@inproceedings{mehmood-abdul-rauf-2025-human,
title = "Human-Evaluated {U}rdu-{E}nglish Speech Corpus: Advancing Speech-to-Text for Low-Resource Languages",
author = "Mehmood, Humaira and
Abdul Rauf, Sadaf",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Anastasopoulos, Antonis",
booktitle = "Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwslt-1.12/",
doi = "10.18653/v1/2025.iwslt-1.12",
pages = "138--144",
ISBN = "979-8-89176-272-5",
abstract = "This paper presents our contribution to the IWSLT Low Resource Track 2: `Training and Evaluation Data Track'. We share a human-evaluated Urdu-English speech-to-text corpus based on Common Voice 13.0 Urdu speech corpus. We followed a three-tier validation scheme which involves an initial automatic translation with corrections from native reviewers, full review by evaluators followed by final validation from a bilingual expert ensuring reliable corpus for subsequent NLP tasks. Our contribution, CV-UrEnST corpus, enriches Urdu speech resources by contributing the first Urdu-English speech-to-text corpus. When evaluated with Whisper-medium, the corpus yielded a significant improvement to the vanilla model in terms of BLEU, chrF++, and COMET scores, demonstrating its effectiveness for speech translation tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mehmood-abdul-rauf-2025-human">
<titleInfo>
<title>Human-Evaluated Urdu-English Speech Corpus: Advancing Speech-to-Text for Low-Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Humaira</namePart>
<namePart type="family">Mehmood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadaf</namePart>
<namePart type="family">Abdul Rauf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonis</namePart>
<namePart type="family">Anastasopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-272-5</identifier>
</relatedItem>
<abstract>This paper presents our contribution to the IWSLT Low Resource Track 2: ‘Training and Evaluation Data Track’. We share a human-evaluated Urdu-English speech-to-text corpus based on Common Voice 13.0 Urdu speech corpus. We followed a three-tier validation scheme which involves an initial automatic translation with corrections from native reviewers, full review by evaluators followed by final validation from a bilingual expert ensuring reliable corpus for subsequent NLP tasks. Our contribution, CV-UrEnST corpus, enriches Urdu speech resources by contributing the first Urdu-English speech-to-text corpus. When evaluated with Whisper-medium, the corpus yielded a significant improvement to the vanilla model in terms of BLEU, chrF++, and COMET scores, demonstrating its effectiveness for speech translation tasks.</abstract>
<identifier type="citekey">mehmood-abdul-rauf-2025-human</identifier>
<identifier type="doi">10.18653/v1/2025.iwslt-1.12</identifier>
<location>
<url>https://aclanthology.org/2025.iwslt-1.12/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>138</start>
<end>144</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Human-Evaluated Urdu-English Speech Corpus: Advancing Speech-to-Text for Low-Resource Languages
%A Mehmood, Humaira
%A Abdul Rauf, Sadaf
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Anastasopoulos, Antonis
%S Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria (in-person and online)
%@ 979-8-89176-272-5
%F mehmood-abdul-rauf-2025-human
%X This paper presents our contribution to the IWSLT Low Resource Track 2: ‘Training and Evaluation Data Track’. We share a human-evaluated Urdu-English speech-to-text corpus based on Common Voice 13.0 Urdu speech corpus. We followed a three-tier validation scheme which involves an initial automatic translation with corrections from native reviewers, full review by evaluators followed by final validation from a bilingual expert ensuring reliable corpus for subsequent NLP tasks. Our contribution, CV-UrEnST corpus, enriches Urdu speech resources by contributing the first Urdu-English speech-to-text corpus. When evaluated with Whisper-medium, the corpus yielded a significant improvement to the vanilla model in terms of BLEU, chrF++, and COMET scores, demonstrating its effectiveness for speech translation tasks.
%R 10.18653/v1/2025.iwslt-1.12
%U https://aclanthology.org/2025.iwslt-1.12/
%U https://doi.org/10.18653/v1/2025.iwslt-1.12
%P 138-144
Markdown (Informal)
[Human-Evaluated Urdu-English Speech Corpus: Advancing Speech-to-Text for Low-Resource Languages](https://aclanthology.org/2025.iwslt-1.12/) (Mehmood & Abdul Rauf, IWSLT 2025)
ACL