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Abstract

A diverse range of large language models
(LLMs), e.g., ChatGPT, and visual question an-
swering (VQA) models, e.g., BLIP, have been
developed for solving textual and visual ques-
tion answering tasks. However, fine-tuning
these models is either difficult, as it requires ac-
cess via APIs, rendering them as black-boxes,
or costly due to the need to tune a large number
of parameters. To address this, we introduce
InfoSel, a data-efficient ensemble method that
learns to dynamically pick the winner from ex-
isting black-box models for predictions on both
textual and multimodal visual question answer-
ing tasks. Unlike traditional ensemble models,
InfoSel does not rely on prediction probabil-
ities or confidences, which typically are not
available in black-box models. Experimental
results on four datasets demonstrate that our
approach achieves an absolute increase of up
to +5% in the F1-score compared to standalone
LLMs using only 1K training instances.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable proficiency across a wide range of
tasks (Laskar et al., 2023; Yuan et al., 2024). For ex-
ample, ChatGPT finds extensive utilization in daily
textual question answering (TQA) tasks, rendering
substantial convenience to a myriad of users (Ope-
nAI, 2024). Furthermore, for visual question an-
swering (VQA) tasks, VQA models have exhib-
ited exceptional versatility, primarily due to their
capability to comprehend both visual and textual
context (Gong et al., 2023).

However, recent work (Mao et al., 2024; Laskar
et al., 2023) indicates that LLMs, such as Chat-
GPT, fall short of state-of-the-art performance on
task-specific datasets such as question answering.
Similarly, VQA models (Li et al., 2022, 2021b;
Bao et al., 2022) face challenges when applied to
specialized datasets due to the idiosyncrasies in the

content, format or structure of these datasets (Arora
et al., 2018). Unfortunately, fine-tuning LLMs
(e.g., LLaMA 70b model (Touvron et al., 2023)) on
task-specific data requires a large number of GPU
hours. Alternatively, training smaller, task-specific
models from scratch requires a large amount of
labeled data to achieve comparable performance
(Tajbakhsh et al., 2016). Furthermore, fine-tuning
LLMs through proprietary APIs with self-uploaded
labeled training data not only requires LLM ex-
perts’ knowledge but is also expensive.1 These
fine-tuned models further remain black-box, with
restricted access to details regarding architectural
intricacies, model weights, training data, and even
prediction confidences.

In order to address these computational and ac-
cessibility challenges associated with fine-tuning,
we introduce a scalable ensemble method called
InfoSel (Informed Selection), which trains a small-
sized selection model with just a few labeled task-
specific samples. Unlike current ensemble methods
(e.g., MetaQA (Puerto et al., 2023)), which depend
on the confidence scores and thus can not be ap-
plied to black-box models like GPT3.5 text-davinci,
InfoSel does not rely on such information and offers
black-box ensembling. While traditional ensemble
methods such as OLA (Woods et al., 1997) and
PageRank (Brin and Page, 2012) are not adapted to
task-specific particularities (e.g., different features)
of different datasets. InfoSel incorporates task-
specific optimization by considering variations of
both the inputs and predicted answers from the en-
sembled LLMs/VQA models (base models), which
allows it to be easily adapted to different datasets.
Finally, our method efficiently deals with multi-
modal inputs. We showcase the adaptability and
effectiveness of the method by testing it on textual
and visual question answering tasks. Concretely,

1https://platform.openai.com/docs/guides/
fine-tuning/
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our results exhibit superior performance on multi-
modal VQA inputs compared to the state-of-the-art
PairRanker (Jiang et al., 2023) ensemble method
that is designed to work exclusively with text. Ta-
ble 1 compares our method with alternatives.

Pair- OLA/
FT Ranker PageRank InfoSel

Task-specific ✓ ✓ ✗ ✓
Data-efficient ✗ ✗ ✓ ✓

Black-box ✗ ✓ ✓ ✓
Multimodal ✗ ✗ ✓ ✓
Ensemble ✗ ✓ ✓ ✓

Table 1: Our method (InfoSel) aims to optimize task-
specific ensembling of black-box models, where con-
fidences and parameters can not be accessed. We use
only a small portion of training data (data-efficient). We
optimize the performance of the ensemble instead of
standalone fine-tuned (FT) models. Finally, our method
is multimodal, and applicable to VQA task.

At its core, InfoSel (see Figure 1) trains a small-
size ensemble model to dynamically identify the
most accurate base model (i.e., LLM or VQA
model) for a given input, which we refer to as the
winner. This is achieved by designing a meta-level
classification task considering all the base mod-
els as labels for every input. We designed and
implemented two ensemble architectures for tex-
tual and visual QA tasks. Our first proposed ar-
chitecture, InfoSel-TT, uses a textual transformer
(TT, 110M parameters) (Devlin et al., 2019) as the
backbone to generate a textual representation of
the question with the predicted answers by base
models. Although InfoSel-TT is straightforward
and effective, it cannot handle multimodal data.
To address this, we propose a second architecture
named InfoSel-MT, where we incorporate a mul-
timodal transformer (MT, 115M parameters) (Li
et al., 2020) to generate fused contextual repre-
sentations of a multimodal input (image, question,
and the predicted answers). These fused representa-
tions are used to train a dense layer for selecting the
winning model. The challenge with this approach is
the lack of exposure of the base models to new (un-
seen) labels appearing in the task-specific datasets.
To address this, we fine-tune TT and MT models
(FT-TT and FT-MT) separately to learn these new
labels. The predictions of these fine-tuned models
are fused with the output from InfoSel using a sec-
ond, separately trained InfoSel∗ ensemble model.
We experiment with and without InfoSel∗, as this
component is considered optional when InfoSel is
already performing well.

