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Abstract

This study compares two methods of topic de-
tection, Latent Dirichlet Allocation (LDA) and
Latent Semantic Analysis (LSA), by using it
in conjuction with the Topic Context Model
(TCM) on the task of keyword extraction. The
surprisal values that TCM outputs based on
LDA and LSA are compared, both, directly
and as inputs to a Recurrent Neural Network
(RNN). While in the direct comparison LSA
slightly outperforms LDA, LDA and LSA per-
form on a par when a Recurrent Neural Net-
work (RNN) is trained with surprisal values. In
general: semantic surprisal as input of an RNN
improves its performance.

1 Introduction

Keywords serve as classification features of texts
and play a crucial role in search engines and nat-
ural language understanding (Bharti and Babu,
2017; Karttunen, 1974; Stalnaker, 1977). Follow-
ing (Cano and Bojar, 2019) and (Tomokiyo and
Hurst, 2003), we follow the definition in (Kolbl
etal., 2022) and define keywords as nouns or noun
phrases, i.e., proper names that can be used as clas-
sification features of texts.

This study compares the performance for key-
word extraction (KE) of two topic models: La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
against Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990). These two topic models are ap-
plied within the framework of Information Theory
(Shannon, 1948) and Surprisal Theory (Tribus,
1961; Hale, 2001; Jaeger and Levy, 2007) by
which operationalisation is carried out using the
Topic Context Model (TCM) (Kolbl et al., 2020,
2021; Philipp et al., 2022). TCM has been empiri-
cally tested in studies of (Kolbl et al., 2020, 2021)
and (Philipp et al., 2022) and allows the calculation
of semantic surprisal, that is, the degree to which
a word is informative in a semantic context.
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Following (Kolbl et al., 2021; Philipp et al.,
2022), we assume that words with high surprisal
values are strong keyword candidates, as they
are both unexpected and semantically informative.
TCM derives surprisal from topic distributions
within a text, necessitating a topic model, LDA or
LSA, whose different underlying principles war-
rant a systematic comparison. The comparison of
LDA and LSA is therefore based on the criterion
of which of the two topic models the TCM uses
to generate the better keywords. Why is it inter-
esting to compare the two topic models? While
LDA is probabilistic and assumes a generative pro-
cess where words are drawn from topics, LSA is
deterministic and represents texts as points in a
high-dimensional topic space based on word cooc-
currences. Both methods have been widely used
in information retrieval, yet their respective advan-
tages for KE remain an open question. Our study
integrates a Recurrent Neural Network (RNN) with
TCM by using semantic surprisal as an input fea-
ture, allowing us to assess whether this additional
information improves keyword prediction while
maintaining interpretability. Our research ques-
tion is: which topic model enables TCM to esti-
mate surprisal more effectively for identifying key-
words? While prior studies suggest LDA often out-
performs LSA in text mining, the impact of these
models on KE within the TCM framework remains
unexplored. Since no general benchmark exists for
comparing topic models in this regard, we focus on
evaluating their KE performance. The structure of
the article is as follows: first, we introduce the con-
cept of surprisal and outline the theoretical foun-
dation of TCM. This is followed by sections on re-
lated work, data resources, and the implementation
of LDA and LSA in TCM. Finally, we present our
results, followed by a discussion and conclusion.
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2 Surprisal and TCM

Surprisal is equivalent to information (Hale, 2001;
Levy, 2008): the surprisal of a lingustic unit is es-
timated from the context of that unit and is thus
based on conditional probabilities. In psycholin-
guistics, the amount of surprisal of a linguisitc unit
and the mental effort to process it, are proportional
to each other.

Surprisal is interwoven with predictive language
processing: given for example a sentence-initial
word, a language processor intuitively builds up a
prediction what the next word will be (Venhuizen
et al., 2019) which is accompanied by a mental an-
ticipatory pre-activation of information (Heilbron,
2022). So, if the stimulus word is followed by an
expected word, both the surprisal and the process-
ing effort are small, if, in constrast, the stimulus
word is followed by an unexpected word, the sur-
prisal is high which requires more processing ef-
fort.

