@inproceedings{abdelhalim-regneri-2025-automating,
title = "Automating Violence Detection and Categorization from Ancient Texts",
author = "Abdelhalim, Alhassan and
Regneri, Michaela",
editor = "Kazantseva, Anna and
Szpakowicz, Stan and
Degaetano-Ortlieb, Stefania and
Bizzoni, Yuri and
Pagel, Janis",
booktitle = "Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.latechclfl-1.7/",
doi = "10.18653/v1/2025.latechclfl-1.7",
pages = "64--78",
ISBN = "979-8-89176-241-1",
abstract = "Violence descriptions in literature offer valuable insights for a wide range of research in the humanities. For historians, depictions of violence are of special interest for analyzing the societal dynamics surrounding large wars and individual conflicts of influential people. Harvesting data for violence research manually is laborious and time-consuming. This study is the first one to evaluate the effectiveness of large language models (LLMs) in identifying violence in ancient texts and categorizing it across multiple dimensions. Our experiments identify LLMs as a valuable tool to scale up the accurate analysis of historical texts and show the effect of fine-tuning and data augmentation, yielding an F1-score of up to 0.93 for violence detection and 0.86 for fine-grained violence categorization."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="abdelhalim-regneri-2025-automating">
<titleInfo>
<title>Automating Violence Detection and Categorization from Ancient Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alhassan</namePart>
<namePart type="family">Abdelhalim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michaela</namePart>
<namePart type="family">Regneri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Degaetano-Ortlieb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janis</namePart>
<namePart type="family">Pagel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-241-1</identifier>
</relatedItem>
<abstract>Violence descriptions in literature offer valuable insights for a wide range of research in the humanities. For historians, depictions of violence are of special interest for analyzing the societal dynamics surrounding large wars and individual conflicts of influential people. Harvesting data for violence research manually is laborious and time-consuming. This study is the first one to evaluate the effectiveness of large language models (LLMs) in identifying violence in ancient texts and categorizing it across multiple dimensions. Our experiments identify LLMs as a valuable tool to scale up the accurate analysis of historical texts and show the effect of fine-tuning and data augmentation, yielding an F1-score of up to 0.93 for violence detection and 0.86 for fine-grained violence categorization.</abstract>
<identifier type="citekey">abdelhalim-regneri-2025-automating</identifier>
<identifier type="doi">10.18653/v1/2025.latechclfl-1.7</identifier>
<location>
<url>https://aclanthology.org/2025.latechclfl-1.7/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>64</start>
<end>78</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automating Violence Detection and Categorization from Ancient Texts
%A Abdelhalim, Alhassan
%A Regneri, Michaela
%Y Kazantseva, Anna
%Y Szpakowicz, Stan
%Y Degaetano-Ortlieb, Stefania
%Y Bizzoni, Yuri
%Y Pagel, Janis
%S Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-241-1
%F abdelhalim-regneri-2025-automating
%X Violence descriptions in literature offer valuable insights for a wide range of research in the humanities. For historians, depictions of violence are of special interest for analyzing the societal dynamics surrounding large wars and individual conflicts of influential people. Harvesting data for violence research manually is laborious and time-consuming. This study is the first one to evaluate the effectiveness of large language models (LLMs) in identifying violence in ancient texts and categorizing it across multiple dimensions. Our experiments identify LLMs as a valuable tool to scale up the accurate analysis of historical texts and show the effect of fine-tuning and data augmentation, yielding an F1-score of up to 0.93 for violence detection and 0.86 for fine-grained violence categorization.
%R 10.18653/v1/2025.latechclfl-1.7
%U https://aclanthology.org/2025.latechclfl-1.7/
%U https://doi.org/10.18653/v1/2025.latechclfl-1.7
%P 64-78
Markdown (Informal)
[Automating Violence Detection and Categorization from Ancient Texts](https://aclanthology.org/2025.latechclfl-1.7/) (Abdelhalim & Regneri, LaTeCHCLfL 2025)
ACL
- Alhassan Abdelhalim and Michaela Regneri. 2025. Automating Violence Detection and Categorization from Ancient Texts. In Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025), pages 64–78, Albuquerque, New Mexico. Association for Computational Linguistics.