To demonstrate the effectiveness of our method
with limited resources. We selects three less costly
LLMs (GPT-3.5-turbo (OpenAI, 2023), LLaMA-2-
70b-chat (Touvron et al., 2023) and GPT3.5 text-
davinci-003) and three local VQA models (AL-
BEF (Li et al., 2021a), BLIP (Li et al., 2022) and
VLMo (Bao et al., 2022)). These models are used
as base models to provide answers for textual and
visual QA ensemble tasks respectively. For show-
ing the data efficiency of the proposed architec-
tures, we train them on a subsample of training
data from public benchmark datasets and test on
the corresponding full test data. Experimental re-
sults showcase improvements in the performance
up to +5% on TQA tasks and +31% on VQA tasks
when compared to the ensembled base models.

In summary, our contributions are: (1) InfoSel,
a novel data-efficient approach to ensemble black-
box models without relying on access to model
architecture, weights or prediction confidences for
optimizing on task-specific datasets; (2) Assess-
ment of the performance on textual and multi-
modal visual QA tasks, demonstrating gains of
up to +5% with InfoSel and up to +31% with
InfoSel∗compared to ensembled base models on
four benchmark datasets; (3) A detailed analysis
of data efficiency, demonstrating that InfoSel sur-
passes the performance of the leading base models
with as few as 10 training samples. 2

2 Related Work

Domain Adaptation. These methods aim to im-
prove the performance of a model on a task-specific
domain by leveraging knowledge from other do-
mains (Zhou et al., 2022). Methods such as
fine-tuning (Yosinski et al., 2014), feature adap-
tation (Long et al., 2015) and data augmenta-
tion (Choi et al., 2019) aim to improve the per-
formance of standalone models and thus typically
require large amounts of labeled training data or
access to the model architecture and weights.

Ensemble Learning. Ensemble methods gener-
ate and combine multiple learners (ML models)
to address a particular ML task (Sagi and Rokach,
2018). Classical ensembling approaches like boost-
ing (Schapire, 2013) and bagging (Breiman, 1996)
are designed to train and combine a large number
of individual models and are thus computationally

2Code and data are available at: https://github.com/
Yuuxii/Black-box-QA-Ensemling.
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Figure 1: Architecture of our InfoSel (step 1⃝) , FT (step 2⃝) and InfoSel∗ (step 3⃝) models. M l
∗ and Mv

∗ refer to
black-box LLMs and VQA base models respectively, which are not trainable. The number of these base models
is flexible and is not restricted to 3 as in the figure. The models on the left are trained for the TQA tasks, while
the models on the right are trained for the VQA tasks. All our models are trained independently. Note that FT and
InfoSel∗ (step 2⃝ and 3⃝) are optional and are best suited for datasets that contain a high percentage of labels that
the base models have not been exposed to.

expensive. Stacking (Wolpert, 1992) uses a meta-
learner to integrate the probabilities of the predic-
tions from base models for the final output. Re-
cent methods proposed by Jitkrittum et al. (2024);
Puerto et al. (2023) require either the knowledge
of confidence score or the base model’s training
data. Other methods train their base models to
avoid dataset biases (Han et al., 2021), while Xu
et al. (2020) aim to learn joint feature embeddings
across different domains. However, these meth-
ods require at least one piece of knowledge that
the black-box models can not provide, including
base models’ confidence scores or training data
(not available for ChatGPT).

Multimodal Black-box Models Ensembling.
Dynamic classifier selection methods, most notably
OLA (Woods et al., 1997), can be applied to black-
box models by ranking the best-performed local
classifier dynamically in the nearest region of the
input. Alternatively, majority voting (Chan and
van der Schaar, 2022) and PageRank (Brin and
Page, 2012) weight the predictions by their internal
agreements. Yet, these methods are not designed
for task-specific optimization. Pair-Ranker (Jiang
et al., 2023) is task-specific but not designed for
handling multimodal inputs. To address this, In-
foSel proposes a transformer-based setup that uti-

lizes multimodal information in the black-box set-
ting to enhance task-specific performance.

3 InfoSel Ensemble Training

Figure 1 illustrates the proposed InfoSel and
InfoSel∗ frameworks to ensemble LLMs for TQA
tasks (left), and VQA models for VQA tasks (right).
We differentiate TQA components using LLMs and
VQA components using VQA models by denoting
them with superscripts l and v respectively. Simi-
larly, to distinguish models used in TQA and VQA
tasks, we add suffixes “-TT” and “-MT” respec-
tively. For example, the InfoSel-MT model, refers
to the InfoSel for the VQA task.

3.1 InfoSel Training for TQA

Before training InfoSel, we first perform the data
preparation (top of Figure 1) for both training and
testing. Next, we train InfoSel (step 1⃝). Training
FT models (step 2⃝) and InfoSel∗ (step 3⃝) is op-
tional, but can significantly improve performance
for datasets that contain a high percentage of labels
that the base models have not been exposed to.

Data Preparation. First, we randomly sam-
ple N content-question pairs {(Ci, Qi)}Ni=1 and
the corresponding ground truth answers {Ãl

i}Ni=1

from various benchmark datasets (refer to Section
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4.1). Next, we build prompts Pi following spe-
cific prompt rules Pi = R(Ci, Qi) (refer to Sec-
tion 4.1). Using these prompts instead of plain
(Ci, Qi) text improves the LLMs’ answer quality
(Bach et al., 2022). We select K (K=3) black-
box LLMs {M l

j}Kj=1 to generate answers on the N
prompts. The answer generated by M l

j on Pi is de-
noted as Al

ij (Al
ij = M l

j(Pi)). Thereby, K LLMs
provide N ∗K candidate answers for N prompts.
We calculate the word-level F1-scores (Rajpurkar
et al., 2018) of all the candidate answers {Al

ij}Kj=1

respectively for Pi. These F1-scores serve as target
Y l
i to optimize the ensemble model:

Y l
i = {F1(Al

ij , Ã
l
i)}Kj=1, Y

l
i ∈ RK .

The input for the ensemble training consists of
K texts. Each text is formed by concatenating Pi

with each individual answer predicted by a base
model j, Al

ij . More formally, the input X l
i is:

X l
i = {[Pi, A

l
ij ]}Kj=1, |X l

i | = K.