The idea of TCM is quite intuitive: the semantic
surprisal of a linguistic unit is estimated from the
distribution of topics in the environment of that
unit. To give a simple but intuitive example, if
the word electric engine appears in the context
of the topics chocolate and caries, the semantic
surprisal of this word is likely to be high and
should cause a high processing effort. TCM can
consider topics both in an non-local environment
of a target word (a corpus, for instance) and topics
in local environments (for instance, paragraphs,
documents or even sentences).

Why do we utilise surprisal, i.e, information
for KE? Our point of departure is Dretske’s
work (Dretske, 1981) on the flow of information
and language comprehension: Shannon informa-
tion is, according to Dretske, the ‘raw material’
necessary to convey meaning and to build knowl-
edge.

Empirical evidence for a link between Shan-
non information and meaning comes, in addition
to the above mentioned studies of Kolbl et al.
(2021) and Philipp et al. (2022), among others
from (Melamed, 1997) on semantic entropy, (Aji
and Kaimal, 2012; Ravindra et al., 2004) on au-
tomatic summarisation, and from (Rubino et al.,
2016; Bizzoni and Lapshinova-Koltunski, 2021)
on classification of translations.

How can surprisal be defined? The surprisal of
a linguistic unit w is proportional to the difficulty

or mental effort to process w (Levy, 2008): the
smaller the probability of a unit w given a context
is, the more surprising and the more informative
is w, and the greater the effort is that a language
processor needs to process w. This is corroborated
through empirical evidence (Brennan et al., 2016;
Hale et al., 2015) for lexical surprisal (see amongst
others (DeLong et al., 2005; Frank et al., 2015;
Smith and Levy, 2008; Szewczyk and Schriefers,
2018; Goodkind and Bicknell, 2018)), for syntac-
tic surprisal (Hagoort et al., 1993; Henderson et al.,
2016), and for semantic surprisal (Rabovsky et al.,
2018). The surprisal model (Hale, 2001; Levy,
2008) is given in Formula 1:

difficulty o< surprisal =

1
— 10g2 P(wl|w1 oo Wi, CONTEXT) ( )

In Formula 1, wy ...w;_1 as contexts of w can
be n-grams of tokens or n-grams of part-of-speech
tags. The former are the basis for the estimation
of lexical surprisal, the latter are the basis for the
estimation of grammatical surprisal. The variable
CONTEXT represents some extra-sentential con-
text, such as sentence structures for syntactic sur-
prisal, or topics, world knowledge, or representa-
tion of the discourse for semantic surprisal.

3 Related work

Even though there has been no research comparing
LSA and LDA in terms of KE, there are compara-
tive studies from theoretical and empirical points
of view. Some of these studies (Griffiths et al.,
2007; Niraula et al., 2013) point out the incapabil-
ity of LSA to grasp polysemy since words are rep-
resented as fixed Euclidean points. On the other
hand, LDA is based on a generative probabilistic
model which follows the Dirichlet multinomial dis-
tribution and thus can handle multiple meanings
of a word. Based on these distinctive character-
istics, (Griffiths et al., 2007) assert that LDA out-
performs LSA in predicting associations between
words. The most recent experimental research has
indeed confirmed the superiority of LDA over LSA,
for instance in classifying e-books (Mohammed
and Al-augby, 2020; Kalepalli et al., 2020) and on
detecting polysemy (Griffiths et al., 2007; Niraula
et al., 2013).

Despite these drawbacks of LSA, the empiri-
cal study by Bergamaschi and Po (2015) shows
that LSA achieves a better performance on movie



recommendation than LDA. Papadimitriou et al.
(2000) propose three conditions under which LSA,
referred to as Latent Semantic Indexing (LSI), is
capable of capturing the underlying semantics of
the corpus, summarised by Anaya (2011, 16-17),
i.e., (i) the documents should have an identical or
at least very similar writing style, (ii) each doc-
ument should have a clearly recognisable ‘main’
topic, and (iii) words should have only a high prob-
ability in one topic but a low probability in other
topics.

