@inproceedings{liu-quan-2025-retrieval,
title = "Retrieval of Temporal Event Sequences from Textual Descriptions",
author = "Liu, Zefang and
Quan, Yinzhu",
editor = "Shi, Weijia and
Yu, Wenhao and
Asai, Akari and
Jiang, Meng and
Durrett, Greg and
Hajishirzi, Hannaneh and
Zettlemoyer, Luke",
booktitle = "Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing",
month = may,
year = "2025",
address = "Albuquerque, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.knowledgenlp-1.3/",
doi = "10.18653/v1/2025.knowledgenlp-1.3",
pages = "37--49",
ISBN = "979-8-89176-229-9",
abstract = "Retrieving temporal event sequences from textual descriptions is crucial for applications such as analyzing e-commerce behavior, monitoring social media activities, and tracking criminal incidents. To advance this task, we introduce TESRBench, a comprehensive benchmark for temporal event sequence retrieval (TESR) from textual descriptions. TESRBench includes diverse real-world datasets with synthesized and reviewed textual descriptions, providing a strong foundation for evaluating retrieval performance and addressing challenges in this domain. Building on this benchmark, we propose TPP-Embedding, a novel model for embedding and retrieving event sequences. The model leverages the TPP-LLM framework, integrating large language models (LLMs) with temporal point processes (TPPs) to encode both event texts and times. By pooling representations and applying a contrastive loss, it unifies temporal dynamics and event semantics in a shared embedding space, aligning sequence-level embeddings of event sequences and their descriptions. TPP-Embedding demonstrates superior performance over baseline models across TESRBench datasets, establishing it as a powerful solution for the temporal event sequence retrieval task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-quan-2025-retrieval">
<titleInfo>
<title>Retrieval of Temporal Event Sequences from Textual Descriptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zefang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinzhu</namePart>
<namePart type="family">Quan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weijia</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenhao</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akari</namePart>
<namePart type="family">Asai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Durrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannaneh</namePart>
<namePart type="family">Hajishirzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-229-9</identifier>
</relatedItem>
<abstract>Retrieving temporal event sequences from textual descriptions is crucial for applications such as analyzing e-commerce behavior, monitoring social media activities, and tracking criminal incidents. To advance this task, we introduce TESRBench, a comprehensive benchmark for temporal event sequence retrieval (TESR) from textual descriptions. TESRBench includes diverse real-world datasets with synthesized and reviewed textual descriptions, providing a strong foundation for evaluating retrieval performance and addressing challenges in this domain. Building on this benchmark, we propose TPP-Embedding, a novel model for embedding and retrieving event sequences. The model leverages the TPP-LLM framework, integrating large language models (LLMs) with temporal point processes (TPPs) to encode both event texts and times. By pooling representations and applying a contrastive loss, it unifies temporal dynamics and event semantics in a shared embedding space, aligning sequence-level embeddings of event sequences and their descriptions. TPP-Embedding demonstrates superior performance over baseline models across TESRBench datasets, establishing it as a powerful solution for the temporal event sequence retrieval task.</abstract>
<identifier type="citekey">liu-quan-2025-retrieval</identifier>
<identifier type="doi">10.18653/v1/2025.knowledgenlp-1.3</identifier>
<location>
<url>https://aclanthology.org/2025.knowledgenlp-1.3/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>37</start>
<end>49</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Retrieval of Temporal Event Sequences from Textual Descriptions
%A Liu, Zefang
%A Quan, Yinzhu
%Y Shi, Weijia
%Y Yu, Wenhao
%Y Asai, Akari
%Y Jiang, Meng
%Y Durrett, Greg
%Y Hajishirzi, Hannaneh
%Y Zettlemoyer, Luke
%S Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico, USA
%@ 979-8-89176-229-9
%F liu-quan-2025-retrieval
%X Retrieving temporal event sequences from textual descriptions is crucial for applications such as analyzing e-commerce behavior, monitoring social media activities, and tracking criminal incidents. To advance this task, we introduce TESRBench, a comprehensive benchmark for temporal event sequence retrieval (TESR) from textual descriptions. TESRBench includes diverse real-world datasets with synthesized and reviewed textual descriptions, providing a strong foundation for evaluating retrieval performance and addressing challenges in this domain. Building on this benchmark, we propose TPP-Embedding, a novel model for embedding and retrieving event sequences. The model leverages the TPP-LLM framework, integrating large language models (LLMs) with temporal point processes (TPPs) to encode both event texts and times. By pooling representations and applying a contrastive loss, it unifies temporal dynamics and event semantics in a shared embedding space, aligning sequence-level embeddings of event sequences and their descriptions. TPP-Embedding demonstrates superior performance over baseline models across TESRBench datasets, establishing it as a powerful solution for the temporal event sequence retrieval task.
%R 10.18653/v1/2025.knowledgenlp-1.3
%U https://aclanthology.org/2025.knowledgenlp-1.3/
%U https://doi.org/10.18653/v1/2025.knowledgenlp-1.3
%P 37-49
Markdown (Informal)
[Retrieval of Temporal Event Sequences from Textual Descriptions](https://aclanthology.org/2025.knowledgenlp-1.3/) (Liu & Quan, KnowledgeNLP 2025)
ACL