The inputs {X l
i}Ni=1 and the corresponding target

labels {Y l
i }Ni=1 are used for ensemble training.

InfoSel-TT. We use a textual BERT-base (De-
vlin et al., 2019) transformer f t

θ, (θ denote trainable
model parameters) as the backbone of InfoSel-TT.
To achieve faster convergence, we load the pre-
trained weights of bert-base-uncased model. The
input vector X l

i is passed to f t
θ to generate K sen-

tence representations for each value in X l
i respec-

tively. Thus, the sentence representation Rt
ij of

[Pi, A
l
ij ] from f t

θ is:

Rt
ij = f t

θ([Pi, A
l
ij ]), R

t
ij ∈ R768.

A dense layer (fd
θ ) is followed to classify

{Rt
ij}Kj=1, and is trained to match the target label

Y l
i using binary cross entropy loss LBCE . More

formally, the training objective of InfoSel-TT is:

min
θ

N∑

i=1

LBCE(f
d
θ ([f

t
θ([Pi, A

l
ij ])]

K
j=1), Y

l
i ).

Finally, the trained InfoSel-TT model (M it) se-
lects the winner model M l

i,win from {M l
j}Kj=1 for

the input Pi with the highest probability score
based on the selection logits produced by fd

θ .
Al

i,win denotes the answer provided by M l
i,win.

FT-TT. Using only the InfoSel-TT model may
limit performance due to the base models’ lack of

exposure to new (unseen) labels in the task-specific
datasets. To address this, we fine-tune a separate
lightweight TT model directly on the TQA datasets
to learn these new labels. Specifically, the training
objective is to locate the start and end token posi-
tion of the answer from the context Ci. We provide
the token positions of Ãl

i as the target label, such
that the model is optimized to classify each token
in two classes (start/end token). This fine-tuned
textual transformer model is referred to as FT-TT
(Mft).3 We denote the answer predicted by Mft

on Pi as Aft
i .

InfoSel∗-TT. This model performs a further en-
semble training of FT-TT and InfoSel-TT models
with the same training scheme and labeled train-
ing data as InfoSel-TT. We anticipate that the thus
trained InfoSel∗-TT model on the output of InfoSel-
TT and the label finetuned FT-TT, will improve the
ability to handle labels unseen by base models. As
a result, we expect an improvement in the over-
all task-specific performance. The winner model
selected by InfoSel∗-TT belong to {M it,Mft}.

3.2 InfoSel Training for VQA
Data Preparation. Given N image-question
pairs {(Ii, Qi)}Ni=1 from dev data of VQA bench-
mark datasets, we use K (K=3) pre-trained
VQA models to predict answers Av

ij as follows:
{Mv

j ((Ii, Qi)) → Av
ij}Kj=1. We denote the ground

truth answer for image-question pair (Ii, Qi) as Ãv
i .

Target labels Y v
i for ensemble training are given

by the accuracy scores of the K candidate answers
evaluated on Ãv

i :

Y v
i = {Acc(Av

ij , Ã
v
i )}Kj=1, Y v

i ∈ RK .

The concatenation of question (Qi) with each of
the candidate answers (Av

ij) obtained from the base
models and the corresponding image (Ii) serves the
input to our ensemble model InfoSel-MT:

Xv
i = {(Ii, [Qi, A

v
ij ])}Kj=1, |Xv

i | = K.

InfoSel-MT. A Multimodal Transformer (MT,
fm
θ ) (Li et al., 2021b) is employed as the backbone

for InfoSel-MT. Specifically, we first generate vi-
sual features Vi of Ii using a pre-trained R-CNN
model (Mr) (Anderson et al., 2018). Vi is com-
posed of a vector of the image region features vi

3The training scheme is adapted from https://
huggingface.co/learn/nlp-course/chapter7/7?fw=pt
with the additional option to allow the model to return empty
answers for unanswerable questions.
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and the detected tags ( i.e., object labels of the im-
age) (Li et al., 2021b). The concatenated question-
answer pair [Qi, A

v
ij ] and Vi is then passed together

to MT (fm
θ ) to generate a fused contextual repre-

sentation Rm
ij :

Vi = (vi, tags) = M r(Ii),

Rm
ij = fm

θ (Vi, [Qi, A
v
ij ]), R

m
ij ∈ R768.

Finally, we use an additional dense layer (fd
θ ) to

map Rm
ij to the target label Y v

i . The training is
optimized using binary cross-entropy loss:

min
θ

N∑

i=1

LBCE(f
d
θ ([f

m
θ (Vi, [Qi, A

v
ij ])]

K
j=1), Y

v
i ).

We denote M im to the trained InfoSel-MT
model, M im selects the winner model Mv

i,win from
{Mv

j }Kj=1 to predict answer Av
i,win for the image-

question pair (Ii, Qi) based on the selection logits
produced by fd

θ .
FT-MT. Similar to FT-TT, FT-MT composed of

a trainable MT and a Multilayer Perceptron (MLP)
is fine-tuned with the same training data as InfoSel-
MT. Differently, FT-MT solves a multi-label clas-
sification task by classifying the fused contextual
representation of Qi (instead of [Qi, A

v
ij ] like In-

foSel-MT) and Vi to a predefined answer list (la-
bels). This list contains frequent answers from the
training data. As a result, a trained FT-MT model
(Mfm) can learn to predict the unseen (new) labels
(answers) contained in the task-specific datasets,
but not in the pre-training data of the base models.
Afm

i denotes the answer predicted by Mfm over
(Ii, Qi). The training scheme is adapted from (Li
et al., 2021b).

InfoSel∗-MT. Similar to InfoSel∗-TT, InfoSel∗-
MT model ensembles the FT-MT and InfoSel-MT
models using the same training scheme as in In-
foSel-MT. The winner model selected by InfoSel∗-
MT belong to {M im,Mfm}.

4 Experiments and Analysis

We first introduce the setup of our experiments,
followed by detailed results and analysis.