With regard to the theoretical framework of our
study, so far, information theory is almost com-
pletely disregarded for KE. To the best of our
knowledge, only Herrera and Pury (2008) present
a model based on information theory. Upon de-
tecting keywords, they assume that highly relevant
words should be concentrated in some portions of
the text. Their model incorporates the distribution
of occurrences of a word in the corpus. However,
the calculation of entropy is not based on the se-
mantic model, as in our study by LDA / LSA within
the TCM.

With regard to the technique, the application
of neural networks to KE achieves successful
outcomes, and is state of the art, see for in-
stance (Zhang et al., 2020) who propose the
deep neural network model ‘target centred LSTM
model’, which is trained as a binary classifier to
determine whether a given word is a keyword or
not, and (Grootendorst, 2020) who implemented a
BERT-based model capable of KE.

4 Data and Methods
4.1 Text Corpus

As our data resource, we exploit the Heise' cor-
pus (Philipp et al., 2022). The corpus comprises
100, 673 texts on a variety of topics, often related
to technology and telecommunication, with a total
of 38,633 keywords. Each text is prefixed with a
set of keywords that we use as a reference set. We
assume that thematic diversity will be an advantage
for the use of TCM since this means a high vari-
ety of topics and is expected to optimise the per-
formance of the model. An additional advantage
of the Heise corpus is that it includes numerous
short texts as local environments for the TCM, this
is, small environments of target words. In order to
avoid memory limits in the case of LDA we use the
same subset as Philipp et al. (2022) which consists

'https://heise.de

of randomly drawn samples with a total of 30, 284
texts with 239, 065 words (lemmas, determined by
spaCy?), and 7, 347 keywords. A randomly chosen
sample of 10% of the texts is used as our validation
set, the remaining 90% is the training set.

Each text is preceded by a headline, and for
15,454 of the texts also a short summary, i.e., a
lead is given, with a average length of one or two
sentences.

We treat multiword expressions of named en-
tities as single words and possible keyword can-
didates. In Philipp et al. (2022), the named-
entity recogniser (NER) from spaCy classified 122
named entities as specifications of place (LOC),
288 as mixed specifications (MISC), 23 as speci-
fications of organisations (ORG), 40 as specifica-
tions of persons (PER), and 6775 were not assigned
to any of these categories.

The performance of the NER on the training is
given in Philipp et al. (2022, Table 1). The re-
sults disclose that the accuracy positively corre-
lates with complexity of the NER models, but all
NER models have extremely weak precision and
F1 values but better recall. The most complex NER
model achieves only a precision of 0.1259. That is
to say, only 12.6% of the predicted keywords are
real keywords, and the model predicts a large set
of keywords whereby the hit rate is relatively low.
Recall is 0.3785, which says that almost 38 percent
of the keywords are recognised.

4.2 Baselines

NER (Kolbl et al., 2021; Philipp et al., 2022), Tex-
tRank (Mihalcea and Tarau, 2004) and RNNs with-
out surprisal as input are used as baselines. All
named entities that NER identifies, are regarded as
keywords. A detailed description of the RNNs can
be found in Section 4.4.

TextRank (TR) (Mihalcea and Tarau, 2004)
is a modification of Google’s PageRank-
algorithm (Brin and Page, 1998) and performs i.a.
summarisation and KE®. TR models an entire text
as a graph, whereby neighbourhood in the graph
and a high weight of the link indicate semantic
relatedness.

4.3 Topic Context Model

TCM is an extended topic model: it calculates se-
mantic surprisal based on the output of genuine
topic models.

“https://spacy.io
*https://github.com/jnphilipp/TextRank
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When LDA is employed, TCM calculates sur-
prisal based on probabilities of w in a topic
weighted by the probability of that topic in a doc-
ument. In LSA, only the log-likelihood of w in
the main topic in a document is considered. LDA
learns the relationship between words and topics
in its training phase, while LSA establishes a re-
lationship between documents through the cosine
distance.

