@inproceedings{k-etal-2025-goodmen,
title = "goodmen @ {L}-{MT} Shared Task: A Comparative Study of Neural Models for {E}nglish-{H}indi Legal Machine Translation",
author = "K, Deeraj S and
Suryanarayanan, Karthik and
Ingle, Yash and
Mishra, Pruthwik",
editor = "Modi, Ashutosh and
Ghosh, Saptarshi and
Ekbal, Asif and
Goyal, Pawan and
Jain, Sarika and
Joshi, Abhinav and
Mishra, Shivani and
Datta, Debtanu and
Paul, Shounak and
Singh, Kshetrimayum Boynao and
Kumar, Sandeep",
booktitle = "Proceedings of the 1st Workshop on NLP for Empowering Justice (JUST-NLP 2025)",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.justnlp-main.13/",
pages = "127--132",
ISBN = "979-8-89176-312-8",
abstract = "In a massively multilingual country like India,providing legal judgments in understandablenative languages is essential for equitable jus-tice to all. The Legal Machine Translation(L-MT) shared task focuses on translating le-gal content from English to Hindi which is themost spoken language in India. We present acomprehensive evaluation of neural machinetranslation models for English-Hindi legal doc-ument translation, developed as part of the L-MT shared task. We investigate four multi-lingual and Indic focused translation systems.Our approach emphasizes domain specific fine-tuning on legal corpus while preserving statu-tory structure, legal citations, and jurisdic-tional terminology. We fine-tune two legalfocused translation models, InLegalTrans andIndicTrans2 on the English-Hindi legal paral-lel corpus provided by the organizers wherethe use of any external data is constrained.The fine-tuned InLegalTrans model achievesthe highest BLEU score of 0.48. Compara-tive analysis reveals that domain adaptationthrough fine-tuning on legal corpora signifi-cantly enhances translation quality for special-ized legal texts. Human evaluation confirmssuperior coherence and judicial tone preserva-tion in InLegalTrans outputs. Our best per-forming model is ranked 3rd on the test data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="k-etal-2025-goodmen">
<titleInfo>
<title>goodmen @ L-MT Shared Task: A Comparative Study of Neural Models for English-Hindi Legal Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deeraj</namePart>
<namePart type="given">S</namePart>
<namePart type="family">K</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karthik</namePart>
<namePart type="family">Suryanarayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yash</namePart>
<namePart type="family">Ingle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pruthwik</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on NLP for Empowering Justice (JUST-NLP 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashutosh</namePart>
<namePart type="family">Modi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saptarshi</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawan</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarika</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shivani</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debtanu</namePart>
<namePart type="family">Datta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shounak</namePart>
<namePart type="family">Paul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kshetrimayum</namePart>
<namePart type="given">Boynao</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-312-8</identifier>
</relatedItem>
<abstract>In a massively multilingual country like India,providing legal judgments in understandablenative languages is essential for equitable jus-tice to all. The Legal Machine Translation(L-MT) shared task focuses on translating le-gal content from English to Hindi which is themost spoken language in India. We present acomprehensive evaluation of neural machinetranslation models for English-Hindi legal doc-ument translation, developed as part of the L-MT shared task. We investigate four multi-lingual and Indic focused translation systems.Our approach emphasizes domain specific fine-tuning on legal corpus while preserving statu-tory structure, legal citations, and jurisdic-tional terminology. We fine-tune two legalfocused translation models, InLegalTrans andIndicTrans2 on the English-Hindi legal paral-lel corpus provided by the organizers wherethe use of any external data is constrained.The fine-tuned InLegalTrans model achievesthe highest BLEU score of 0.48. Compara-tive analysis reveals that domain adaptationthrough fine-tuning on legal corpora signifi-cantly enhances translation quality for special-ized legal texts. Human evaluation confirmssuperior coherence and judicial tone preserva-tion in InLegalTrans outputs. Our best per-forming model is ranked 3rd on the test data.</abstract>
<identifier type="citekey">k-etal-2025-goodmen</identifier>
<location>
<url>https://aclanthology.org/2025.justnlp-main.13/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>127</start>
<end>132</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T goodmen @ L-MT Shared Task: A Comparative Study of Neural Models for English-Hindi Legal Machine Translation
%A K, Deeraj S.
%A Suryanarayanan, Karthik
%A Ingle, Yash
%A Mishra, Pruthwik
%Y Modi, Ashutosh
%Y Ghosh, Saptarshi
%Y Ekbal, Asif
%Y Goyal, Pawan
%Y Jain, Sarika
%Y Joshi, Abhinav
%Y Mishra, Shivani
%Y Datta, Debtanu
%Y Paul, Shounak
%Y Singh, Kshetrimayum Boynao
%Y Kumar, Sandeep
%S Proceedings of the 1st Workshop on NLP for Empowering Justice (JUST-NLP 2025)
%D 2025
%8 December
%I Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-312-8
%F k-etal-2025-goodmen
%X In a massively multilingual country like India,providing legal judgments in understandablenative languages is essential for equitable jus-tice to all. The Legal Machine Translation(L-MT) shared task focuses on translating le-gal content from English to Hindi which is themost spoken language in India. We present acomprehensive evaluation of neural machinetranslation models for English-Hindi legal doc-ument translation, developed as part of the L-MT shared task. We investigate four multi-lingual and Indic focused translation systems.Our approach emphasizes domain specific fine-tuning on legal corpus while preserving statu-tory structure, legal citations, and jurisdic-tional terminology. We fine-tune two legalfocused translation models, InLegalTrans andIndicTrans2 on the English-Hindi legal paral-lel corpus provided by the organizers wherethe use of any external data is constrained.The fine-tuned InLegalTrans model achievesthe highest BLEU score of 0.48. Compara-tive analysis reveals that domain adaptationthrough fine-tuning on legal corpora signifi-cantly enhances translation quality for special-ized legal texts. Human evaluation confirmssuperior coherence and judicial tone preserva-tion in InLegalTrans outputs. Our best per-forming model is ranked 3rd on the test data.
%U https://aclanthology.org/2025.justnlp-main.13/
%P 127-132
Markdown (Informal)
[goodmen @ L-MT Shared Task: A Comparative Study of Neural Models for English-Hindi Legal Machine Translation](https://aclanthology.org/2025.justnlp-main.13/) (K et al., JUSTNLP 2025)
ACL