4.1 Datasets
To demonstrate the data efficiency of our approach,
we subsampled four publicly available benchmark
datasets. This resulted in four Mini datasets, the
train set amounts to ∼1% of the TQA datasets’

Mini Dataset Source Dataset Num. %
Mini-SDv2 train SQuAD-V2 train 800 0.56
Mini-SDv2 val SQuAD-V2 train 200 0.14
Mini-SDv2 test SQuAD-V2 dev 11,873 8.39
Mini-NQ train NQ-Open train 800 0.87
Mini-NQ val NQ-Open train 200 0.22
Mini-NQ test NQ-Open dev 3,499 3.83
Mini-GQA train GQA dev 105,640 9.80
Mini-GQA val GQA dev 26,422 2.45
Mini-GQA test GQA test 12,578 1.17
Mini-Viz train VizWiz dev 3,456 10.5
Mini-Viz val VizWiz dev 863 2.63
Mini-Viz test VizWiz test 8,000 24.39

Table 2: Details of the Mini datasets used for InfoSel en-
semble training and testing. % stands for the percentage
of the original full dataset.

and ∼10% of the VQA datasets’ original full size.
Table 2 presents the details of these datasets.

TQA datasets. We generated two Mini datasets,
Mini-SDv2 and Mini-NQ, consisting of 1,000 ran-
domly sampled instances from SQuAD-V2 (Ra-
jpurkar et al., 2018) and NQ-Open (Kwiatkowski
et al., 2019) train splits, respectively. Details of the
datasets are shown in Appendix A.1.

VQA datasets. Our results (Figure 2) reveal
that VQA tasks demand a greater quantity of train-
ing samples compared to TQA tasks. Therefore,
we constructed Mini-GQA and Mini-Viz datasets
using a larger fraction (the dev data) of GQA (Hud-
son and Manning, 2019) and VizWiz (Gurari et al.,
2018) datasets compared to TQA datasets.

4.2 Base Models

We experiment with ensembling GPT-3.5-turbo-
0613 (ChatGPT), LLaMA-2-70b-chat (hereinafter
referred to as “LLaMA”) (Touvron et al., 2023) and
GPT-3.5 text-davinci-003 (hereinafter referred to
as “Davinci”) to generate answers for TQA tasks.4

To tackle VQA tasks, we employ three local VQA
models (VLMo (Bao et al., 2022), ALBEF (Li et al.,
2021a) and BLIP (Li et al., 2022)), which are pre-
trained on VQA v2 dataset (Antol et al., 2015).
Note that we use less costly and publicly accessible
VQA models to save experimental costs.

Evaluation Metric. LLMs tend to generate con-
textual answers that lead to lower scores in the
exact match (EM). Therefore, we mainly use the
(per-answer) token-level F1-score from the official
evaluation guidance of the datasets as the main
evaluation metric for TQA performance. Our re-

4GPT3.5 text-davinci-003 is deprecated after our exper-
iments, but this does not influence the effectiveness of our
method.
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Textual Question Answering Visual Question Answering

Model Mini-SDv2 Mini-NQ Model Mini-GQA Mini-Viz
EM F1 EM F1 Acc Acc

LLaMA-2-70b-chat 0.24 11.34 28.07 46.47 ALBEF 50.60 21.28
text-davinci-003 52.37 58.44 52.24 69.44 BLIP 48.08 20.80
ChatGPT 30.89 44.95 57.53 71.54 VLMo 48.21 19.77
Oracle 58.61 66.20 64.02 79.21 Oracle 65.03 -
MV 26.95 37.75 46.07 62.43 MV 51.05 21.47
WV 52.37 58.44 57.53 71.54 WV 52.10 19.43
PageRank 25.39 37.31 51.76 68.53 PageRank 51.47 21.66
OLA 47.90 55.59 54.70 70.05 OLA 48.65 20.32
PairRanker 57.28 63.33 57.96 72.21 PairRanker 52.05 22.42
(0-shot) LLM-Blender 4.90 21.20 1.03 25.06 (0-shot) LLM-Blender 0.0 0.0
FT-TT 46.80 47.68 36.52 40.60 FT-MT 50.48 51.76
InfoSel-TT (ours) 57.74 63.63 58.45 73.37 InfoSel-MT (ours) 55.16 23.16
InfoSel∗-TT (ours) 49.09 49.85 48.16 53.70 InfoSel∗-MT (ours) 52.54 52.91

Table 3: Test performance comparison on textual and visual QA datasets. The overall best results are highlighted in
bold, and the best results of base models are underlined. The test data of Mini-Viz is not publicly accessible and
thus the Oracle cannot be reported.

sults differ from the ones reported in (Laskar et al.,
2023; Kocoń et al., 2023) because we do not apply
any post-processing, human evaluation or output
constraints for the generated answers.

Finally, we use Oracle to represent the maxi-
mum capability of a combination of base models.
Specifically, for each input, the Oracle selects the
answer with the highest agreement to the ground
truth among all the answers predicted by the base
models. Thus, the Oracle score represents the per-
formance of an ideal ensemble model.

4.3 Baselines

We use Majority Voting (MV), Weighted Vot-
ing (WV) (Schick and Schütze, 2021), PageR-
ank (Brin and Page, 2012), Overall Local Accu-
racy (OLA) (Woods et al., 1997), PairRanker and
LLM-Blender (Jiang et al., 2023) as baselines.

Majority Voting (MV). MV makes a collective
decision by considering the predicted answers as
a group of individuals voting on a particular in-
put. The answer that receives the most votes is the
winner; otherwise, ties are broken randomly.
Weighted Voting (WV). We adopt a strategy simi-
lar to Schick and Schütze (2021), where the model
accuracy of the train data before training is used as
the weight for average weighting. In our case, we
use the corresponding accuracy of the base models
as the weight for voting.

PageRank (Brin and Page, 2012). We adapt
PageRank as a baseline to determine the most suit-
able answer in a graph where all the answers to one
question are connected by their BLEURT (Sellam
et al., 2020) similarities.

