@inproceedings{sarkar-etal-2025-effectively,
title = "Effectively combining Phi-4 and {NLLB} for Spoken Language Translation: {SPRING} Lab {IITM}{'}s submission to Low Resource Multilingual {I}ndic Track",
author = "Sarkar, Sankalpa and
Kashyap, Samriddhi and
Joglekar, Advait and
Umesh, Srinivasan",
editor = "Salesky, Elizabeth and
Federico, Marcello and
Anastasopoulos, Antonis",
booktitle = "Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)",
month = jul,
year = "2025",
address = "Vienna, Austria (in-person and online)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.iwslt-1.42/",
doi = "10.18653/v1/2025.iwslt-1.42",
pages = "399--404",
ISBN = "979-8-89176-272-5",
abstract = "This paper presents the methodologies implemented for Spoken Language Translation for the language pairs Hindi-English, Bengali-English and Tamil-English for the Low Resource Multilingual Indic Track of The International Conference on Spoken Language Translation (IWSLT) for 2025. We adopt a cascaded approach and use a fine-tuned Phi-4 multimodal instruct model for Automatic Speech Recognition(ASR) and a fine-tuned NLLB model for Machine Translation(MT)."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sarkar-etal-2025-effectively">
<titleInfo>
<title>Effectively combining Phi-4 and NLLB for Spoken Language Translation: SPRING Lab IITM’s submission to Low Resource Multilingual Indic Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sankalpa</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samriddhi</namePart>
<namePart type="family">Kashyap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Advait</namePart>
<namePart type="family">Joglekar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srinivasan</namePart>
<namePart type="family">Umesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Salesky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonis</namePart>
<namePart type="family">Anastasopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria (in-person and online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-272-5</identifier>
</relatedItem>
<abstract>This paper presents the methodologies implemented for Spoken Language Translation for the language pairs Hindi-English, Bengali-English and Tamil-English for the Low Resource Multilingual Indic Track of The International Conference on Spoken Language Translation (IWSLT) for 2025. We adopt a cascaded approach and use a fine-tuned Phi-4 multimodal instruct model for Automatic Speech Recognition(ASR) and a fine-tuned NLLB model for Machine Translation(MT).</abstract>
<identifier type="citekey">sarkar-etal-2025-effectively</identifier>
<identifier type="doi">10.18653/v1/2025.iwslt-1.42</identifier>
<location>
<url>https://aclanthology.org/2025.iwslt-1.42/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>399</start>
<end>404</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Effectively combining Phi-4 and NLLB for Spoken Language Translation: SPRING Lab IITM’s submission to Low Resource Multilingual Indic Track
%A Sarkar, Sankalpa
%A Kashyap, Samriddhi
%A Joglekar, Advait
%A Umesh, Srinivasan
%Y Salesky, Elizabeth
%Y Federico, Marcello
%Y Anastasopoulos, Antonis
%S Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria (in-person and online)
%@ 979-8-89176-272-5
%F sarkar-etal-2025-effectively
%X This paper presents the methodologies implemented for Spoken Language Translation for the language pairs Hindi-English, Bengali-English and Tamil-English for the Low Resource Multilingual Indic Track of The International Conference on Spoken Language Translation (IWSLT) for 2025. We adopt a cascaded approach and use a fine-tuned Phi-4 multimodal instruct model for Automatic Speech Recognition(ASR) and a fine-tuned NLLB model for Machine Translation(MT).
%R 10.18653/v1/2025.iwslt-1.42
%U https://aclanthology.org/2025.iwslt-1.42/
%U https://doi.org/10.18653/v1/2025.iwslt-1.42
%P 399-404
Markdown (Informal)
[Effectively combining Phi-4 and NLLB for Spoken Language Translation: SPRING Lab IITM’s submission to Low Resource Multilingual Indic Track](https://aclanthology.org/2025.iwslt-1.42/) (Sarkar et al., IWSLT 2025)
ACL