Figure 1 illustrates TCM, with either LDA or
LSA as topic model for the topic distribution.

4.3.1 How LSA works in TCM

LSA reduces the dimension of a text using Singu-
lar Value Decomposition (SVD). Steinberger et al.
(2004) pointed out that SVD [...] reflects a break-
down of the original document into r linearly-
independent base vectors or concepts.”

Formula 2 says that, as a first step, the term by
sentence-matrix A is decomposed into the three
matrices U, ¥ and VT. The columns in U
represent the concepts in the Steinberger’s quote
above (Steinberger et al., 2004):

A=UxvT 2

The entries of matrix A are the weighted fre-
quencies of terms (rows) in sentences (columns).
The number of diagonal elements in X is the num-
ber of singular vectors representing the semantic
dimensions of a text. Following Steinberger et al.
(2004), the leftmost column vector in matrix U can
be interpreted as the main topic of a document.

Given a finite set M of documents, we can relate
the texts semantically by embedding their respec-
tive topic vectors into a vector space. (Steinberger
etal., 2004) recommend cosine similarity as a mea-
sure of similarity of two documents. Since U is uni-
tary, the length of each topic vector is 1, reducing
the cosine to a simple scalar product. For a docu-
ment d with topic vector vy, we compute the likeli-
hood P(w,) of a word wy to appear in d by check-
ing its appearance in other texts, see Formula 3.

> §(wg, s) (1 4 cos{vs,vg))
P(wg) = *

3
> 1+ cos(vs, vg) ©)
seM

Here, 6(wyg, s) is 1 if wg appears in s or 0 if it
does not. The corresponding surprisal is then given
in Formula 4.

surprisal(wg) = —logy P(wg|d) 4)

We use a scoring function for the RNN, see For-
mula 5, in order for surprisal values to be between
—1 and 1, which we refer to as surprisal.

—

sal B
surprisal(wq) = tanh surprisal(wa) = pta

\/034-6

In Formula 5, p4 is the mean of the surprisal
for all the words w in a document d, and o3 is the
variance. To ensure that the standard deviation is
not zero we add € = le™”

4.3.2 How LDA works in TCM

LDA is a statistical topic model that tries through a
generative process to detect and identify the topics
that appear in a document and which words belong
to them (Blei et al., 2003). LDA is based on the
Dirichlet Distribution with two priors, i.e., hyper-
paramaters: n, the distribution of words in a topic
and «, the topic distribution in a document d. The
values of these parameters can be chosen deliber-
ately. The only observable phenomena are words
w in d, everything else are hidden variables. In
d, a word wg,, occurs, given the non-observable
assignment of a topic for the n-th word w in d,
i.e., zqn, and given the complete set of k topics
B1.x where (3 is a distribution of words in a topic
k. There is a conditional probability of z4, given
04, i.e., the distribution of topics in document d.
The values for 8 and # are determined in an iter-
ative process. Let us illustrate this in a fictitious
example: The distribution in an (abstract) topic,
which is interpreted as ‘food’, could look as follows
(the probability that a word with its meaning is as-
signed to a topic is given after the comma in each
case): topic ‘food’: chocolate 0.02, butter 0.019,
soup 0.021, bicycle 0.00001. ‘Bicycle’ is thus as-
signed to the topic ‘food’ with some much lower
probability than ‘chocolate’, ‘butter’ and ‘soup’.

We define the context as a topic calculated by
LDA and calculate the average surprisal surprisal
for each word, see Formula 6, where n is the num-
ber of topics of the LDA. We fixed this at 1000 top-
ics. The calculation is given in Formula 6.

&)

surprisal(wg) = —— ZlogQ (wqlt;)  (6)

The term P(wq|t;) is the probability of a word
wq given a topic t; in a document d, which is cal-
culated according to Formula 7. c¢4(w) is the fre-
is
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Figure 1: Illustration of the Topic Context Model.

the total number of words in the document d, WT'
is the normalised word topic distribution of the
LDA*, and P(t;|d) is probability of a topic ¢ and a
document d given by the LDA.

cd(wq)
|d|

P(wglt;) = Wy, Ptild)  (7)
For LDA, we use the same scoring function
as for LSA (see Formula 5) except using the

surprisal instead of surprisal values.

