@inproceedings{michail-etal-2025-adapting,
title = "Adapting Multilingual Embedding Models to Historical {L}uxembourgish",
author = "Michail, Andrianos and
Racl{\'e}, Corina and
Opitz, Juri and
Clematide, Simon",
editor = "Kazantseva, Anna and
Szpakowicz, Stan and
Degaetano-Ortlieb, Stefania and
Bizzoni, Yuri and
Pagel, Janis",
booktitle = "Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.latechclfl-1.26/",
doi = "10.18653/v1/2025.latechclfl-1.26",
pages = "291--298",
ISBN = "979-8-89176-241-1",
abstract = "The growing volume of digitized historical texts requires effective semantic search using text embeddings. However, pre-trained multilingual models face challenges with historical content due to OCR noise and outdated spellings. This study examines multilingual embeddings for cross-lingual semantic search in historical Luxembourgish (LB), a low-resource language. We collect historical Luxembourgish news articles from various periods and use GPT-4o for sentence segmentation and translation, generating 20,000 parallel training sentences per language pair. Additionally, we create a semantic search (Historical LB Bitext Mining) evaluation set and find that existing models perform poorly on cross-lingual search for historical Luxembourgish. Using our historical and additional modern parallel training data, we adapt several multilingual embedding models through contrastive learning or knowledge distillation and increase accuracy significantly for all models. We release our adapted models and historical Luxembourgish-German/French/English bitexts to support further research."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="michail-etal-2025-adapting">
<titleInfo>
<title>Adapting Multilingual Embedding Models to Historical Luxembourgish</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrianos</namePart>
<namePart type="family">Michail</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Corina</namePart>
<namePart type="family">Raclé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juri</namePart>
<namePart type="family">Opitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Clematide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Degaetano-Ortlieb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janis</namePart>
<namePart type="family">Pagel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-241-1</identifier>
</relatedItem>
<abstract>The growing volume of digitized historical texts requires effective semantic search using text embeddings. However, pre-trained multilingual models face challenges with historical content due to OCR noise and outdated spellings. This study examines multilingual embeddings for cross-lingual semantic search in historical Luxembourgish (LB), a low-resource language. We collect historical Luxembourgish news articles from various periods and use GPT-4o for sentence segmentation and translation, generating 20,000 parallel training sentences per language pair. Additionally, we create a semantic search (Historical LB Bitext Mining) evaluation set and find that existing models perform poorly on cross-lingual search for historical Luxembourgish. Using our historical and additional modern parallel training data, we adapt several multilingual embedding models through contrastive learning or knowledge distillation and increase accuracy significantly for all models. We release our adapted models and historical Luxembourgish-German/French/English bitexts to support further research.</abstract>
<identifier type="citekey">michail-etal-2025-adapting</identifier>
<identifier type="doi">10.18653/v1/2025.latechclfl-1.26</identifier>
<location>
<url>https://aclanthology.org/2025.latechclfl-1.26/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>291</start>
<end>298</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adapting Multilingual Embedding Models to Historical Luxembourgish
%A Michail, Andrianos
%A Raclé, Corina
%A Opitz, Juri
%A Clematide, Simon
%Y Kazantseva, Anna
%Y Szpakowicz, Stan
%Y Degaetano-Ortlieb, Stefania
%Y Bizzoni, Yuri
%Y Pagel, Janis
%S Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-241-1
%F michail-etal-2025-adapting
%X The growing volume of digitized historical texts requires effective semantic search using text embeddings. However, pre-trained multilingual models face challenges with historical content due to OCR noise and outdated spellings. This study examines multilingual embeddings for cross-lingual semantic search in historical Luxembourgish (LB), a low-resource language. We collect historical Luxembourgish news articles from various periods and use GPT-4o for sentence segmentation and translation, generating 20,000 parallel training sentences per language pair. Additionally, we create a semantic search (Historical LB Bitext Mining) evaluation set and find that existing models perform poorly on cross-lingual search for historical Luxembourgish. Using our historical and additional modern parallel training data, we adapt several multilingual embedding models through contrastive learning or knowledge distillation and increase accuracy significantly for all models. We release our adapted models and historical Luxembourgish-German/French/English bitexts to support further research.
%R 10.18653/v1/2025.latechclfl-1.26
%U https://aclanthology.org/2025.latechclfl-1.26/
%U https://doi.org/10.18653/v1/2025.latechclfl-1.26
%P 291-298
Markdown (Informal)
[Adapting Multilingual Embedding Models to Historical Luxembourgish](https://aclanthology.org/2025.latechclfl-1.26/) (Michail et al., LaTeCHCLfL 2025)
ACL
- Andrianos Michail, Corina Raclé, Juri Opitz, and Simon Clematide. 2025. Adapting Multilingual Embedding Models to Historical Luxembourgish. In Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025), pages 291–298, Albuquerque, New Mexico. Association for Computational Linguistics.