Overall Local Accuracy (OLA) (Woods et al.,
1997). Following (Cruz et al., 2018), we use the
k-nearest neighbors algorithm to divide the input
space (representations of prompts for TQA, repre-
sentations of images and questions for VQA) of
training data into 7 regions. The overall local ac-
curacy of each base model in different regions is
computed as its region competence. The model
presenting the highest competence level is selected
to predict the label of inputs that fall in the same
region.

PairRanker and LLM-Blender (Jiang et al.,
2023). The PairRanker model is trained to rank a
pair of candidate predictions from two LLMs using
multiple optimizing objectives (i.e., EM, F1). The
logits of the LLMs produced by the trained model
are sorted to get the top k (we use k=2) predictions
among multiple pairwise comparison results for
a GENFUSER model (Flan-T5-XL (Chung et al.,
2022), 3B parameters) to generate the final fused
prediction. LLM-Blender is a composite of the Pair-
Ranker and the GENFUSER model. We train Pair-
Ranker using the same textual transformer back-
bone as InfoSel for comparison, and we use 0-shot
LLM-Blender models which have been trained over
massive data (105k), including TQA data to test on
our data.

4.4 Performance Comparison

In this section, we analyze the performance of our
method, taking into account its distinctive charac-
teristics as described in Table 1. Concretely, we
focus on comparing our models in terms of task-
specific performance, data efficiency, and multi-
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Figure 2: Test performance of InfoSel compared to baselines over increasing size of training data for TQA (left two
figures) and VQA (right two figures). Best base represented the best performance of the base models.

modal capabilities.

4.4.1 Task-specific Performance
Table 3 demonstrates the task-specific performance
of InfoSel, base models and ensemble baselines
on textual and visual QA datasets. For TQA, we
observe that LLaMA underperforms other base
models. Upon closer examination, we found that
LLaMA generates longer explanation text which,
although often accurate, decreases the EM and F1-
score values. Conversely, a more consistent perfor-
mance of base models is observed for VQA. Mini-
Viz contains 28% of unanswerable questions, and
the label “unanswerable” has never been seen by
base models. Consequently, this lack of exposure
leads to significantly lower performance scores.

Baseline ensemble methods such as WV, PageR-
ank and OLA achieve only marginal improve-
ments compared to base models (≤+1.5%) on VQA
datasets. These results highlight the limitations
of these methods when applied to task-specific
datasets (see also Table 1). PairRanker underper-
formed InfoSel even though it has been trained with
the same data. 0-shot LLM-Blender tends to gener-
ate longer answers compared to PairRanker which
leads to a low score especially when evaluated in
the exact-match settings (EM, ACC).

For TQA tasks, InfoSel-TT achieves 5.19%
(63.63-58.44) improvement compared to individ-
ual base models, and reaches 96.12% (63.63/66.20)
of the Oracle on Mini-SDv2. Similarly, the corre-
sponding improvement in Mini-NQ performance
is 1.83%, reaching 93.06% of the performance
achieved by the Oracle. In contrast, FT-TT, despite
its superior performance over two base models on
Mini-SDv2, underperforms InfoSel-TT by more
than 15% due to the small-size training data (refer
to Figure 2). This low performance of FT-TT mod-
els negatively impacts the performance of InfoSel∗.
As a result, we conclude that while InfoSel∗ can

exhibit superior performance (see further for VQA
tasks), it also requires more training data.

For VQA tasks, the results in Table 3 showcase
an improvement of 4.56% in the accuracy score of
InfoSel-MT compared to the base models (55.16-
50.60) on Mini-GQA. Furthermore, FT-MT im-
proves 30.48% (51.76-21.28) accuracy on Mini-
Viz due to a high percentage of unseen labels (e.g.,
“unanswerable”) introduced during fine-tuning. Fi-
nally, the superior performance of InfoSel∗-MT
model on Mini-Viz dataset demonstrates the effec-
tiveness of the proposed blending approach, which
improves 31.63% (52.91-21.28) accuracy upon the
InfoSel-MT model.

4.4.2 Data Efficiency
The experimental results shown in Figure 2 demon-
strate the data efficiency of our method by evaluat-
ing the model’s performance across varying train-
ing data sizes. We observe that InfoSel-TT achieves
a higher F1-score compared to the best base model
when trained on as few as 10 samples from Mini-
SDv2. This result has been further verified with
the mean F1-score of 10 test results using differ-
ent seed variations for sampling the training data
(shown in Figure 5 in Appendix). Conversely, the
number of training samples needed to surpass the
performance of base models is higher for VQA
datasets: 5% (6,603 samples) for Mini-GQA and
20% (864 samples) for Mini-Viz. We hypothesize
that this is due to the inherent complexity of the
VQA task.

PairRanker is less data-efficient than InfoSel as
it only achieves close performance when the train-
ing samples are more than 500 on both Mini-SDv2
and Mini-NQ. Additionally, we find that a larger
training data size benefits FT-TT more than In-
foSel-TT and OLA. For example, the F1-score of
FT-TT increases ∼200% and ∼500% from 10 to
10,000 training samples on Mini-SDv2 and Mini-
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NQ respectively, while InfoSel-TT only increases
by ∼3% and ∼4%. However, FT-TT still underper-
forms the best base model, which suggests that
fine-tuning a small-sized model requires larger
training data for getting a comparable performance
with LLMs or InfoSel. Finally, we observe that a
larger training data size does not necessarily lead
to improved performance for the fine-tuned FT-TT
model (e.g., when increasing from 80% to 100%
the training data size on Mini-GQA). In contrast,
OLA does not benefit as much as InfoSel and FT
from a larger size of training data, only outper-
forming InfoSel-TT on Mini-NQ when 10 and 20
training samples are used.

4.4.3 Multimodal Data
InfoSel is able to utilize multimodal data (image
and text) for VQA tasks, and thus outperform the
latest text-exclusive LLM ensemble methods (Pair-
Ranker and LLM-Blender) as evidenced in Table
3. In contrast, PairRanker and LLM-Blender can-
not process image features, thereby lacking crucial
information in the multimodal setting, leading to a
low accuracy on VQA datasets.5 Further insights
into the significance of modality information are
elaborated in Section A.8 and Table 4.