4.4 Recurrent Neural Network

The RNNs in our study carry out the binary clas-
sification whether a word in the input sequence is
a keyword or not (see Zhang et al. (2016), Kolbl
et al. (2020),Kolbl et al. (2021) and Philipp et al.
(2022)).

The architectures of the RNNSs in this study is
identical to the ones in Philipp et al. (2022). That
is to say, for each of the input parts of the texts,
namely headline, lead, and text, the RNN has a
separate in- and output. In between, one or two
bidirectional Gated Recurrent Units (GRU) for pro-
cessing are located. We use identical embeddings
and bidirectional GRU(s) for all input types. The
architecture of the RNNs is given in Figure 2 that il-
lustrates also the classification-process: when a re-
spective input-word is classified as a keyword, the
output is 1, while the output O means that the re-
spective word is not classified as a keyword.

Five different input types can be distinguished:
(i) text only, (ii) text and information of words
sur/pﬁsal from the topic model LDA, (iii) text and
sumal from the topic model LSA, (iv) — (v)

*model . components_ /
model.components_.sum(axis=1) [:, np.newaxis] as
suggested by https://scikit-learn.org/stable/
modules/generated/sklearn.decomposition.
LatentDirichletAllocation.html

only the su@al from the TCM model, either
from LDA or LSA, respectably. That is to say, the
latter two models (iv) — (v) are exclusively trained
on the surprisal of words and not on any text. In
model (i), each word is represented as a vector with
128 entries from an embedding layer. In the mod-
els (ii) — (v), the sur/p@al values from LDA /LSA
in (ii) — (v) are used directly, and in (ii) and (iii) the
original embedding vector is concatenated with the
su@al value, resulting in a vector of size 129.

Following in Philipp et al. (2022), for each of
the five input types, three configurations with one
bidirectional GRU of sizes (256,512,1024) and
two configurations with two bidirectional GRUs of
sizes (256, 512) were trained.

For the input types (i), (ii) and (iv) we report
the results from Philipp et al. (2022). We trained,
in total, 10 different RNNs ((iii), (v)), each for 15
epochs.

im;besonders;vom;coronavirus;betroffen;. . .

—0.979;—-0.426;—0.302;—0.483;0.131;. . .

headline lead
’ Bidirectional GRU ‘
’ headline ‘ ’ lead ‘ ] text \
0;0;0;1;0;. ..

Figure 2: Schematic of the RNN architectures with text
and surprisal as input. (Philipp et al., 2022)
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5 Results

Table 1 gives the results of the baseline models on
the validation set from (Philipp et al., 2022), and
Table 2 displays the results of the recent study that
employs LSA in addition to LDA as part of the
TCM.

As in (Philipp et al., 2022), accuracy 1 to 5,
precision, recall, and Fl-measure are reported,
whereby accuracy n means how often at least n
keywords are correctly predicted. The F1 score is
a measure of the accuracy of a test and is calcu-
lated as the harmonic mean of precision and recall.
The baselines are NER, TR and RNNs without
surprisal as input. For LDA and LSA, the eval-
uation covers the most informative words of a text,
either absolute, e.g., LD A5 means the top 5 most
informative words, or as percentage, e.g., LD A1gq,
means that the 10% most informative words were
selected as keyword candidates. With TR we have
the levels T'Rs and T'Ry, respectively.

Regarding the RNN models, the index refers to,
firstly, the input type, e.g., 7' if it is trained on texts
and LD A/ LS A means that sur/p%al from LDA
/ LSA is part of the input, and secondly, it refers to
the layer-sizes of the GRU, i.e., 256, 512, and 1024
respectively.

