Summarization for Generative Relation Extraction in the Microbiome Domain

Oumaima El Khettari, Solen Quiniou, Samuel Chaffron


Abstract
We explore a generative relation extraction (RE) pipeline tailored to the study of interactions in the intestinal microbiome, a complex and low-resource biomedical domain. Our method leverages summarization with large language models (LLMs) to refine context before extracting relations via instruction-tuned generation. Preliminary results on a dedicated corpus show that summarization improves generative RE performance by reducing noise and guiding the model. However, BERT-based RE approaches still outperform generative models. This ongoing work demonstrates the potential of generative methods to support the study of specialized domains in low-resources setting.
Anthology ID:
2025.jeptalnrecital-mlpllm.6
Volume:
Actes de l'atelier Traitement du langage médical à l’époque des LLMs 2025 (MLP-LLM)
Month:
6
Year:
2025
Address:
Marseille, France
Editors:
Frédéric Bechet, Adrian-Gabriel Chifu, Karen Pinel-sauvagnat, Benoit Favre, Eliot Maes, Diana Nurbakova
Venue:
JEP/TALN/RECITAL
SIG:
Publisher:
ATALA \\& ARIA
Note:
Pages:
68–82
Language:
URL:
https://aclanthology.org/2025.jeptalnrecital-mlpllm.6/
DOI:
Bibkey:
Cite (ACL):
Oumaima El Khettari, Solen Quiniou, and Samuel Chaffron. 2025. Summarization for Generative Relation Extraction in the Microbiome Domain. In Actes de l'atelier Traitement du langage médical à l’époque des LLMs 2025 (MLP-LLM), pages 68–82, Marseille, France. ATALA \\& ARIA.
Cite (Informal):
Summarization for Generative Relation Extraction in the Microbiome Domain (El Khettari et al., JEP/TALN/RECITAL 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.jeptalnrecital-mlpllm.6.pdf