4.4.4 Lightweight Model
Table 7 (Appendix) reports the parameter size
of the base models and their ensemble models
(InfoSel-TT and InfoSel-MT). InfoSel provides
an efficient method for ensembling large LLMs
such as ChatGPT (175B parameters) using only
110M trainable parameters. Even though only 37%
((182M-115M)/182M) trainable parameters are
saved for the VQA task, we still demonstrate that
InfoSel can effectively enhance the task-specific
performance of small-size black-box VQA models,
offering a lightweight solution.

4.5 Ablation Studies

Is InfoSel robust to the base models’ individual
performances? We carry out this study to assess
whether InfoSel can effectively utilize the predic-
tions obtained from various base models, regardless
of their individual performance levels. In Figure 3,
we observe a minor F1-score difference (0.15%) on
the Mini-SDv2 dataset between the InfoSel model
ensembled with and without the lowest performing

5The most frequent answer of LLM-Blender on VQA
datasets is “I’m sorry, I don’t have enough context to answer
that question.”
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Figure 3: The portions of answers selected from differ-
ent base models by InfoSel models on Mini-SDv2 (right
column) and Mini-NQ (left column). The upper row
represents the results of the InfoSel model ensembled
with all three LLMs, and the model in the lower row
excluded the worst base model (LLaMA).

base model (LLaMA). This finding suggests that
InfoSel is robust, and not significantly affected by
the individual model’s performance. In a more de-
tailed analysis, we observe that InfoSel selects 4%
of answers from LLaMA, resulting in an overall
gain of +0.28% of the F1-score. This observation
highlights the effectiveness of InfoSel, as it can
leverage the knowledge contained in the answers
provided even by the lowest performing base model
to some extent.

Which modality information helps the most
for ensembling? In Table 4, we compare the ef-
fect of providing different modality information to
InfoSel-MT during ensemble training. Notice that
even with just the question and answer (Q+A) in-
formation, our model surpasses the performance of
the PairRanker. The setting that yields the lowest
accuracy solely utilizes the image (V) as the sig-
nal. This can be explained by the fact that a single
image often corresponds to multiple questions in
VQA datasets, making it challenging for the model
to acquire discriminative features. Furthermore,
we conclude that the superior performance of our
model when utilizing image, question, and answer
(V+Q+A) data demonstrates the effectiveness of
our model in multimodal setting.

4.6 Case Study

The first case of Table 5 indicates that InfoSel cap-
tures the only correct answer (“toaster”) from base
models. The second case demonstrates the ability
of InfoSel∗ to recognize a task-specific label (i.e.,
“unanswerable”) introduced by FT-MT. InfoSel-MT
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Model Mini-GQA Mini-Viz
PairRanker(Q+A) 52.05 22.42
InfoSel-MT(V) 50.56 20.79
InfoSel-MT(Q) 51.11 21.21
InfoSel-MT(V+Q) 50.83 20.06
InfoSel-MT(V+A) 52.38 22.66
InfoSel-MT(Q+A) 54.76 22.89
InfoSel-MT(V+Q+A) 55.16 23.16

Table 4: Accuracy of InfoSel-MT models when using
different input information for training compared to
baseline models. V, Q, and A represent visual, question,
and answer information respectively.

Mini-GQA Mini-Viz

Image:
Question: What appliance is What is this pro-

it? duct?
ALBEF blender refrigerator
BLIP toaster toilet
VLMo microwave door
FT-MT coffee maker unanswerable
InfoSel-MT toaster toilet
InfoSel∗-MT coffee maker unanswerable

Table 5: Case study of our models on Mini-GQA test
and Mini-Viz validation data. Ground truth answers are
bolded.

struggles with such labels as they are unseen to
the base models. This showcases the benefits of
training InfoSel∗ models on datasets containing a
high percentage of task-specific unseen labels. The
corresponding case study of TQA is shown in Table
9 (Appendix).

5 Conclusion

In this paper, we propose InfoSel, a novel
lightweight and task-specific ensemble method de-
signed to learn the dynamic selection of the op-
timal model from a range of distinct black-box
base LLMs. We find that using only 110M train-
able parameters, our method is able to substantially
increase the performance upon the best perform-
ing base LLM. Additionally, our analysis reveals
that InfoSel remains robust regardless the incorrect
predictions of the lowest performing LLM. Our
findings also show that our solution is highly data-
efficient. Concretely, it requires only a fraction of
instances (as few as 10) from the training set to
outperform base LLMs. Finally, our experimental
results reveal the ability of InfoSel to be adapted to
multimodal setting, showing a substantial increase
in performance compared to state-of-the-art alter-

natives.

6 Limitations

InfoSel offers an effective approach to enhancing
out-domain black-box model performance and ad-
dressing answer selection. However, it is important
to acknowledge certain limitations that come with
its application:

Dependency on Annotated Data: InfoSel, like
many machine learning techniques, relies on a
small amount of annotated training and develop-
ment data specific to the new domain. While
this requirement is relatively modest, and InfoSel’s
strength is it’s data efficiency (as demonstrated in
the experiments), this may still pose a limitation in
scenarios where obtaining such data is challenging
or costly.

Limited Applicability to Open-Ended Text Gen-
eration: InfoSel’s primary strength lies in its ability
to select the best answer from a set of base mod-
els, making it particularly valuable in question-
answering scenarios. However, for more open-
ended text-generation tasks, where it may be bene-
ficial to combine multiple answers, InfoSel’s single-
answer selection mechanism may not be the ideal
choice, and future research directions may include
approaches for combining several long-form an-
swers.

API Fine-Tuning Availability: At the time of this
study, InfoSel operates based on the assumption
that many APIs do not offer the ability to fine-
tune models, which is a constraint driven by the
current landscape of AI services. However, since
the field of AI is rapidly evolving, API providers
may potentially introduce fine-tuning as a standard
feature in the future. However, our experiments
show that selection may still help even when one
(and potentially more) of the answer models are
fine-tuned.