When no RNN is employed, i.e., with ‘pure’
TCM, LSA outperforms LDA in direct comparison,
in all measures and all rankings. This means that
the words with a high Su%al from LSA are
more likely keywords than words from the LDA.
Further we observe, that neither the top 5 nor the
top 10 informative words are better than the 10%
most informative words which means that for both
LDA and LSA, the most informative words are
not necessarily good keywords. In general, the
‘pure’ TCM performs poorly, and is outperformed
by other models.

Training the RNNs on both text and su@al
yields the overall best performances in recall, al-
though NER achieves relatively high recall as
well. For a4 and a5 the model RNNT 1,pa 512
has the overall best results, for recall it is the
model RNN7 1,54 1024, and for F1 the model
RNN7pAa2x256 outperforms the remaining mod-
els. However, the differences are small: when
training with the surprisal from LDA, the im-
provement of F1 is about 0.01. The baseline RNN,
i.e., trained only on texts, achieves a paper-thin
lead in precision of all models - closely followed
by the neural networks with sur/p@al of LDA and

LSA.

The model RNN7 1pA 1024 performs surpris-
ingly poorly, and we attribute this outcome to a
slower learning process compared to the other mod-
els. The RNNs trained solely on su@sal from
LDA perform in general better than the baseline
model ‘TR top 5° but not better than ‘TR top 10°.
This indicates that the su@sal alone performs
on the same level as the baselines. In general, we
observe that the performance of RNN is improved
when the input is supplemented by the input of sur-
prisal values. There is no correlation between per-
formance and the complexity of the network.

Apart from the al - a3 values, where the base-
lines NER (al) and TextRank (a2 and a3) achieve
the highest values, the RNNs yield the best results
in F1 values, which can still be improved by us-
ing sur/p;%al as input. NER is the winner in al-
accuracy which is probably due to the fact, that
most keywords are names. This also explains the
pure performes for the NER, i.e., the NER is not a
very reliable in recognizing the names in the data,
which is due to the nature of the data, see (Kolbl
et al., 2021; Philipp et al., 2022; Kolbl et al., 2022)

The accuracy values can be interpreted as fol-
lows: for about 88% of texts, at least one keyword
is a named entity, as far as the spaCy model is con-
cerned. All RNNs trained on su@al have at
some point the same accuracy values, showing that
here is their limit, i.e., the RNNs can only learn
a certain amount of the pure sur/p%al. TRyo
achieves high accuracy values al — a3 and the sec-
ond highest recall of all models, but only weak pre-
cision and a low F1 value. This means that the
model fails to detect a satisfactory percentage of
keywords from an existing set of keywords. Tex-
tRank with the five highest ranked words (T Rs)
achieves slightly higher F1 and precision values
than when ten hightest ranked words are consid-
ered (T'Rq).

6 Discussion and conclusion

Acceptable results for KE are obtained when
su@al is the input of a recurrent neural net-
work whereby it does almost not matter whether
LDA and LSA is employed in the TCM.

So, the first finding of our study is that semantic
surprisal improves the performance of RNN, and
LDA and LSA are on a par here. In order to recog-
nise the relevance of a word for a text, it is therefore
in general beneficial to know the semantic context



Model al a2 a3 ad a5 Precision Recall F1
Baselines

NER 0.8771 0.4528 0.1896 0.0918 0.0558 0.1249  0.3808 0.1784
TRj5 0.7781 0.3633 0.1998 0.1724 0.1707 0.2161 0.4341 0.2725
TR1g 0.8606 0.5112 0.3078 0.2550 0.2398 0.1371 0.5351 0.2094
RNN7 256 0.6902 0.3636 0.2919 0.2847 0.2840  0.5363 0.4669 0.4638
RNN7 512 0.6989 0.3795 0.3012 0.2936 0.2926  0.5544  0.4772 0.4773
RNNT 1024 0.6929 0.3702 0.2926 0.2853 0.2847 0.5562  0.4697 0.4759
RNN72x256 0.6764 03557 0.2734 0.2678 0.2672  0.5416  0.4531 0.4622
RNN7 2512 0.6635 03504 02751 0.2698 0.2692  0.5615  0.4471 0.4660

Table 1: Precision, recall, F1-measure, and the accuracy-values (a1l — ab) of the baseline models. The best results
in for the baselines are underlined and the overall best results in both tables are bold faced. For the RNN models,
the subscript first refer to the input and second the model used. 7" means that the RNN was trained on text, and
LDA LSA refers to what su@al was part of the input. The numbers refer to the size of the GRU and the
number of GRUs. For LDA / LS A/ TextRank the subscript refers either to the highest ranked words used, or the

percentage of words used.

of this word.

