Limited Target Domain Data for Dialogue System Development Tools](https://aclanthology.org/2025.iwsds-1.33/) (Kubo et al., IWSDS 2025)
ACL