Transparency and Explainability: InfoSel, like
other machine learning models, which selects an-
swers from black-box models may itself operate
as a "black box". This means its decision-making
process might not be readily interpretable or ex-
plainable to end-users. Pairing InfoSel with ex-
plainability techniques may give users a clearer
understanding of how the model makes its selec-
tions.
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A Appendix

A.1 TQA Datasets

SQuAD-V2 (Rajpurkar et al., 2018) stands for
Stanford Question Answering Dataset 2.0, a dataset
designed for the task of question answering. It is an
extension of the original SQuAD dataset by includ-
ing over 50,000 unanswerable questions written ad-
versarially by crowdworkers. The dataset is widely
used in natural language understanding research.
NQ-Open (Kwiatkowski et al., 2019) is derived
from Natural Questions and serves as an open-
domain question-answering evaluation. The en-
tirety of the questions can be addressed using the
information found in the English Wikipedia. It was
created for research purposes.

For Mini-NQ, we followed (Fisch et al., 2019) to
use long answers as the context, and short answers
as the ground truth answers. The 1,000 samples are
divided into train and validation data using an 8:2
ratio, while the trained models are tested on the dev
data of the original datasets due to the unavailability
of original test data. We use the setup proposed
in (Laskar et al., 2023) to generate the answers
from LLMs.

Note that the answers of LLMs can be greatly
influenced by some factors such as the use of differ-
ent prompts or temperatures. However, our study
does not focus on prompt engineering but rather
on selecting the optimal base model to generate an
answer. We will publicly release our prompts as
well as the answers from LLMs for reproducibility.

A.2 VQA Datasets

GQA (Hudson and Manning, 2019) is a large-
scale dataset for visual reasoning and composi-
tional question answering research. The dataset
contains over 113k images collected from a di-
verse set of sources and over 22 million questions.
Only one ground-truth answer is provided for each
image-question pair.
VizWiz (Gurari et al., 2018) is a benchmark
dataset for visual question answering. It includes
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Dataset Sample Prompts
What is the answer?
Context:[context];
Question:[question];
If you can’t find the answer, please respond "unanswerable".

Mini-SDv2 Answer:
Answer the question depending on the context.
Context: [context];
Question: [question];
If you can’t find the answer, please respond "unanswerable".
Answer:
Answer the question depending on the context without explanation.

Mini-NQ Context: [context];
Question: [question];
Answer:

Table 6: Our sample prompts in QA datasets. SQuAD-V2 were available in PromptSource (Bach et al., 2022)
for prompt generation, we selected the prompt from PromptSource for Mini-SDv2, which contains two forms of
prompts.

31K images, 250K questions, and answers col-
lected through a mobile app for visually impaired
users. 10 ground-truth answers are provided for
each image-question pair.

Additionally, we compare the label differences
of the pre-trained dataset (VQA v2 (Antol et al.,
2015)) of VQA base models with task-specific
datasets (GQA, VizWiz) for ensemble training. Fig-
ure 4 shows the top 7 most frequent answers and
their percentages of GQA, VQA v2 and VizWiz.
Four answers in GQA do not appear in the top list
of VQA v2 and three for VizWiz (including the top
frequent answer "unanswerable"). We also sample
3k most frequent answers from each dataset and
calculate their percentage of overlapping, which is
reported on the intersection in the figure. GQA and
VizWiz have 32.9 % and 21.6% of overlap with
VQA v2 respectively, showcasing significant dif-
ferences between the pre-trained dataset and task-
specific datasets.

A.3 Base Models

LLMs VQA Models
Model #Param Model #Param
LLaMA-2-70b-chat 70B ALBEF 290M
text-davinci-003 175B BLIP 361M
ChatGPT 175B VLMo 182M
PairRanker 110M PairRanker 110M
InfoSel-TT 110M InfoSel-MT 115M
InfoSel∗-TT 110M InfoSel∗-MT 115M

Table 7: Parameter size of the models used in our exper-
iments.

ChatGPT is a large language model with 175B
parameters, it allows you to have human-like con-
versations and much more with the chatbot. Chat-

Figure 4: Top 7 most frequent answers of VQA v2
(pre-trained dataset of VQA base models), GQA and
VizWiz (task-specific datasets for ensemble training).
This explains why InfoSel performs poorly in Mini-Viz,
as the new label "unanswerable" is the top frequent
answer in VizWiz, but this new label has been exposed
to base models that are pre-trained on VQA v2.

GPT can generate context-based responses to user
prompts (questions). However, this model is cur-
rently only accessible by cloud APIs.
GPT 3.5 text-davinci-003 is similar to ChatGPT
but designed specifically for instruction-following
tasks which enables it to respond concisely and
more accurately. This model is deprecated after
our experiments.
LLaMA-2-70b-chat (Touvron et al., 2023) is a
large language model with 70B parameters. It is
fine-tuned on LLaMA 2 with publicly available
instruction datasets and over 1 million human an-
notations, while Llama 2 models are trained on 2
trillion tokens from publicly available online data
sources. LLaMA 2 models are currently publicly
accessible.
ALBEF (Li et al., 2021a)6 first encodes the im-
age and text with an image encoder (visual trans-

6https://github.com/salesforce/ALBEF
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former (Dosovitskiy et al., 2021)) and a text en-
coder respectively. Then a multimodal encoder
is used to fuse the image features with the text
features through cross-modal attention. The V&L
representation is trained with objectives of image-
text contrastive learning, masked language mod-
eling and image-text matching. Different from U-
VisualBERT, ALBEF uses a 6-layer transformer
decoder to generate answers for VQA tasks.
BLIP (Li et al., 2022)7 uses a visual transformer
as the image encoder, and a multi-task model (mul-
timodal mixture of encoder-decoder) as a unified
model with both understanding and generation ca-
pabilities. The model is jointly pre-trained with
three vision-language objectives: image-text con-
trastive learning, image-text matching, and image-
conditioned language modeling. Similarly to AL-
BEF, the VQA task is considered an answer gener-
ation task in this method.
VLMo (Bao et al., 2022)8 is a unified vision-
language pre-training method with Mixture-of-
Modality-Experts. VLMO leverages large-scale
image and text data to learn joint representations of
vision and language. It employs a mixture model
to capture diverse interactions between visual and
textual information, achieving state-of-the-art per-
formance on various vision-language tasks.