Second, in a direct comparison without a neu-
ral network, LSA outperforms LDA. This result is
somewhat surprising because, as we mentioned in
the introduction, the performance of LDA in practi-
cal applications is considered a bit better than that
of LSA. We explain this finding that obviously at
least one of the three conditions for a good perfor-
mance of LSA (Papadimitriou et al., 2000; Anaya,
2011) (see 3), i.e., similar writing style ands a
clearly recognisable ‘main’ topic in the documents
and high probability in one topic but a low proba-
bility in other, have been met in our corpus. But it
is hard to say which of the three conditions applies.

Besides the better performance of LSA in KE
in direct comparison, an additional argument in
favour of LSA is that it is ‘nicer’ and more econom-
ical in its mathematical computability than LDA.
With all due caution, this study provides prelim-
inary evidence that the proposed linear model of
topics as vectors in LSA works successfully as part
of TCM for KE.

Among the baselines, TR’s performance is very
strong in accuracy and recall but the model has
shortcomings. The poor performance in precision
and the resulting low F1 value can, in our opin-
ion, be explained by TR’s well known weakness
that semantic contexts are not considered (Yuetal.,
2016).

In general, we observe that the results of our
study are mediocre. Why is that the case? The
explanation is, as we presume, that semantic sur-
prisal from TCM is derived only from a singular

type of context, i.e., topics. Consequently the aim
of future research is to build a more complex con-
text model which outputs combined lexical, syntac-
tic and semantic surprisal, and, in addition, situa-
tional and knowledge of the world-surprisal (Ven-
huizen et al., 2019). While the situational and
knowledge of the world-surprisal is possibly hard
to derive, estimating lexical, syntactic and seman-
tic surprisal should be a realistic goal. We expect
that a more complex context model will output bet-
ter keywords. In addition, it could be tested how
LDA and LSA work together in TCM. The conclu-
sions of our study on KE are:

(i) surprisal computed by TCM, improves the
performance of RNN, (ii) LSA is slightly superior
to LDA, (iii) semantic surprisal alone as features
of words provides mediocre results yet, (iv) TCM
with both with LDA and LSA is a promising tool
for keyword extraction when it enriches the ‘knowl-
edge’ of a neural network.

Limitations

(i) Theoretical: Our work deals only peripherally
with mathematical aspects of the comparison
between LDA and LSA. We briefly explain
the basics of both techniques based on the fun-
damental distinction that LDA is probabilistic
and LSA deterministic.

(ii) Methodological: We have limited ourselves
to keyword extraction as an empirical testing
procedure of our research question. Other
techniques for checking the quality of the ke-



Model al a2 a3 a4 a5 Precision Recall F1
Topic Context Models with LDA and LSA

LDAj 0.0281 0.0043 0.0036 0.0033 0.0033 0.0059  0.0126 0.0076
LDAg 0.0888 0.0185 0.0135 0.0135 0.0132  0.0096  0.0427 0.0152
LDA g9, 0.1219 0.0228 0.0162 0.0162 0.0159 0.0107  0.0552 0.0173
LDAsgq, 0.2665 0.0816 0.0532 0.0479 0.0476  0.0128  0.1371 0.0228
LDA3gq, 0.3653 0.1374 0.0869 0.0766 0.0753 0.0124  0.2018 0.0230
LSA; 0.0535 0.0149 0.0132 0.0129 0.0129  0.0113 0.0290 0.0154
LSAqg 0.1433  0.0469 0.0370 0.0363 0.0363 0.0160  0.0799 0.0256
LSA19q 0.1780 0.0528 0.0376 0.0367 0.0363 0.0171 0.0948 0.0279
LSAsqq, 0.4326 0.2057 0.1526 0.1410 0.1404  0.0228  0.2725 0.0411
LSAz09 0.6380 0.3785 0.2949 0.2711 0.2682  0.0246  0.4465 0.0459
Recurrent Neural Networks with LDA

