@inproceedings{jon-etal-2025-aladan,
title = "{ALADAN} at {IWSLT}25 Low-resource {A}rabic Dialectal Speech Translation Task",
author = "Jon, Josef and
Ben Kheder, Waad and
Beyer, Andre and
Barras, Claude and
Gauvain, Jean-Luc",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Anastasopoulos, Antonis",
booktitle = "Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwslt-1.24/",
doi = "10.18653/v1/2025.iwslt-1.24",
pages = "252--259",
ISBN = "979-8-89176-272-5",
abstract = "We present our IWSLT 2025 submission for the low-resource track on North Levantine Arabic to English speech translation, building on our IWSLT 2024 efforts. We retain last year{'}s cascade ASR architecture that combines a TDNN-F model and a Zipformer for the ASR step. We upgrade the Zipformer to the Zipformer-Large variant (253 M parameters vs. 66 M) to capture richer acoustic representations. For the MT part, to further alleviate data sparsity, we created a crowd-sourced parallel corpus covering five major Arabic dialects (Tunisian, Levantine, Moroccan, Algerian, Egyptian) curated via rigorous qualification and filtering. We show that using crowd-sourced data is feasible in low-resource scenarios as we observe improved automatic evaluation metrics across all dialects. We also experimented with the dataset under a high-resource scenario, where we had access to a large, high-quality Levantine Arabic corpus from LDC. In this setting, adding the crowd-sourced data does not improve the scores on the official validation set anymore. Our final submission scores 20.0 BLEU on the official test set."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jon-etal-2025-aladan">
<titleInfo>
<title>ALADAN at IWSLT25 Low-resource Arabic Dialectal Speech Translation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Jon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Waad</namePart>
<namePart type="family">Ben Kheder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Beyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claude</namePart>
<namePart type="family">Barras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Luc</namePart>
<namePart type="family">Gauvain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonis</namePart>
<namePart type="family">Anastasopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-272-5</identifier>
</relatedItem>
<abstract>We present our IWSLT 2025 submission for the low-resource track on North Levantine Arabic to English speech translation, building on our IWSLT 2024 efforts. We retain last year’s cascade ASR architecture that combines a TDNN-F model and a Zipformer for the ASR step. We upgrade the Zipformer to the Zipformer-Large variant (253 M parameters vs. 66 M) to capture richer acoustic representations. For the MT part, to further alleviate data sparsity, we created a crowd-sourced parallel corpus covering five major Arabic dialects (Tunisian, Levantine, Moroccan, Algerian, Egyptian) curated via rigorous qualification and filtering. We show that using crowd-sourced data is feasible in low-resource scenarios as we observe improved automatic evaluation metrics across all dialects. We also experimented with the dataset under a high-resource scenario, where we had access to a large, high-quality Levantine Arabic corpus from LDC. In this setting, adding the crowd-sourced data does not improve the scores on the official validation set anymore. Our final submission scores 20.0 BLEU on the official test set.</abstract>
<identifier type="citekey">jon-etal-2025-aladan</identifier>
<identifier type="doi">10.18653/v1/2025.iwslt-1.24</identifier>
<location>
<url>https://aclanthology.org/2025.iwslt-1.24/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>252</start>
<end>259</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ALADAN at IWSLT25 Low-resource Arabic Dialectal Speech Translation Task
%A Jon, Josef
%A Ben Kheder, Waad
%A Beyer, Andre
%A Barras, Claude
%A Gauvain, Jean-Luc
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Anastasopoulos, Antonis
%S Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria (in-person and online)
%@ 979-8-89176-272-5
%F jon-etal-2025-aladan
%X We present our IWSLT 2025 submission for the low-resource track on North Levantine Arabic to English speech translation, building on our IWSLT 2024 efforts. We retain last year’s cascade ASR architecture that combines a TDNN-F model and a Zipformer for the ASR step. We upgrade the Zipformer to the Zipformer-Large variant (253 M parameters vs. 66 M) to capture richer acoustic representations. For the MT part, to further alleviate data sparsity, we created a crowd-sourced parallel corpus covering five major Arabic dialects (Tunisian, Levantine, Moroccan, Algerian, Egyptian) curated via rigorous qualification and filtering. We show that using crowd-sourced data is feasible in low-resource scenarios as we observe improved automatic evaluation metrics across all dialects. We also experimented with the dataset under a high-resource scenario, where we had access to a large, high-quality Levantine Arabic corpus from LDC. In this setting, adding the crowd-sourced data does not improve the scores on the official validation set anymore. Our final submission scores 20.0 BLEU on the official test set.
%R 10.18653/v1/2025.iwslt-1.24
%U https://aclanthology.org/2025.iwslt-1.24/
%U https://doi.org/10.18653/v1/2025.iwslt-1.24
%P 252-259
Markdown (Informal)
[ALADAN at IWSLT25 Low-resource Arabic Dialectal Speech Translation Task](https://aclanthology.org/2025.iwslt-1.24/) (Jon et al., IWSLT 2025)
ACL