A.4 Experiment Setup

We fixed the batch size to the upper limit of the
server capacity, while the learning rates and epochs
are selected after a grid search on a set of values
(learning rates: {e3, 5e4, e4, 5e5, e5, 5e6, e6},
epochs: {3, 5, 10, 15, 20}). Models for TQA
are trained for 5 epochs using a learning rate of
5 × 10−5 and batch size of 4. Models for VQA
use the same learning rate but a batch size of 16
for 20 epochs. We spent ∼74 and ∼290 seconds
training 1 epoch on 1,000 samples for TQA and
4,319 samples for VQA respectively. The training
was performed on 1 GPU with 16GB memory of a
DGX1 server ((Pascal) Tesla P100).

A.5 Multi-modal Information Concatenation
or Fusion?

We studied the impact of concatenating and
fusing multi-modal input information for the
VQA task. InfoSel-MLP is an alternative model
type for InfoSel which processes all the input

7https://github.com/salesforce/BLIP
8https://github.com/microsoft/unilm/tree/

master/vlmo

Mini-GQA Mini-Viz
Model ACC
InfoSel-MLP 52.35 21.12
InfoSel-MT 55.16 23.16

Table 8: Comparison of using different architecture for
processing input information differently. Input concate-
nation result is demonstrated by InfoSel-MLP and the
fusion result is shown by InfoSel-MT.

information separately with a simple Multilayer
perceptron (MLP) instead of MT. A pre-trained
Sentence-BERT (Reimers and Gurevych, 2019)
9 Mqa is used for generating question embedding
Rq and answer embeddings Ra.

Rq
i = M qa(Qi), R

q ∈ R768

Ra
ij = M qa(Av

ij), R
a
ij ∈ R768

MLP takes the concatenated representation of ques-
tion, answer, and visual embeddings Rv

i as input
and maps it to the label space. The objective func-
tion of InfoSel-MLP is formalized as:

min
θ

N∑

i=1

LBCE(MLPθ({Rv
i , [R

q
i , R

a
ij ]}Kj=1), Y

v
i )

(1)
The input layer of the MLP maps the concate-

nated representations to a hidden layer with a size
equal to 300, followed by a ReLU activation layer
and then an output layer with an output size equal
to the number of models.

Table 8 demonstrates the performance of the
input concatenation result (InfoSel-MLP) and fu-
sion result (InfoSel-MT). We observe that InfoSel-
MT achieves ∼3% and ∼2% higher accuracy than
InfoSel-MLP in Mini-GQA and Mini-Viz respec-
tively, which proves that a fused contextual repre-
sentation of inputs provides more discriminative
information than a concatenation of input embed-
dings.

A.6 Case Study for TQA
Table 9 illustrates two insightful cases from the pre-
dictions of different models on textual Mini-SDv2
and Mini-NQ QA datasets. The first case show-
cases the ability of InfoSel-TT to select the right
model (Davinci) when the rest of the models is in-
correct. However, InfoSel∗-TT selects the wrong
answers from the FT-TT model and underperforms

9https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-dot-v1
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Mini-SDv2 Mini-NQ
...Derrick Norman ...in 2005 and the

Context: Lehmer’s list release of her epon-
of primes up to ymous debut album
10,006,721... the following year...

How many primes When did Taylor
Question: were included in Der- Swift ’s first

rick Norman Lehmer’s album release?
list of prime numbers?

LLaMA unanswerable 2006
Davinci 10,006,721 2006
ChatGPT unanswerable 2006
FT-TT unanswerable 2005
InfoSel-TT 10,006,721 2006
InfoSel∗-TT unanswerable 2005

Table 9: Case study of our models on Mini-SDv2 and Mini-NQ test data. Answers of LLMs are shortened to
keywords for better demonstration. Ground truth answers are bolded, and one incorrect ground truth answer is
colored red.

InfoSel-TT. The second case illustrates the ability
of LLMs to generate correct answer (“2006”) de-
spite the ground truth annotation error (“2005”).
This demonstrates the advantage of ensembling
highly expressive LLMs instead of relying only on
fine-tuning small-size models such as FT-TT.

A.7 Robustness Analysis.
We analyze the robustness of the data efficiency
property of InfoSel by training InfoSel-TT with
10 different sets of randomly sampled train data.
Figure 5 demonstrates the mean and standard devi-
ation of these 10 sets of results on Mini-SDv2 and
Mini-NQ. We observe that the deviation decreases
as the number of training data increases, and the
deviation is less than 0.5 when using 1,000 training
samples (0.29 for Mini-SDv2, 0.40 for Mini-NQ).
The mean value (61.12%) when using 10 samples
from Mini-SDv2 is still better than the F1-score
of the best base model, while the mean (71.60%)
when using 100 samples from Mini-NQ is already
higher than the F1-score of the best base model
which is fewer samples than the result reported in
the main paper (500 samples).

A.8 Ablation Studies
Figure 6 shows the results when removing Chat-
GPT and Davinci models respectively. It is not
recommended to use InfoSel to ensemble only two
base models where one of the base models per-
forms significantly worse than the other one.

Figure 5: Mean and standard deviation of results on
Mini-SDv2 and Mini-NQ when training InfoSel-TT with
10 sets of randomly sampled training data.
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F1: 58.43

23%

77%

F1: 69.35
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92%

F1: 44.83

8%
92%
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Figure 6: The portions of answers selected from dif-
ferent base models by InfoSel models on Mini-SDv2
and Mini-NQ test data. The upper row represents the
results of the InfoSel model ensembled with Davinci
and LLaMA, and the model in the lower row ensembled
with ChatGPT and LLaMA.
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