RNNy,p A 256 0.3362 0.1159 0.1143 0.1143 0.1143 0.3249  0.2038 0.2355
RNNT .04 256 0.7028 0.3768 0.3015 0.2933 0.2929  0.5571 0.4785 0.4798
RNN7zpA 512 0.2645 0.0908 0.0888 0.0888 0.0888  0.2518  0.1605 0.1845

RNN7T 1.pAa 512 0.7028 0.3768 0.3048 0.2959 0.2952 0.5576  0.4792 0.4812
RNN/p 4. 1024 0.3445 0.1159 0.1133 0.1133 0.1133 03245  0.2069 0.2371
RNN7 1.pa1024  0.6767 0.3639 0.2860 0.2807 0.2801 0.5423  0.4602 0.4645
RNN/pa.2x256 0.3554 0.1219 0.1189 0.1189 0.1189  0.3349  0.2144 0.2455
RNN7 .pa2x256  0.6988 0.3791 0.3025 0.2932 0.2926  0.5586  0.4775 0.4817
RNN/pAa2xs12 0.3326 0.1169 0.1139 0.1139 0.1139  0.2299  0.3094 0.2031
RNN7 1pAa2xs12  0.6929 0.3686 0.2933 0.2853 0.2847  0.5527  0.4696 0.4751

Recurrent Neural Networks with LSA

RNN754 256 0.2503 0.0803 0.0803 0.0803 0.0803 0.25 0.1491 0.1767
RNN7 154,256 0.6823 0.3613 0.2870 0.2810 0.2804  0.5461  0.4620 0.4680
RNN 54 512 0.2345 0.0836 0.0822 0.0822 0.0822  0.2282  0.1446 0.1669

RNN7 154 512 0.6879 0.3771 0.2966 0.2906 0.2900 0.5510  0.4708 0.4745
RNN7 54,1024 0.4128 0.1404 0.1328 0.1328 0.1328  0.2774 03722 0.2472
RNNT 1.54,1024 0.6952 0.3748 0.2962 0.2900 0.2890 0.4739  0.5483 0.4731
RNN54,2%256 0.2490 0.0925 0.0908 0.0908 0.0908 0.2389  0.1552 0.1768
RNN7 1542x256 0.6863 0.3616 0.2906 0.2837 0.2834  0.5591 0.4638 0.4721
RNN_754,2x512 0.1156 0.0423 0.0423 0.0423 0.0423  0.1151  0.0723 0.0842
RNN7 1.542x512  0.7034 0.3699 0.2949 0.2867 0.2863  0.5313  0.4756 0.4671

Table 2: Precision, recall, F1-measure, and the accuracy-values (al — a5) of TCMs and RNNs. The best results in
the respective blocks are underlined and the overall best esults in both tables are bold faced. For the RNN models,
the subscript first refer to the input and second the model used. 7" means that the RNN was trained on text, and

LDA | LSA refers to what surprisal was part of the input. The numbers refer to the size of the GRU and the
number of GRUs. For LDA / LS A/ TextRank the supscript refers either to the highest ranked words used, or the
percentage of words used.

words are conceivable such as experiments scope of this work.
with raters or experiments on language gener-
ation based on the keywords by LLM, as are
other techniques for answering our research
question from text mining and information ex-
traction such as summarisation. These are
tasks of future work and were beyond the

(iii) Empirical: Our study is based on a single cor-
pus that tends to contain texts on the topic
of ‘computer technology’. In future, corpora
with mixed thematic orientations would be de-
sirable in order to avoid bias.
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